Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and ...Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.展开更多
Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in che...Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in chemical engineering.Deep eutectic solvents (DESs) as a sustainable green separation solvent have been proposed for the separation of carbazole from model anthracene oil.In this research,three quaternary ammonium-based DESs were prepared using ethylene glycol (EG) as hydrogen bond donor and tetrabutylammonium chloride (TBAC),tetrabutylammonium bromide or choline chloride as hydrogen bond acceptors.To explore their extraction performance of carbazole,the conductor-like screening model for real solvents (COSMO-RS) model was used to predict the activity coefficient at infinite dilution (γ^(∞)) of carbazole in DESs,and the result indicated TBAC:EG (1:2) had the stronger extraction ability for carbazole due to the higher capacity at infinite dilution (C^(∞)) value.Then,the separation performance of these three DESs was evaluated by experiments,and the experimental results were in good agreement with the COSMO-RS prediction results.The TBAC:EG (1:2) was determined as the most promising solvent.Additionally,the extraction conditions of TBAC:EG (1:2) were optimized,and the extraction efficiency,distribution coefficient and selectivity of carbazole could reach up to 85.74%,30.18 and 66.10%,respectively.Moreover,the TBAC:EG (1:2) could be recycled by using environmentally friendly water as antisolvent.In addition,the separation performance of TBAC:EG (1:2) was also evaluated by real crude anthracene,the carbazole was obtained with purity and yield of 85.32%,60.27%,respectively.Lastly,the extraction mechanism was elucidated byσ-profiles and interaction energy analysis.Theoretical calculation results showed that the main driving force for the extraction process was the hydrogen bonding ((N–H...Cl) and van der Waals interactions (C–H...O and C–H...π),which corresponding to the blue and green isosurfaces in IGMH analysis.This work presented a novel method for separating carbazole from crude anthracene oil,and will provide an important reference for the separation of other high value-added products from coal tar.展开更多
Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a...Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a lack of efficient tools that accurately predict DES formation.The search for DES relies heavily on intuition or trial-and-error processes,leading to low success rates or missed opportunities.Recognizing that hydrogen bonds(HBs)play a central role in DES formation,we aim to identify HB features that distinguish DES from non-DES systems and use them to develop machine learning(ML)models to discover new DES systems.We first analyze the HB properties of 38 known DES and 111 known non-DES systems using their molecular dynamics(MD)simulation trajectories.The analysis reveals that DES systems have two unique features compared to non-DES systems:The DESs have①more imbalance between the numbers of the two intra-component HBs and②more and stronger inter-component HBs.Based on these results,we develop 30 ML models using ten algorithms and three types of HB-based descriptors.The model performance is first benchmarked using the average and minimal receiver operating characteristic(ROC)-area under the curve(AUC)values.We also analyze the importance of individual features in the models,and the results are consistent with the simulation-based statistical analysis.Finally,we validate the models using the experimental data of 34 systems.The extra trees forest model outperforms the other models in the validation,with an ROC-AUC of 0.88.Our work illustrates the importance of HBs in DES formation and shows the potential of ML in discovering new DESs.展开更多
A series of Lewis-acid deep eutectic solvents (DESs) were synthesized by stirring phosphoric acid and zincchloride as raw materials at 80℃ to form H_(3)PO_(4)/nZnCl_(2) (n = 0.1, 0.25, 0.5, 0.75, 1). The DESs were ch...A series of Lewis-acid deep eutectic solvents (DESs) were synthesized by stirring phosphoric acid and zincchloride as raw materials at 80℃ to form H_(3)PO_(4)/nZnCl_(2) (n = 0.1, 0.25, 0.5, 0.75, 1). The DESs were characterized byFourier transform infrared spectrophotometry (FT-IR), thermogravimetry/differential thermogravimetry (TG/DTG), andelectron spray ionization mass spectrometry (ESI-MS). The DESs were used as both extractants and catalysts to removedibenzothiophene from fuels via oxidative desulfurization (ODS). Experiments were performed to investigated the influenceof factors such as composition of DES, temperature, oxidant dosage (molar ratio of O:S), DES dosage (volume ratio ofDES:oil), and number of cycles on desulfurization rate. The results indicated that the removal rate of dibenzothiophene (DBT)was affected by the Lewis acidic DESs, with that of H_(3)PO_(4)/0.25∙ZnCl_(2) reaching 96.4% under optimal conditions (Voil=5 mL,VDES=1 mL, an oxidant dosage of 6, T=50 ℃). After six cycles, the desulfurization rate of H_(3)PO_(4)/0.25∙ZnCl_(2) remained above94.1%. The apparent activation energy of dibenzothiophene (DBT) removal reaction was determined by a pseudo-first orderkinetic equation according to the Arrhenius equation to be 32.34 kJ/mol, as estimated. A reaction mechanism is proposedbased on the experimental data and characterization results.展开更多
In this study we used the deep eutectic solvents (ionic liquids) to investigate the reaction between copper (II) with ethylene diamine (en). Two of the existing methods for analyzing spectrophotometric measurements ha...In this study we used the deep eutectic solvents (ionic liquids) to investigate the reaction between copper (II) with ethylene diamine (en). Two of the existing methods for analyzing spectrophotometric measurements have been applied for establishing, the stoichiometry and whenever possible, the stability constants of the chelates formed. The method of continuous variations was necessary to determine first whether, the metal ion and the ligand ethylene diamine form one or more than one chelate, when more than one chelate formed, the results obtained depend on the wavelength and for meaningful conclusions the wavelengths were carefully selected. The empirical formulae of the chelates were further substantiated by the molar ratio method. The effect of time and temperature on the formation and stability of these chelates in solution is also studied. The stability constants, K1 and K2 for the copper (II) chelates were calculated, though reliable, and are comparable to literature values.展开更多
The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)...The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)and phenol(PhOH)were used to prepare a novel class of deep eutectic solvents(DESs)with multiple active sites and low viscosities.The NH_(3) separation performance of EtOHACl+PhOH DESs was analyzed completely.It is figured out that the NH_(3) absorption rates in EtOHACl+PhOH DESs are very fast.The NH_(3) absorption capacities are very high and reach up to 5.52 and 10.74 mol·kg1 at 11.2 and 100.4 kPa under 298.2 K,respectively.In addition,the EtOHACl+PhOH DESs present highly selective absorption of NH_(3) over N_(2) and H_(2) and good regenerative properties after seven cycles of absorption/desorption.The intrinsic separation mechanism of NH_(3) by EtOHACl+PhOH DESs was further revealed by spectroscopic analysis and quantum chemistry calculations.展开更多
As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application pote...As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application potential in the field of plant flavonoid extraction.In this paper,the definition,classification and preparation methods of DESs were introduced.The effects of DES composition,molar ratio of DES components,water content of DES systems,liquid-material ratio,extraction temperature,extraction time and extraction auxiliary techniques on the extraction yield of plant flavonoids were expounded.The recycling methods of DESs were summarized.Existing problems of DESs in the field of plant flavonoids extraction were pointed out,and further research direction and trend were analyzed and prospected.展开更多
Deep eutectic solvents(DESs) are a new class of green solvents analogous to ionic liquids due to their biodegradable capacity and low cost. However, the direct extractive desulfurization of diesel oil by DESs cannot m...Deep eutectic solvents(DESs) are a new class of green solvents analogous to ionic liquids due to their biodegradable capacity and low cost. However, the direct extractive desulfurization of diesel oil by DESs cannot meet the government’s standard. In this work, amphiphilic polyoxometalates were synthesized and characterized by FT-IR and mass spectrometry.The oxidative desulfurization results showed that benzothiophene(BT) could be completely removed by employing a [(CH)P(CH)]PMoO, DES(ChCl/2 Ac) and HOsystem. It was also found that the organic cation of catalysts played a positive role in oxidative desulfurization. The reaction conditions, such as reaction temperature and time, the amount of catalyst and DES and HO/S(O/S) molar ratio, were optimized. Different sulfides were tested to determine the desulfurization selectivity of the optimal reaction system, and it was found that 97.2% of dibenzothiophene(DBT) could be removed followed by 80.7% of 4-MDBT and 76.0% of 4,6-DMDBT. After reaction, the IR spectra showed that the catalyst [(CH)P(CH)]PMoOwas stable during the reaction process and the oxidative product was dibenzothiophene sulfone(DBTO). Furthermore, the catalyst can be regenerated and recycled for four runs with little loss of activity.展开更多
A series of novel binary deep eutectic solvents(DESs)composed of choline chloride(ChCl)and formic acid(HCOOH)with different molar ratios have been successfully synthesized and applied in extractive desulfurization(EDS...A series of novel binary deep eutectic solvents(DESs)composed of choline chloride(ChCl)and formic acid(HCOOH)with different molar ratios have been successfully synthesized and applied in extractive desulfurization(EDS).Keggin-type polyoxometallate ionic liquid[TTPh]_(3)PW_(12)O_(40) was prepared and used as catalyst to enhance the EDS capacity by means of photocatalytic oxidative process.Both of the DESs and[TTPh]_(3)PW_(12)O_(40) ionic liquid catalyst were characterized in detail by Fourier transform infrared spectroscopy spectra(FT-IR),elemental analysis,and X-ray photoelectron spectroscopy(XPS).It was found that the molar ratios of Ch Cl:HCOOH had a major impact on desulfurization performance,and the optimal desulfurization capacity 96.5%was obtained by ChCl/5 HCOOH.Besides dibenzothiophene(DBT),the desulfurization efficiencies of 4-methylbenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT),two kinds of DBT derivatives,were also investigated under the same experimental conditions.Moreover,the free radical scavenging experiments manifested that superoxide radical(·O_(2)^(-)) and hole(h^(+)) played important roles in the desulfurization system.After further analysis of the oxidation products by gas chromatography-mass spectrometry(GC–MS),the possible reaction mechanism was proposed.Thus,photocatalytic oxidative has been proved to be one of the efficient approaches for enhancing the extractive desulfurization performance in DES.展开更多
Deep eutectic solvents(DESs)have drawn a growing research interest for applications in a wide range of scientific and industrial arenas.However,a limited effort has been reported in the area of gas separation processe...Deep eutectic solvents(DESs)have drawn a growing research interest for applications in a wide range of scientific and industrial arenas.However,a limited effort has been reported in the area of gas separation processes and particularly the carbon dioxide capture.This study introduces a novel set of DESs that were prepared by complexing ethylenediamine(EDA),monoethanolamine(MEA),tetraethylenepentamine(TEPA),triethylenetetramine(TETA)and diethylenetriamine(DETA)as hydrogen bond donors to monoethanolamide hydrochloride(EAHC)salt as a hydrogen bond acceptor.The absorption capacity of CO2 was evaluated by exploiting a method based on measuring the pressure drop during the absorption process.The solubility of different DESs was studied at a temperature of 313.15 K and initial pressure of 0.8 MPa.The DES systems 1 EAHC:9 DETA,1 EAHC:9 TETA and 1 EAHC:9 TEPA achieved the highest CO2 solubility of 0.6611,0.6572 and 0.7017 mol CO2·(mole DES)-1 respectively.The results showed that CO2 solubility in the DESs increased with increasing the molar ratio of hydrogen bond donor.In addition,the CO2 solubility increased as the number of amine groups in the solvent increases,therefore,increasing the alkyl chain length in the DESs,resulted in increasing the CO2 solubility.FTIR analysis confirms the DES synthesis since no new functional group was identified.The FTIR spectra also revealed the carbamate formation in DES-CO2 mixtures.In addition,the densities and viscosities of the synthesized DESs were also measured.The CO2 initial investigation of reported DESs shows that these can be potential alternative for conventional solvents in CO2 capture processes.展开更多
The development of green solvents for enhancing aqueous solubility of drug curcumin remains a challenge. This study explores the enhancing effect of deep eutectic solvents(DESs) on the aqueous solubility of curcumin(C...The development of green solvents for enhancing aqueous solubility of drug curcumin remains a challenge. This study explores the enhancing effect of deep eutectic solvents(DESs) on the aqueous solubility of curcumin(CUR) via experiment and theoretical calculation. Choline chloride-based DESs with polyols 1,2-propanediol(1,2-PDO), 1,3-propanediol, ethylene glycol, and glycerol as hydrogen bond donors were prepared and used as co-solvents. The CUR aqueous solubility increased with increasing the DESs content at temperature of 303.15-318.15 K, especially in aqueous ChCl/1,2-PDO(mole ratio 1:4) solutions. The positive apparent molar volume values and reduced density gradient analysis confirmed the existence of strong interactions between CUR and solvent. The van der Waals interactions and hydrogen bonding coexisted in DESs monomer retained the stability of DESs structure after introducing CUR. Moreover,the lower interaction energy of DESs…CUR system than that of the counterpart DESs further proved the strong interaction between CUR and DESs. The lowest interaction energy of ChCl/1,2-PDO…CUR system indicated that this system was the most stable and ChCl/1,2-PDO was promising for CUR dissolution.This work provides efficient solvents for utilizing curcumin, contributing to a deep insight into the interactions between DES and CUR at the molecular level, and the role of DESs on enhancing drugs solubility.展开更多
Important efforts have been made over the past years to improve the drug acts,which leads to the discovery of novel drug preparations and delivery systems.The optimal design of such processes requires a molecular-leve...Important efforts have been made over the past years to improve the drug acts,which leads to the discovery of novel drug preparations and delivery systems.The optimal design of such processes requires a molecular-level understanding of the interactions between drug molecules and biological membranes.The thermodynamic investigation provides deep and complete knowledge of interactions and the choice of appropriate and suitable production compounds in pharmaceutical fields.Particularly,the analysis of drugs+co-solvents in aqueous media is the central issue in many types of research because they exert their impact by interacting with biological membranes.This work is aimed to measure the density and speed of sound for the thiamine hydrochloride in water+deep eutectic solvents(DESs)mixtures(choline chloride/urea,choline chloride/ethylene glycol and choline chloride/glycerol)at temperature range(293.15-308.15)K.By correlation of the evaluated parameters in some standard relations,the partial molar parameters i.e.apparent molar volumes,Vφ,m,and apparent molar isentropic compression,κ_(s,φ,m),are calculated.In addition,apparent molar isobaric expansion,E^(0)_(φ,m),and Hepler’s constant are computed from the density and speed of sound data.For fitting the experimental Vφ,m andκ_(s,φ,m)the Redlich-Meyer equation was employed that the important quantities;standard partial molar volume,V^(0)_(m),and partial molar isentropic compression,κφ,m0,were obtained.The thermodynamic analysis of the studied system also plays a crucial role in the pharmaceutical industry.展开更多
Fracturing fluid property play a critical role in developing unconventional reservoirs.Deep eutectic solvents(DESs)show fascinating potential for property improvement of clean fracturing fluids(CFFs)due to their low-p...Fracturing fluid property play a critical role in developing unconventional reservoirs.Deep eutectic solvents(DESs)show fascinating potential for property improvement of clean fracturing fluids(CFFs)due to their low-price,low-toxicity,chemical stability and flexible designability.In this work,DESs were synthesized by mixing hydrogen bond acceptors(HBAs)and a given hydrogen bond donor(HBD)to explore their underlying influence on CFF properties based on the intermolecular interactions.The hydrogen-bonding,van der Waals and electrostatic interactions between DES components and surfactants improved the CFF properties by promoting the arrangement of surfactants at interface and enhancing the micelle network strength.The HBD enhanced the resistance of CFF for Ca^(2+) due to coordination-bonding interaction.The DESs composed of choline chloride(ChCl)and malonic acid show great enhancement for surface,rheology,temperature resistance,salt tolerance,drag reduction,and gel-breaking performance of CFFs.The DESs also improved the gel-breaking CFF-oil interactions,increasing the imbibition efficiencies to 44.2%in 74 h.Adjusting HBAs can effectively strengthen the intermolecular interactions(e.g.,HBA-surfactant and HBD-surfactant interactions)to improve CFF properties.The DESs developed in this study provide a novel strategy to intensify CFF properties.展开更多
Ternary deep eutectic solvents(TDESs) comprising choline chloride(Ch Cl), glycerol and L-arginine were synthesized as catalysts and solvents for the conversion of D-glucosamine(GlcNH_(2)) into deoxyfructosazine(DOF). ...Ternary deep eutectic solvents(TDESs) comprising choline chloride(Ch Cl), glycerol and L-arginine were synthesized as catalysts and solvents for the conversion of D-glucosamine(GlcNH_(2)) into deoxyfructosazine(DOF). The interactions between these three components in the prepared TDESs were studied by ^(1)H-,^(35)Cl-NMR spectra and ^(1)H diffusion-ordered spectroscopy(DOSY) measurements. The chemical shift changes of active hydrogen in the ^(1)H-NMR spectra of TDES system and widening of signals in the^(35)Cl-NMR spectra confirmed the hydrogen bonding interaction between the components, which was further supported by the decrease of diffusion coefficients(D) of the TDES components according to ^(1)H DOSY measurements. The influences of reaction temperature and L-arginine content in the TDESs on the yield of DOF were also studied. The experimental results have shown that when the molar ratio of Ch Cl, glycerol, and L-arginine was 1:2:0.1, DOF was the major product with a yield of 22.6% at 90℃ for 120 min. The chemical shift titration indicated that the carboxyl group of L-arginine in the TDES is the catalytical active site, so the mechanism of the catalytic reaction between Glc NH_(2) and the TDES was proposed. Moreover, a reaction intermediate, dihydrofructosazine, was identified in the self-condensation reaction of Glc NH_(2) by an in situ ^(1)H NMR technique.展开更多
Deep eutectic solvents(DESs) are a kind of potential lixiviant for selective metal processing due to their versatile complexation properties. In this study, we investigated the recovery of zinc from zinc oxide dust us...Deep eutectic solvents(DESs) are a kind of potential lixiviant for selective metal processing due to their versatile complexation properties. In this study, we investigated the recovery of zinc from zinc oxide dust using choline chloride-ureaethylene glycol(ChCl-urea-EG) DESs. The zinc extraction efficiency can be up to 85.2% when the slurry concentration is 50 g/L, leaching temperature is 80 °C and stirring speed is 600 r/min. The leaching process is controlled by the diffusion and the corresponding activation energy is 32.1 k J/mol. The resultant solution was directly used for the electrodeposition of zinc. The pure zinc deposit is obtained with a current efficiency of 82.6%. Furthermore, the ChCl-urea-EG DESs can be recycled. This approach is shown to be promising for the recycling of zinc from the zinc-containing dust.展开更多
This review divides the acidic deep eutectic solvents(ADES) into Br?nsted and Lewis DES according to their diversity of acidic character.The hydrogen bond donors and halide salts for formulating an ADES are classified...This review divides the acidic deep eutectic solvents(ADES) into Br?nsted and Lewis DES according to their diversity of acidic character.The hydrogen bond donors and halide salts for formulating an ADES are classified, the synthesis methods are described, and the physicochemical properties including freezing point, acidity, density, viscosity and conductivity are presented. Furthermore, the applications of Br?nsted acidic deep eutectic solvents(BADES) and Lewis acidic deep eutectic solvents(LADES) are overviewed, respectively, covering the fields in dissolution, extraction, organic reaction and metal electrodeposition. It is expected that the ADES has great potential to replace the pollutional mineral acid, expensive and unstable solid acid, and costly ionic liquid in many acid-employed chemical processes, thus meeting the demands of green chemistry.展开更多
The CO_(2)solubilities(including CO_(2)Henry’s constant)in physical-and chemical-based ILs/DESs and the COSMO-RS models describing these properties were comprehensively collected and summarized.The summarized results...The CO_(2)solubilities(including CO_(2)Henry’s constant)in physical-and chemical-based ILs/DESs and the COSMO-RS models describing these properties were comprehensively collected and summarized.The summarized results indicate that chemical-based ILs/DESs are superior to physical-based ILs/DESs for CO_(2)capture,especially those ILs have functionalized cation and anion,and superbase DESs;some of the superbase DESs have higher CO_(2)solubilities than those of ILs;the best physical-and chemical-based ILs,as well as physical-and chemicalbased DESs are[BMIM][BF4](4.20 mol kg^(-1)),[DETAH][Im](11.91 mol kg^(-1)),[L-Arg]-Gly 1:6(4.92 mol kg^(-1))and TBD-EG 1:4(12.90 mol kg^(-1)),respectively.Besides the original COSMO-RS mainly providing qualitative predictions,six corrected COSMO-RS models have been proposed to improve the prediction performance based on the experimental data,but only one model is with universal parameters.The newly determined experimental results were further used to verify the perditions of original and corrected COSMO-RS models.The comparison indicates that the original COSMO-RS qualitatively predicts CO_(2)solubility for some but not all ILs/DESs,while the quantitative prediction is incapable at all.The original COSMO-RS is capable to predict CO_(2)Henry’s constant qualitatively for both physical-based ILs and DESs,and quantitative prediction is only available for DESs.For the corrected COSMO-RS models,only the model with universal parameters provides quantitative predictions for CO_(2)solubility in physical-based DESs,while other corrected models always show large deviations(>83%)compared with the experimental CO_(2)Henry’s constants.展开更多
Seabuckthorn seed meal(SSM) is a waste of oil extraction industry that rich in protein. In order to seek suitable protein extraction method, three different deep eutectic solvents(DESs)(including choline chlorideglyce...Seabuckthorn seed meal(SSM) is a waste of oil extraction industry that rich in protein. In order to seek suitable protein extraction method, three different deep eutectic solvents(DESs)(including choline chlorideglycerol, choline chloride-oxalic acid and choline chloride-urea) were developed for extracting protein from SSM and compared with alkaline. Result indicated that alkaline could effectively extract 56.9% protein from SSM and its protein content was 73.1%, higher than DES at 31.0%-41.4% and 64.3%-67.5%, respectively. However, compared to alkali, DES led to a product with less β-sheet, more β-turn, more essential amino acids, higher total amino acid content, especially choline chloride-urea which extracted protein showing an integrated and similar protein weight distribution compared to SSM. Also, this protein extracted chloride-urea showed a highest digestibility in vitro(by pepsin)(54.2%). These results indicated that choline chloride-urea extraction is better than alkaline extraction for SSM.展开更多
As the demand for sustainable energy sources continues to rise,the need for efficient and reliable energy storage systems becomes crucial.In order to effectively store and distribute renewable energy,new and innovativ...As the demand for sustainable energy sources continues to rise,the need for efficient and reliable energy storage systems becomes crucial.In order to effectively store and distribute renewable energy,new and innovative solutions must be explored.This review examines the deep eutectic solvents(DESs)as a green,safe,and affordable solution for the electrochemical energy storage and conversion field,offering tremendous opportunities and a promising future.DESs are a class of environment-friendly solvents known for their low toxicity and unique properties,such as their good conductivity,high thermal stability,and nonflammability.This review explores the fundamentals,preparations,and various interactions that often predominate in the formation of DESs,the properties of DESs,and how DESs are better than traditional solvents involving cost-ineffective and unsafe organic electrolytes and ionic liquids as well as inefficient aqueous systems due to low energy density for electrochemical energy storage applications.Then,a particular focus is placed on the various electrochemical applications of DESs,including their role in the electrolytes in batteries/supercapacitors,electropolishing and electrodeposition of metals,synthesis of electrode materials,recycling of electrodes,and their potential for use in CO_(2)capture.The review concludes by exploring the challenges,research gaps,and future potential of DESs in electrochemical applications,providing a comprehensive overview,and highlighting key considerations for their design and use.展开更多
Natural long-chain alkanol and alkyl carboxylic acid were used to prepare novel hydrophobic deep eutectic solvents(HDESs).These HDESs are liquid at room temperature and have low viscosity(<12.26 mPa·s),low pol...Natural long-chain alkanol and alkyl carboxylic acid were used to prepare novel hydrophobic deep eutectic solvents(HDESs).These HDESs are liquid at room temperature and have low viscosity(<12.26 mPa·s),low polarity(lower than that of methanol,ChCl-based deep eutectic solvents and other reported HDESs),and low density(<0.928 g/mL).A simple one-pot method based on a novel HDES-water two-phase extraction system was constructed for the extraction of weak-polarity bioactive components,anthraquinones,from Rhei Radix et Rhizoma.This HDES-based new extraction method does not consume hazardous organic solvents and can obtain a total anthraquinone yield of 21.52 mg/g,which is close to that obtained by the Chinese pharmacopoeia method(21.22 mg/g)and considerably higher than those by other reported HDESs-based extraction methods(14.20-20.09 mg/g,p<0.01).The high extraction yield can be mainly attributed to the severe destruction of the RRR cell walls by the extraction system and the excellent dissolving ability of novel HDESs for anthraquinones.展开更多
基金financially supported by the Original Exploration Project of the National Natural Science Foundation of China(No.52150079)the National Natural Science Foundation of China(Nos.U22A20130,U2004215,and 51974280)+1 种基金the Natural Science Foundation of Henan Province of China(No.232300421196)the Project of Zhongyuan Critical Metals Laboratory of China(Nos.GJJSGFYQ202304,GJJSGFJQ202306,GJJSGFYQ202323,GJJSGFYQ202308,and GJJSGFYQ202307)。
文摘Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.
基金financially supported by Shanxi Province Natural Science Foundation of China(20210302123167)NSFC-Shanxi joint fund for coal-based low carbon(U1610223)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-TD006).
文摘Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in chemical engineering.Deep eutectic solvents (DESs) as a sustainable green separation solvent have been proposed for the separation of carbazole from model anthracene oil.In this research,three quaternary ammonium-based DESs were prepared using ethylene glycol (EG) as hydrogen bond donor and tetrabutylammonium chloride (TBAC),tetrabutylammonium bromide or choline chloride as hydrogen bond acceptors.To explore their extraction performance of carbazole,the conductor-like screening model for real solvents (COSMO-RS) model was used to predict the activity coefficient at infinite dilution (γ^(∞)) of carbazole in DESs,and the result indicated TBAC:EG (1:2) had the stronger extraction ability for carbazole due to the higher capacity at infinite dilution (C^(∞)) value.Then,the separation performance of these three DESs was evaluated by experiments,and the experimental results were in good agreement with the COSMO-RS prediction results.The TBAC:EG (1:2) was determined as the most promising solvent.Additionally,the extraction conditions of TBAC:EG (1:2) were optimized,and the extraction efficiency,distribution coefficient and selectivity of carbazole could reach up to 85.74%,30.18 and 66.10%,respectively.Moreover,the TBAC:EG (1:2) could be recycled by using environmentally friendly water as antisolvent.In addition,the separation performance of TBAC:EG (1:2) was also evaluated by real crude anthracene,the carbazole was obtained with purity and yield of 85.32%,60.27%,respectively.Lastly,the extraction mechanism was elucidated byσ-profiles and interaction energy analysis.Theoretical calculation results showed that the main driving force for the extraction process was the hydrogen bonding ((N–H...Cl) and van der Waals interactions (C–H...O and C–H...π),which corresponding to the blue and green isosurfaces in IGMH analysis.This work presented a novel method for separating carbazole from crude anthracene oil,and will provide an important reference for the separation of other high value-added products from coal tar.
基金supported by Ignite Research Collaborations(IRC),Startup funds,and the UK Artificial Intelligence(AI)in Medicine Research Alliance Pilot(NCATS UL1TR001998 and NCI P30 CA177558)。
文摘Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a lack of efficient tools that accurately predict DES formation.The search for DES relies heavily on intuition or trial-and-error processes,leading to low success rates or missed opportunities.Recognizing that hydrogen bonds(HBs)play a central role in DES formation,we aim to identify HB features that distinguish DES from non-DES systems and use them to develop machine learning(ML)models to discover new DES systems.We first analyze the HB properties of 38 known DES and 111 known non-DES systems using their molecular dynamics(MD)simulation trajectories.The analysis reveals that DES systems have two unique features compared to non-DES systems:The DESs have①more imbalance between the numbers of the two intra-component HBs and②more and stronger inter-component HBs.Based on these results,we develop 30 ML models using ten algorithms and three types of HB-based descriptors.The model performance is first benchmarked using the average and minimal receiver operating characteristic(ROC)-area under the curve(AUC)values.We also analyze the importance of individual features in the models,and the results are consistent with the simulation-based statistical analysis.Finally,we validate the models using the experimental data of 34 systems.The extra trees forest model outperforms the other models in the validation,with an ROC-AUC of 0.88.Our work illustrates the importance of HBs in DES formation and shows the potential of ML in discovering new DESs.
基金the College Student Innovation and Entrepreneurship Training Program Project of Liaoning Province(202310148016)Doctoral Fund of Liaoning Province(201501105).
文摘A series of Lewis-acid deep eutectic solvents (DESs) were synthesized by stirring phosphoric acid and zincchloride as raw materials at 80℃ to form H_(3)PO_(4)/nZnCl_(2) (n = 0.1, 0.25, 0.5, 0.75, 1). The DESs were characterized byFourier transform infrared spectrophotometry (FT-IR), thermogravimetry/differential thermogravimetry (TG/DTG), andelectron spray ionization mass spectrometry (ESI-MS). The DESs were used as both extractants and catalysts to removedibenzothiophene from fuels via oxidative desulfurization (ODS). Experiments were performed to investigated the influenceof factors such as composition of DES, temperature, oxidant dosage (molar ratio of O:S), DES dosage (volume ratio ofDES:oil), and number of cycles on desulfurization rate. The results indicated that the removal rate of dibenzothiophene (DBT)was affected by the Lewis acidic DESs, with that of H_(3)PO_(4)/0.25∙ZnCl_(2) reaching 96.4% under optimal conditions (Voil=5 mL,VDES=1 mL, an oxidant dosage of 6, T=50 ℃). After six cycles, the desulfurization rate of H_(3)PO_(4)/0.25∙ZnCl_(2) remained above94.1%. The apparent activation energy of dibenzothiophene (DBT) removal reaction was determined by a pseudo-first orderkinetic equation according to the Arrhenius equation to be 32.34 kJ/mol, as estimated. A reaction mechanism is proposedbased on the experimental data and characterization results.
文摘In this study we used the deep eutectic solvents (ionic liquids) to investigate the reaction between copper (II) with ethylene diamine (en). Two of the existing methods for analyzing spectrophotometric measurements have been applied for establishing, the stoichiometry and whenever possible, the stability constants of the chelates formed. The method of continuous variations was necessary to determine first whether, the metal ion and the ligand ethylene diamine form one or more than one chelate, when more than one chelate formed, the results obtained depend on the wavelength and for meaningful conclusions the wavelengths were carefully selected. The empirical formulae of the chelates were further substantiated by the molar ratio method. The effect of time and temperature on the formation and stability of these chelates in solution is also studied. The stability constants, K1 and K2 for the copper (II) chelates were calculated, though reliable, and are comparable to literature values.
基金supported by the National Natural Science Foundation of China(22221005 and 22008033).
文摘The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)and phenol(PhOH)were used to prepare a novel class of deep eutectic solvents(DESs)with multiple active sites and low viscosities.The NH_(3) separation performance of EtOHACl+PhOH DESs was analyzed completely.It is figured out that the NH_(3) absorption rates in EtOHACl+PhOH DESs are very fast.The NH_(3) absorption capacities are very high and reach up to 5.52 and 10.74 mol·kg1 at 11.2 and 100.4 kPa under 298.2 K,respectively.In addition,the EtOHACl+PhOH DESs present highly selective absorption of NH_(3) over N_(2) and H_(2) and good regenerative properties after seven cycles of absorption/desorption.The intrinsic separation mechanism of NH_(3) by EtOHACl+PhOH DESs was further revealed by spectroscopic analysis and quantum chemistry calculations.
基金Supported by Project of The Education Department of Fujian Province(JAT201227).
文摘As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application potential in the field of plant flavonoid extraction.In this paper,the definition,classification and preparation methods of DESs were introduced.The effects of DES composition,molar ratio of DES components,water content of DES systems,liquid-material ratio,extraction temperature,extraction time and extraction auxiliary techniques on the extraction yield of plant flavonoids were expounded.The recycling methods of DESs were summarized.Existing problems of DESs in the field of plant flavonoids extraction were pointed out,and further research direction and trend were analyzed and prospected.
基金financially supported by the National Natural Science Foundation of China (Nos. 21506080 and 21766007)Natural Science Foundation of Jiangsu Province (No. BK20150485)+1 种基金Advanced Talents of Jiangsu University (No. 15JDG053)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Deep eutectic solvents(DESs) are a new class of green solvents analogous to ionic liquids due to their biodegradable capacity and low cost. However, the direct extractive desulfurization of diesel oil by DESs cannot meet the government’s standard. In this work, amphiphilic polyoxometalates were synthesized and characterized by FT-IR and mass spectrometry.The oxidative desulfurization results showed that benzothiophene(BT) could be completely removed by employing a [(CH)P(CH)]PMoO, DES(ChCl/2 Ac) and HOsystem. It was also found that the organic cation of catalysts played a positive role in oxidative desulfurization. The reaction conditions, such as reaction temperature and time, the amount of catalyst and DES and HO/S(O/S) molar ratio, were optimized. Different sulfides were tested to determine the desulfurization selectivity of the optimal reaction system, and it was found that 97.2% of dibenzothiophene(DBT) could be removed followed by 80.7% of 4-MDBT and 76.0% of 4,6-DMDBT. After reaction, the IR spectra showed that the catalyst [(CH)P(CH)]PMoOwas stable during the reaction process and the oxidative product was dibenzothiophene sulfone(DBTO). Furthermore, the catalyst can be regenerated and recycled for four runs with little loss of activity.
基金financially supported by the National Natural Science Foundation of China(No.21808091)Natural Science Foundation of Jiangsu Province(Nos.BK20200896,BK20190243)+2 种基金Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education,Hainan Normal University(20150376)China Postdoctoral Foundation(No.2020M671365)the Student Innovation and Entrepreneurship Training Program(202010299457X)。
文摘A series of novel binary deep eutectic solvents(DESs)composed of choline chloride(ChCl)and formic acid(HCOOH)with different molar ratios have been successfully synthesized and applied in extractive desulfurization(EDS).Keggin-type polyoxometallate ionic liquid[TTPh]_(3)PW_(12)O_(40) was prepared and used as catalyst to enhance the EDS capacity by means of photocatalytic oxidative process.Both of the DESs and[TTPh]_(3)PW_(12)O_(40) ionic liquid catalyst were characterized in detail by Fourier transform infrared spectroscopy spectra(FT-IR),elemental analysis,and X-ray photoelectron spectroscopy(XPS).It was found that the molar ratios of Ch Cl:HCOOH had a major impact on desulfurization performance,and the optimal desulfurization capacity 96.5%was obtained by ChCl/5 HCOOH.Besides dibenzothiophene(DBT),the desulfurization efficiencies of 4-methylbenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT),two kinds of DBT derivatives,were also investigated under the same experimental conditions.Moreover,the free radical scavenging experiments manifested that superoxide radical(·O_(2)^(-)) and hole(h^(+)) played important roles in the desulfurization system.After further analysis of the oxidation products by gas chromatography-mass spectrometry(GC–MS),the possible reaction mechanism was proposed.Thus,photocatalytic oxidative has been proved to be one of the efficient approaches for enhancing the extractive desulfurization performance in DES.
基金Sultan Qaboos University for providing financial。
文摘Deep eutectic solvents(DESs)have drawn a growing research interest for applications in a wide range of scientific and industrial arenas.However,a limited effort has been reported in the area of gas separation processes and particularly the carbon dioxide capture.This study introduces a novel set of DESs that were prepared by complexing ethylenediamine(EDA),monoethanolamine(MEA),tetraethylenepentamine(TEPA),triethylenetetramine(TETA)and diethylenetriamine(DETA)as hydrogen bond donors to monoethanolamide hydrochloride(EAHC)salt as a hydrogen bond acceptor.The absorption capacity of CO2 was evaluated by exploiting a method based on measuring the pressure drop during the absorption process.The solubility of different DESs was studied at a temperature of 313.15 K and initial pressure of 0.8 MPa.The DES systems 1 EAHC:9 DETA,1 EAHC:9 TETA and 1 EAHC:9 TEPA achieved the highest CO2 solubility of 0.6611,0.6572 and 0.7017 mol CO2·(mole DES)-1 respectively.The results showed that CO2 solubility in the DESs increased with increasing the molar ratio of hydrogen bond donor.In addition,the CO2 solubility increased as the number of amine groups in the solvent increases,therefore,increasing the alkyl chain length in the DESs,resulted in increasing the CO2 solubility.FTIR analysis confirms the DES synthesis since no new functional group was identified.The FTIR spectra also revealed the carbamate formation in DES-CO2 mixtures.In addition,the densities and viscosities of the synthesized DESs were also measured.The CO2 initial investigation of reported DESs shows that these can be potential alternative for conventional solvents in CO2 capture processes.
基金financially supported by the National Natural Science Foundation of China (21905069, U21A20307, 22208073)the Shenzhen Science and Technology Innovation Committee (ZDSYS20190902093220279, KQTD20170809110344233, GXWD20201230155427003-20200821181245001, GXWD20201230155427003-202008211 81809001, ZX20200151)the Department of Science and Technology of Guangdong Province (2020A1515110879)。
文摘The development of green solvents for enhancing aqueous solubility of drug curcumin remains a challenge. This study explores the enhancing effect of deep eutectic solvents(DESs) on the aqueous solubility of curcumin(CUR) via experiment and theoretical calculation. Choline chloride-based DESs with polyols 1,2-propanediol(1,2-PDO), 1,3-propanediol, ethylene glycol, and glycerol as hydrogen bond donors were prepared and used as co-solvents. The CUR aqueous solubility increased with increasing the DESs content at temperature of 303.15-318.15 K, especially in aqueous ChCl/1,2-PDO(mole ratio 1:4) solutions. The positive apparent molar volume values and reduced density gradient analysis confirmed the existence of strong interactions between CUR and solvent. The van der Waals interactions and hydrogen bonding coexisted in DESs monomer retained the stability of DESs structure after introducing CUR. Moreover,the lower interaction energy of DESs…CUR system than that of the counterpart DESs further proved the strong interaction between CUR and DESs. The lowest interaction energy of ChCl/1,2-PDO…CUR system indicated that this system was the most stable and ChCl/1,2-PDO was promising for CUR dissolution.This work provides efficient solvents for utilizing curcumin, contributing to a deep insight into the interactions between DES and CUR at the molecular level, and the role of DESs on enhancing drugs solubility.
基金financial support from the graduate council of the University of Tabriz,Tabriz,Iran.
文摘Important efforts have been made over the past years to improve the drug acts,which leads to the discovery of novel drug preparations and delivery systems.The optimal design of such processes requires a molecular-level understanding of the interactions between drug molecules and biological membranes.The thermodynamic investigation provides deep and complete knowledge of interactions and the choice of appropriate and suitable production compounds in pharmaceutical fields.Particularly,the analysis of drugs+co-solvents in aqueous media is the central issue in many types of research because they exert their impact by interacting with biological membranes.This work is aimed to measure the density and speed of sound for the thiamine hydrochloride in water+deep eutectic solvents(DESs)mixtures(choline chloride/urea,choline chloride/ethylene glycol and choline chloride/glycerol)at temperature range(293.15-308.15)K.By correlation of the evaluated parameters in some standard relations,the partial molar parameters i.e.apparent molar volumes,Vφ,m,and apparent molar isentropic compression,κ_(s,φ,m),are calculated.In addition,apparent molar isobaric expansion,E^(0)_(φ,m),and Hepler’s constant are computed from the density and speed of sound data.For fitting the experimental Vφ,m andκ_(s,φ,m)the Redlich-Meyer equation was employed that the important quantities;standard partial molar volume,V^(0)_(m),and partial molar isentropic compression,κφ,m0,were obtained.The thermodynamic analysis of the studied system also plays a crucial role in the pharmaceutical industry.
基金support from the National Natural Science Foundation of China(Nos.52120105007,51834010)the National Science Fund for Distinguished Young Scholars(No.52222403).
文摘Fracturing fluid property play a critical role in developing unconventional reservoirs.Deep eutectic solvents(DESs)show fascinating potential for property improvement of clean fracturing fluids(CFFs)due to their low-price,low-toxicity,chemical stability and flexible designability.In this work,DESs were synthesized by mixing hydrogen bond acceptors(HBAs)and a given hydrogen bond donor(HBD)to explore their underlying influence on CFF properties based on the intermolecular interactions.The hydrogen-bonding,van der Waals and electrostatic interactions between DES components and surfactants improved the CFF properties by promoting the arrangement of surfactants at interface and enhancing the micelle network strength.The HBD enhanced the resistance of CFF for Ca^(2+) due to coordination-bonding interaction.The DESs composed of choline chloride(ChCl)and malonic acid show great enhancement for surface,rheology,temperature resistance,salt tolerance,drag reduction,and gel-breaking performance of CFFs.The DESs also improved the gel-breaking CFF-oil interactions,increasing the imbibition efficiencies to 44.2%in 74 h.Adjusting HBAs can effectively strengthen the intermolecular interactions(e.g.,HBA-surfactant and HBD-surfactant interactions)to improve CFF properties.The DESs developed in this study provide a novel strategy to intensify CFF properties.
基金National Natural Science Foundation of China(U1710106,U1810111)the Key Research and Development Program of Shanxi Province(international cooperation)(201703D421041)for financial support。
文摘Ternary deep eutectic solvents(TDESs) comprising choline chloride(Ch Cl), glycerol and L-arginine were synthesized as catalysts and solvents for the conversion of D-glucosamine(GlcNH_(2)) into deoxyfructosazine(DOF). The interactions between these three components in the prepared TDESs were studied by ^(1)H-,^(35)Cl-NMR spectra and ^(1)H diffusion-ordered spectroscopy(DOSY) measurements. The chemical shift changes of active hydrogen in the ^(1)H-NMR spectra of TDES system and widening of signals in the^(35)Cl-NMR spectra confirmed the hydrogen bonding interaction between the components, which was further supported by the decrease of diffusion coefficients(D) of the TDES components according to ^(1)H DOSY measurements. The influences of reaction temperature and L-arginine content in the TDESs on the yield of DOF were also studied. The experimental results have shown that when the molar ratio of Ch Cl, glycerol, and L-arginine was 1:2:0.1, DOF was the major product with a yield of 22.6% at 90℃ for 120 min. The chemical shift titration indicated that the carboxyl group of L-arginine in the TDES is the catalytical active site, so the mechanism of the catalytic reaction between Glc NH_(2) and the TDES was proposed. Moreover, a reaction intermediate, dihydrofructosazine, was identified in the self-condensation reaction of Glc NH_(2) by an in situ ^(1)H NMR technique.
基金Project(51764027) supported by the National Natural Science Foundation of ChinaProject(2014CB643404) supported by the National Basic Research Program of China
文摘Deep eutectic solvents(DESs) are a kind of potential lixiviant for selective metal processing due to their versatile complexation properties. In this study, we investigated the recovery of zinc from zinc oxide dust using choline chloride-ureaethylene glycol(ChCl-urea-EG) DESs. The zinc extraction efficiency can be up to 85.2% when the slurry concentration is 50 g/L, leaching temperature is 80 °C and stirring speed is 600 r/min. The leaching process is controlled by the diffusion and the corresponding activation energy is 32.1 k J/mol. The resultant solution was directly used for the electrodeposition of zinc. The pure zinc deposit is obtained with a current efficiency of 82.6%. Furthermore, the ChCl-urea-EG DESs can be recycled. This approach is shown to be promising for the recycling of zinc from the zinc-containing dust.
基金The financial support from National Natural Science Foundation of China(21776074,21576081,and 2181101120)is greatly acknowledged
文摘This review divides the acidic deep eutectic solvents(ADES) into Br?nsted and Lewis DES according to their diversity of acidic character.The hydrogen bond donors and halide salts for formulating an ADES are classified, the synthesis methods are described, and the physicochemical properties including freezing point, acidity, density, viscosity and conductivity are presented. Furthermore, the applications of Br?nsted acidic deep eutectic solvents(BADES) and Lewis acidic deep eutectic solvents(LADES) are overviewed, respectively, covering the fields in dissolution, extraction, organic reaction and metal electrodeposition. It is expected that the ADES has great potential to replace the pollutional mineral acid, expensive and unstable solid acid, and costly ionic liquid in many acid-employed chemical processes, thus meeting the demands of green chemistry.
基金financially supported by Carl Tryggers Stiftelse foundation(No.18:175)the financial support from the Swedish Energy Agency(P47500-1)+5 种基金K.C.Wang Education Foundation(No.GJTD-201804)the financial support from the National Natural Science Foundation of China(No.21890764)the financial supports from the National Natural Science Foundation of China(No.21838010)the financial support from the National Natural Science Foundation of China(No.21776276)the National Natural Science Foundation of China(21701024)the Foundation for Distinguished Young Talents in Higher Education of Fujian Province(GY-Z17067)
文摘The CO_(2)solubilities(including CO_(2)Henry’s constant)in physical-and chemical-based ILs/DESs and the COSMO-RS models describing these properties were comprehensively collected and summarized.The summarized results indicate that chemical-based ILs/DESs are superior to physical-based ILs/DESs for CO_(2)capture,especially those ILs have functionalized cation and anion,and superbase DESs;some of the superbase DESs have higher CO_(2)solubilities than those of ILs;the best physical-and chemical-based ILs,as well as physical-and chemicalbased DESs are[BMIM][BF4](4.20 mol kg^(-1)),[DETAH][Im](11.91 mol kg^(-1)),[L-Arg]-Gly 1:6(4.92 mol kg^(-1))and TBD-EG 1:4(12.90 mol kg^(-1)),respectively.Besides the original COSMO-RS mainly providing qualitative predictions,six corrected COSMO-RS models have been proposed to improve the prediction performance based on the experimental data,but only one model is with universal parameters.The newly determined experimental results were further used to verify the perditions of original and corrected COSMO-RS models.The comparison indicates that the original COSMO-RS qualitatively predicts CO_(2)solubility for some but not all ILs/DESs,while the quantitative prediction is incapable at all.The original COSMO-RS is capable to predict CO_(2)Henry’s constant qualitatively for both physical-based ILs and DESs,and quantitative prediction is only available for DESs.For the corrected COSMO-RS models,only the model with universal parameters provides quantitative predictions for CO_(2)solubility in physical-based DESs,while other corrected models always show large deviations(>83%)compared with the experimental CO_(2)Henry’s constants.
基金the financial support from the National Natural Science Foundation of China (No. 31201416)Science and Technology Research Program of Guangdong Province (No. 2017A01010502)。
文摘Seabuckthorn seed meal(SSM) is a waste of oil extraction industry that rich in protein. In order to seek suitable protein extraction method, three different deep eutectic solvents(DESs)(including choline chlorideglycerol, choline chloride-oxalic acid and choline chloride-urea) were developed for extracting protein from SSM and compared with alkaline. Result indicated that alkaline could effectively extract 56.9% protein from SSM and its protein content was 73.1%, higher than DES at 31.0%-41.4% and 64.3%-67.5%, respectively. However, compared to alkali, DES led to a product with less β-sheet, more β-turn, more essential amino acids, higher total amino acid content, especially choline chloride-urea which extracted protein showing an integrated and similar protein weight distribution compared to SSM. Also, this protein extracted chloride-urea showed a highest digestibility in vitro(by pepsin)(54.2%). These results indicated that choline chloride-urea extraction is better than alkaline extraction for SSM.
文摘As the demand for sustainable energy sources continues to rise,the need for efficient and reliable energy storage systems becomes crucial.In order to effectively store and distribute renewable energy,new and innovative solutions must be explored.This review examines the deep eutectic solvents(DESs)as a green,safe,and affordable solution for the electrochemical energy storage and conversion field,offering tremendous opportunities and a promising future.DESs are a class of environment-friendly solvents known for their low toxicity and unique properties,such as their good conductivity,high thermal stability,and nonflammability.This review explores the fundamentals,preparations,and various interactions that often predominate in the formation of DESs,the properties of DESs,and how DESs are better than traditional solvents involving cost-ineffective and unsafe organic electrolytes and ionic liquids as well as inefficient aqueous systems due to low energy density for electrochemical energy storage applications.Then,a particular focus is placed on the various electrochemical applications of DESs,including their role in the electrolytes in batteries/supercapacitors,electropolishing and electrodeposition of metals,synthesis of electrode materials,recycling of electrodes,and their potential for use in CO_(2)capture.The review concludes by exploring the challenges,research gaps,and future potential of DESs in electrochemical applications,providing a comprehensive overview,and highlighting key considerations for their design and use.
基金the National Natural Science Foundation of China (Grant Nos.: 81673394 and 82073811)the Fundamental Research Funds for the Central Universities (Grant No.: 2042020kf1010)the Large-scale Instrument and Equipment Sharing Foundation of Wuhan University (Grant No.: LF20170838)
文摘Natural long-chain alkanol and alkyl carboxylic acid were used to prepare novel hydrophobic deep eutectic solvents(HDESs).These HDESs are liquid at room temperature and have low viscosity(<12.26 mPa·s),low polarity(lower than that of methanol,ChCl-based deep eutectic solvents and other reported HDESs),and low density(<0.928 g/mL).A simple one-pot method based on a novel HDES-water two-phase extraction system was constructed for the extraction of weak-polarity bioactive components,anthraquinones,from Rhei Radix et Rhizoma.This HDES-based new extraction method does not consume hazardous organic solvents and can obtain a total anthraquinone yield of 21.52 mg/g,which is close to that obtained by the Chinese pharmacopoeia method(21.22 mg/g)and considerably higher than those by other reported HDESs-based extraction methods(14.20-20.09 mg/g,p<0.01).The high extraction yield can be mainly attributed to the severe destruction of the RRR cell walls by the extraction system and the excellent dissolving ability of novel HDESs for anthraquinones.