No. 5 coal seam in Huating Coal Mine is a deep-seated, steep-inclined extra-thick coal seam where excavation disturbance is quite frequent. The maximum and minimum principal stresses differ widely. During mining, dyna...No. 5 coal seam in Huating Coal Mine is a deep-seated, steep-inclined extra-thick coal seam where excavation disturbance is quite frequent. The maximum and minimum principal stresses differ widely. During mining, dynamical destabilization happens frequently and induce tragedies. Based on the comparison between the acoustic emission (AE) experiment on dynamical destabilization of coal rock and the related in situ testing results, this article provides comprehensive analysis on the regular quantificational AE patterns (energy rate, total events) of coal rock destabilization in complex-variable environment. The comparison parameters include dynamic tension energy rate, deformation resistance to compression, and shear stress.展开更多
Coal seam destabilization inflicts damage to equipment, causes property loss and personnel casualties,and severely threatens mining safety and efficient production. To further understand this destabilization based on ...Coal seam destabilization inflicts damage to equipment, causes property loss and personnel casualties,and severely threatens mining safety and efficient production. To further understand this destabilization based on the basic theory of Lippmann seam destabilization, a mathematical model was introduced for gas pressure distribution by considering intermediate principal stress and support resistance.Subsequently, we established a translation model suitable for the entire roadway coal seam with rocky roof and floor by applying the unified form of yield criterion in the state of plane strain. We also obtained the analytic expressions of coal seam stress distribution on both sides of the roadway and the widths of plastic and disturbance zones. Afterward, we analyzed several typical cases with different material yield criteria, obtained the plastic zone widths of the coal seam under different gas pressures, and assessed the effects of support resistance, roadway size, and coal strength on coal seam destabilization. Results showed that: the results obtained on the basis of Wilson and Mohr–Coulomb criteria are considerably conservative, and the use of Druker–Prager criteria to evaluate the rockburst-induced coal seam destabilization is safer than the use of the two other criteria; coal seam stability is correlated with gas pressure;and high-pressure gas accelerates the coal seam destabilization.展开更多
The model of catastrophic destabilization of tunnel under rock slipping in fault zone based on catastrophic theory and the potential function of fault movement were pre- sented.On the basis of the results above,throug...The model of catastrophic destabilization of tunnel under rock slipping in fault zone based on catastrophic theory and the potential function of fault movement were pre- sented.On the basis of the results above,through Taylor series expansion of the equation of equilibrium surface,its standard form was obtained.Analysis show that catastrophic destabilization of tunnel will occur only when stiffness ratio between elastic sector and strain weakening sector of soft rocks was larger than or equal to 1.On the other hand, sliding behavior and evolution path of fault were directly affected by exogenous process, and it was a major extraneous factor which leads to catastrophic destabilization of tunnel. In the condition of system catastrophe could be generated,if external forces vary from smaller to larger,firstly,fault sticks or creeps,and secondly,when external force equal to or larger than critical value,fault turns to slip suddenly.Inverse,if external forces vary from larger to smaller,fault smoothly slips firstly,when external force equal to or smaller than critical value,and fault turns to stick or creep suddenly.展开更多
Calcification of cartilage by hydroxyapatite is a hallmark of osteoarthritis and its deposition strongly correlates with the severity of osteoarthritis.However,no effective strategies are available to date on the prev...Calcification of cartilage by hydroxyapatite is a hallmark of osteoarthritis and its deposition strongly correlates with the severity of osteoarthritis.However,no effective strategies are available to date on the prevention of hydroxyapatite deposition within the osteoarthritic cartilage and its role in the pathogenesis of this degenerative condition is still controversial.Therefore,the present work aims at uncovering the pathogenic mechanism of intra-cartilaginous hydroxyapatite in osteoarthritis and developing feasible strategies to counter its detrimental effects.With the use of in vitro and in vivo models of osteoarthritis,hydroxyapatite crystallites deposited in the cartilage are found to be phagocytized by resident chondrocytes and processed by the lysosomes of those cells.This results in lysosomal membrane permeabilization(LMP)and release of cathepsin B(CTSB)into the cytosol.The cytosolic CTSB,in turn,activates NOD-like receptor protein-3(NLRP3)inflammasomes and subsequently instigates chondrocyte pyroptosis.Inhibition of LMP and CTSB in vivo are effective in managing the progression of osteoarthritis.The present work provides a conceptual therapeutic solution for the prevention of osteoarthritis via alleviation of lysosomal destabilization.展开更多
TiC_(x)is an excellent composite strengthening particle and grain refiner for Al alloys.However,the stability of TiC_(x)is poor when solute Si exists in Al alloy melts,which significantly depresses its strengthening a...TiC_(x)is an excellent composite strengthening particle and grain refiner for Al alloys.However,the stability of TiC_(x)is poor when solute Si exists in Al alloy melts,which significantly depresses its strengthening and grain refining effects.In this work,the destabilization mechanisms of the TiC_(x)particles in Al-Si alloy melt with a composition of Al-7Si-7.5TiC were explored via experiments,first-principles calculations and thermodynamic calculations.The experimental results show that Si atoms diffuse into TiC_(x)and Ti atoms are released into the Al melt to form a Ti-rich transition zone during the insulation of TiC_(x)in Al-Si melt,and the TiAlySiz and Al_(4)C_(3)phases are solidified in the Ti-rich zone and at Ti-rich zone/TiC_(x)interface,respectively.The first principles calculations show that the low formation energy of C vacancies facilitates the rapid diffusion of Si atoms in TiC_(x),while the doping of Si atoms reduces the energy barrier of diffusion of Ti atoms in TiC_(x)and promotes the formation of Ti-rich zones.The thermodynamic calculations show that the wide crystallization temperature range of the destabilized product TiAlySiz phase is the key to continuous decomposition of TiC_(x)particles.In addition,the driving force of the main destabilization reaction of TiC_(x)in the Al-Si alloys is about 44 times higher than that in the Al alloys without Si addition.This indicates that the presence of solute Si remarkably promotes the subsequent decomposition process of TiC_(x)in the Al-Si alloy melts.展开更多
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi...The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.展开更多
The eutectic Ag-Cu alloys exhibiting fine Ag-Cu lamellar eutectic structure formed upon rapid solidification have great potentials being used in various engineering fields.However,the desired fine primary lamellar eut...The eutectic Ag-Cu alloys exhibiting fine Ag-Cu lamellar eutectic structure formed upon rapid solidification have great potentials being used in various engineering fields.However,the desired fine primary lamellar eutectic structure(PLES)is usually replaced by a coarse anomalous eutectic structure(AES)when the undercooling prior to solidification exceeds a certain value.The forming mechanism of AES in the undercooled eutectic Ag-Cu alloy has been a controversial issue.In this work,the undercooled Ag-39.9 at.% Cu eutectic alloy is solidified under different cooling conditions by using techniques of melt fluxing and copper mold casting.The results show that the coupled eutectic growth of this alloy undergoes a transition from a slow eutectic-cellular growth(ECG)to a rapid eutectic-dendritic growth(EDG)above a undercooling of 72 K,accompanying with an abrupt change of the distribution and amount of AES in as-solidified microstructures.Two kinds of primary lamellar eutectic structures are formed by ECG and EDG during recalescence,respectively.The destabilization of PLES that causes the formation of AES is ascribed to two different mechanisms based on the microstructural examination and theoretical calculations.Below 72 K,the destabilization of PLES formed by slow ECG is caused by the mechanism of"termination migration"driven by interfacial energy.While above 72 K,the destabilization of PLES formed by rapid EDG is attributed to the unstable perturbation of interface driven by interfacial energy and solute supersaturation.展开更多
In this work,ultrasonic irradiation and destabilizer solvent were used for destabilizing colloidal platinum dispersions.The stabilized platinum nanoparticles were prepared in w/o microemulsion systems composed of sodi...In this work,ultrasonic irradiation and destabilizer solvent were used for destabilizing colloidal platinum dispersions.The stabilized platinum nanoparticles were prepared in w/o microemulsion systems composed of sodium bis-(2-ethylhexyl) sulfosuccinate(AOT) and four different solvents,namely,cyclohexane,n-hexane,n-heptane,and n-nonane.The recovery process of Pt nanoparticles from the colloidal systems was performed by exposing the colloidal samples to ultrasonic irradiation and applying various destabilizing solvents.Analysis of UV-visible spectra confirms that the quantity of Pt nanoparticles removed from the suspension depends on the length of time of the ultrasonic irradiation and the nature of the microemulsion oil phase.A critical time for the ultrasonic irradiation has been introduced for the phase separation of colloidal systems.To perform the solvent study,four destabilizer solvents,namely,dioxane,ethyl acetate,diethyl ether,and tetrahydrofuran,were used for breaking the colloidal suspension of platinum nanoparticles.Based on the ’good solvent’ and ’poor solvent’ idea,it is verified that the effect of the destabilizer solvents on the aggregation process follows the following order:tetrahydrofuran 〉 ethyl acetate 〉dioxane〉 diethyl ether.展开更多
For the first time,the MgH_(2)–NaAlH_(4)(ratio 4:1)destabilized system with CoTiO_(3) addition has been explored.The CoTiO_(3)-doped MgH_(2)–NaAlH_(4) sample begins to dehydrogenate at 130℃,which is declined by 40...For the first time,the MgH_(2)–NaAlH_(4)(ratio 4:1)destabilized system with CoTiO_(3) addition has been explored.The CoTiO_(3)-doped MgH_(2)–NaAlH_(4) sample begins to dehydrogenate at 130℃,which is declined by 40℃ compared to the undoped MgH_(2)–NaAlH_(4).Moreover,the de/rehydrogenation kinetics characteristics of the CoTiO_(3)-doped MgH_(2)–NaAlH_(4) were greatly ameliorated.With the inclusion of CoTiO_(3),the MgH_(2)–NaAlH_(4) composite absorbed 5.2 wt.%H_(2),higher than undoped MgH_(2)–NaAlH_(4).In the context of dehydrogenation,the CoTiO_(3)-doped MgH_(2)–NaAlH_(4) sample desorbed 2.6 wt.%H_(2),almost doubled compared to the amount of hydrogen desorbed from the undoped MgH_(2)–NaAlH_(4) sample.The activation energy obtained by the Kissinger analysis for MgH_(2) decomposition was significantly lower by 35.9 kJ/mol than the undoped MgH_(2)–NaAlH_(4) sample.The reaction mechanism demonstrated that new phases of MgCo and AlTi_(3) were generated in situ during the heating process and are likely to play a substantial catalytic function and be useful in ameliorating the de/rehydrogenation properties of the destabilized MgH_(2)–NaAlH_(4) system with the inclusion of CoTiO_(3).展开更多
Through the theoretical analysis of overburden destabilization mechanism, FLAC 3D simplified plane numerical simulation method and field measurement method, we compared the relationship of overburden support pressure ...Through the theoretical analysis of overburden destabilization mechanism, FLAC 3D simplified plane numerical simulation method and field measurement method, we compared the relationship of overburden support pressure at 35 m of workface recovery, and the peak overburden support pressure decreased from 13.85 Mpa to 11.97 Mpa from 1:1 to 1:3. With the increase of mining ratio, the peak over-supporting pressure decreases: with the increase of top coal recovery thickness, the peak over-supporting pressure and the influence range will be further expanded, and the distance between the peak over-supporting pressure and the coal wall of the working face will be further increased and the high stress zone of the peak area will be expanded simultaneously.展开更多
LiBH_(4) containing 18.5 wt.%H_(2) is an attractive high-capacity hydrogen storage material,however,it suffers from high operation temperature and poor reversibility.Herein,a novel and low-cost bifunctional additive,w...LiBH_(4) containing 18.5 wt.%H_(2) is an attractive high-capacity hydrogen storage material,however,it suffers from high operation temperature and poor reversibility.Herein,a novel and low-cost bifunctional additive,waxberry-like Fe_(3)O_(4) secondary nanospheres assembled from ultrafine primary Fe_(3)O_(4) nanoparticles,is synthesized,which exhibits significant destabilization and bidirectional catalyzation towards(de)hydrogenation of LiBH_(4).With an optimized addition of 30 wt.% waxberry-like Fe_(3)O_(4),the system initiated dehydrogenation below 100℃ and released a total of 8.1 wt.%H_(2) to 400℃.After 10 cycles,a capacity retention of 70% was achieved,greatly superior to previously reported oxides-modified systems.The destabilizing and catalyzing mechanisms of waxberry-like Fe_(3)O_(4) on LiBH_(4) were systematically analyzed by phase and microstructural evolutions during dehydrogenation and hydrogenation cycling as well as density functional theory(DFT)calculations.The present work provides new insights in developing advanced nano-additives with unique structural and multifunctional designs towards LiBH4 hydrogen storage.展开更多
First-principles calculations based on density functional theory were performed to study the effect of alloying on the thermodynamic stability of MgH2 hydride (rutile and fluorite structures) with transitional meta...First-principles calculations based on density functional theory were performed to study the effect of alloying on the thermodynamic stability of MgH2 hydride (rutile and fluorite structures) with transitional metals (TM=Sc, Ti, Y) and group IIA elements (M=Ca, Sr, Ba). The results indicate that fluorite structure of these hydrides are more stable than its relative rutile structure at low alloying content (less 20%), structural destabilization of MgH2 appears in the alloying cases of Ti, Sr and Ba respectively. The structure-transition point from rutile structure to fluorite structure is at around 20% for MgH2-TM, and about 40% for MgH2-M. The formation enthalpy of fluorite Mg0.5Ba0.52 is about 0.3 eV and higher than that of fluorite MgH2, indicating that its hydrogen-desorption temperature at atmospheric pressure will be much lower than that of pure MgH2. Good consistency between experimental and calculated data suggests that above-adopted method is useful to predict structural transition and properties of MgH2 based hydrides for hydrogen storage.展开更多
The tumor suppressor p53 is a multifunctional, highly regulated, and promoter-specific transcriptional factor that is uniquely sensitive to DNA damage and cellular stress signaling. The mechanisms by which p53 directs...The tumor suppressor p53 is a multifunctional, highly regulated, and promoter-specific transcriptional factor that is uniquely sensitive to DNA damage and cellular stress signaling. The mechanisms by which p53 directs a damaged cell down either a cell growth arrest or an apoptotic pathway remain poorly understood. Evidence suggests that the in vivo functions of p53 seem to balance the cell-fate choice with the type and severity of damage that occurs. The concept of antirepression, or inhibition of factors that normally keep p53 at bay, may help explain the physiological mechanisms for p53 activation. These factors also provide novel chemotherapeutic targets for the reactivation of p53 in tumors harboring a wild-type copy of the gene.展开更多
In order to study the rules of rock bursts caused by faults by means of mechanical analysis of a roof rock-mass balanced structure and numerical simulation about fault slip destabilization, the effect of coal mining o...In order to study the rules of rock bursts caused by faults by means of mechanical analysis of a roof rock-mass balanced structure and numerical simulation about fault slip destabilization, the effect of coal mining operation on fault plane stresses and slip displacement were studied. The results indicate that the slip displacement sharply increases due to the decrease of normal stress and the increase of shear stress at the fault plane when the working face advances from the footwall to the fault itself, which may induce a fault rock burst. However, this slip displacement will be very small due to the increase of normal stress and the decrease of shear stress when the working face advances from the hanging wall to the fault itself, which results in a very small risk of a fault rock burst.展开更多
In virtue of effect of N-S intensive ground stress and mining disturbance to +579E2EB_(1+2) mining site at Weihuliang Mine,the dip angle and section height is 65° and 52 m,respectively,the collapses happed freque...In virtue of effect of N-S intensive ground stress and mining disturbance to +579E2EB_(1+2) mining site at Weihuliang Mine,the dip angle and section height is 65° and 52 m,respectively,the collapses happed frequently during mining.Firstly,mining condi- tions,spatial structure and parameters were investigated.Then physical simulation and dynamic numerical tracing and elaborate simulation relating roof and top-coal were ap- plied based on 2D-Block Program and quantitative regularity of stress at variable depths had been estimated.Furthermore,it was manifested that effective measures,i.e.,fast mining,control symmetrical top-coal-caving at dip and strike directions,optimizing ventila- tion system,active-stereo preventing gas were performed successfully in mining practice. Ultimately,the derived dynamic hazard were prevented so as to safety mining.展开更多
In this work,the hydrogen sorption properties of the LiBH4-Mg2NiH4 composite system with the molar ratio 2:2.5 were thoroughly investigated as a function of the applied temperature and hydrogen pressure.To the best of...In this work,the hydrogen sorption properties of the LiBH4-Mg2NiH4 composite system with the molar ratio 2:2.5 were thoroughly investigated as a function of the applied temperature and hydrogen pressure.To the best of our knowledge,it has been possible to prove experimentally the mutual destabilization between LiBH4 and Mg2NiH4.A detailed account of the kinetic and thermodynamic features of the dehydrogenation process is reported here.展开更多
The paradox of destabilization of a conservative or non-conservative system by small dissipation,or Ziegler’s paradox(1952),has stimulated a growing interest in the sensitivity of reversible and Hamiltonian systems...The paradox of destabilization of a conservative or non-conservative system by small dissipation,or Ziegler’s paradox(1952),has stimulated a growing interest in the sensitivity of reversible and Hamiltonian systems with respect to dissipative perturbations.Since the last decade it has been widely accepted that dissipation-induced instabilities are closely related to singularities arising on the stability boundary,associated with Whitney’s umbrella.The first explanation of Ziegler’s paradox was given(much earlier)by Oene Bottema in 1956.The aspects of the mechanics and geometry of dissipation-induced instabilities with an application to rotor dynamics are discussed.展开更多
Characterization of critically stressed seismogenic fault systems in diverse tectonic settings can be used to explore the stress/frictional condition of faults,along with its sensitivity for seismicity modulation by p...Characterization of critically stressed seismogenic fault systems in diverse tectonic settings can be used to explore the stress/frictional condition of faults,along with its sensitivity for seismicity modulation by periodic stress perturbation.However,the process of seismicity modulation in response to external stress perturbation remains debated.In this paper,the characteristic difference in the seismicity modulation due to resonance destabilization phenomenon governed by rate-and-state friction is presented and val-idated with the globally reported cases of seismicity modulation in diverse tectonic settings.The rela-tively faster-moving plate boundary regions are equally susceptible for both shorter-period(e.g.,semi-diurnal,diurnal,and other small tidal constituents)and long-period(e.g.,semi-annual,annual,pole tide and pole wobble)seismicity modulation processes in response to stress perturbations from natural har-monic forcing,including tidal,semi-annual,annual,or multi-annual time scales.In contrast,slowly deforming stable plate interior regions and diffuse deformation zones appear to be more sensitive for long-period seismicity modulation of semi-annual,annual,or even multi-annual time scales but less sen-sitive for short-period seismicity modulation.This finding is also supported by the theoretical model pre-dictions from the resonance destabilization process and worldwide documented natural observations of seismicity modulation in diverse types of tectonic settings.展开更多
By applying tensile stress along 〈100〉 of β phase, the superelastic behavior and stabilization of stress induced martensite (SIM) of Cu 13.4Al 4.0Ni(mass fraction, %) single crystals were studied. The results show ...By applying tensile stress along 〈100〉 of β phase, the superelastic behavior and stabilization of stress induced martensite (SIM) of Cu 13.4Al 4.0Ni(mass fraction, %) single crystals were studied. The results show that the pseudo yield stress decreases with the increase of cycling number, and keeping load isothermally has an effect on stabilization of SIM. Previous thermal cycling between ( M s-20 ℃) and ( A f+20 ℃) promotes the superelasticity and the stabilization of SIM as well; the pre thermal cycling also reduces the pseudo yield stress. However, once the stabilization of SIM is produced, it can be destabilized by either the afterwards thermal cooling heating cycling or load and immediately unload cycling in ( A f~ M d). Isothermal treatment in ( A f~ M d) brings restabilization of SIM. The maximum superelastic value from β → β ′ 1(18 R ) is 9% for the studied single crystal. When test temperature is in A f~( A f+50 ℃) and stress is in 0~350 MPa, the superelastic behavior exist. [展开更多
Based on practical observation in Mentougou Mine, a general law of roof rockburst is put forward. The destabilization theory of roof rockburst has been established. The general laws of microquake premonition and earth...Based on practical observation in Mentougou Mine, a general law of roof rockburst is put forward. The destabilization theory of roof rockburst has been established. The general laws of microquake premonition and earth sound in roof rockburst is advanced. The relationship between roof rockburst and rockburst of coal body is studied.展开更多
基金the National Natural Science Foundations of China(Nos.10772144 and 10402033)
文摘No. 5 coal seam in Huating Coal Mine is a deep-seated, steep-inclined extra-thick coal seam where excavation disturbance is quite frequent. The maximum and minimum principal stresses differ widely. During mining, dynamical destabilization happens frequently and induce tragedies. Based on the comparison between the acoustic emission (AE) experiment on dynamical destabilization of coal rock and the related in situ testing results, this article provides comprehensive analysis on the regular quantificational AE patterns (energy rate, total events) of coal rock destabilization in complex-variable environment. The comparison parameters include dynamic tension energy rate, deformation resistance to compression, and shear stress.
基金support of National Natural Science Foundation of China (Nos. 51674158 and 51604168)the Natural Science Foundation of Shandong Provincial (No. ZR2016EEQ18)+2 种基金and the Source Innovation Program (Applied Research Special-Youth Special) of Qingdao (No. 17-1-138-jch)Shandong University of Science and Technology ResearchFund (No. 2015JQJH105)the Taishan Scholar Talent Team Support Plan for Advantaged & Unique Discipline Areas
文摘Coal seam destabilization inflicts damage to equipment, causes property loss and personnel casualties,and severely threatens mining safety and efficient production. To further understand this destabilization based on the basic theory of Lippmann seam destabilization, a mathematical model was introduced for gas pressure distribution by considering intermediate principal stress and support resistance.Subsequently, we established a translation model suitable for the entire roadway coal seam with rocky roof and floor by applying the unified form of yield criterion in the state of plane strain. We also obtained the analytic expressions of coal seam stress distribution on both sides of the roadway and the widths of plastic and disturbance zones. Afterward, we analyzed several typical cases with different material yield criteria, obtained the plastic zone widths of the coal seam under different gas pressures, and assessed the effects of support resistance, roadway size, and coal strength on coal seam destabilization. Results showed that: the results obtained on the basis of Wilson and Mohr–Coulomb criteria are considerably conservative, and the use of Druker–Prager criteria to evaluate the rockburst-induced coal seam destabilization is safer than the use of the two other criteria; coal seam stability is correlated with gas pressure;and high-pressure gas accelerates the coal seam destabilization.
基金the National Natural Science Foundation of China(50678079)
文摘The model of catastrophic destabilization of tunnel under rock slipping in fault zone based on catastrophic theory and the potential function of fault movement were pre- sented.On the basis of the results above,through Taylor series expansion of the equation of equilibrium surface,its standard form was obtained.Analysis show that catastrophic destabilization of tunnel will occur only when stiffness ratio between elastic sector and strain weakening sector of soft rocks was larger than or equal to 1.On the other hand, sliding behavior and evolution path of fault were directly affected by exogenous process, and it was a major extraneous factor which leads to catastrophic destabilization of tunnel. In the condition of system catastrophe could be generated,if external forces vary from smaller to larger,firstly,fault sticks or creeps,and secondly,when external force equal to or larger than critical value,fault turns to slip suddenly.Inverse,if external forces vary from larger to smaller,fault smoothly slips firstly,when external force equal to or smaller than critical value,and fault turns to stick or creep suddenly.
基金supported by National Natural Science Foundation of China(82001072,81870805,82170978)National Key R&D Program of China(2022YFC2405900,2022YFC2405901)the Shaanxi Key Scientific and Technological Innovation Team(2020TD-033).
文摘Calcification of cartilage by hydroxyapatite is a hallmark of osteoarthritis and its deposition strongly correlates with the severity of osteoarthritis.However,no effective strategies are available to date on the prevention of hydroxyapatite deposition within the osteoarthritic cartilage and its role in the pathogenesis of this degenerative condition is still controversial.Therefore,the present work aims at uncovering the pathogenic mechanism of intra-cartilaginous hydroxyapatite in osteoarthritis and developing feasible strategies to counter its detrimental effects.With the use of in vitro and in vivo models of osteoarthritis,hydroxyapatite crystallites deposited in the cartilage are found to be phagocytized by resident chondrocytes and processed by the lysosomes of those cells.This results in lysosomal membrane permeabilization(LMP)and release of cathepsin B(CTSB)into the cytosol.The cytosolic CTSB,in turn,activates NOD-like receptor protein-3(NLRP3)inflammasomes and subsequently instigates chondrocyte pyroptosis.Inhibition of LMP and CTSB in vivo are effective in managing the progression of osteoarthritis.The present work provides a conceptual therapeutic solution for the prevention of osteoarthritis via alleviation of lysosomal destabilization.
基金the financial supported from the Key R&D Program of Shaanxi Province,China(No.2020ZDLGY13-01)the innovation team program of material developing and application of key engine components(No.K20220185)the National Natural Science Foundation of China(Nos.52101049,52234009 and 52071262).
文摘TiC_(x)is an excellent composite strengthening particle and grain refiner for Al alloys.However,the stability of TiC_(x)is poor when solute Si exists in Al alloy melts,which significantly depresses its strengthening and grain refining effects.In this work,the destabilization mechanisms of the TiC_(x)particles in Al-Si alloy melt with a composition of Al-7Si-7.5TiC were explored via experiments,first-principles calculations and thermodynamic calculations.The experimental results show that Si atoms diffuse into TiC_(x)and Ti atoms are released into the Al melt to form a Ti-rich transition zone during the insulation of TiC_(x)in Al-Si melt,and the TiAlySiz and Al_(4)C_(3)phases are solidified in the Ti-rich zone and at Ti-rich zone/TiC_(x)interface,respectively.The first principles calculations show that the low formation energy of C vacancies facilitates the rapid diffusion of Si atoms in TiC_(x),while the doping of Si atoms reduces the energy barrier of diffusion of Ti atoms in TiC_(x)and promotes the formation of Ti-rich zones.The thermodynamic calculations show that the wide crystallization temperature range of the destabilized product TiAlySiz phase is the key to continuous decomposition of TiC_(x)particles.In addition,the driving force of the main destabilization reaction of TiC_(x)in the Al-Si alloys is about 44 times higher than that in the Al alloys without Si addition.This indicates that the presence of solute Si remarkably promotes the subsequent decomposition process of TiC_(x)in the Al-Si alloy melts.
基金supported by the National Natural Science Foundation of China (No.52374124)National Youth Science Foundation of China (No.52204135)+3 种基金Xing Liao Talent Plan (No.XLYC2202004)Young Elite Scientists Sponsorship Program by CAST (No.2023QNRC001)Liaoning Province International Science and Technology Cooperation Plan (No.2022JH2/1070004)Liaoning Natural Science Foundation Program (No.2022-BS-327)。
文摘The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.
基金the National Natural Science Foundation of China(Nos.51771153,51371147,51790481 and 51431008)the Innovation Guidance Support Project for Taicang Top Research Institutes(No.TC2018DYDS20)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX201825)。
文摘The eutectic Ag-Cu alloys exhibiting fine Ag-Cu lamellar eutectic structure formed upon rapid solidification have great potentials being used in various engineering fields.However,the desired fine primary lamellar eutectic structure(PLES)is usually replaced by a coarse anomalous eutectic structure(AES)when the undercooling prior to solidification exceeds a certain value.The forming mechanism of AES in the undercooled eutectic Ag-Cu alloy has been a controversial issue.In this work,the undercooled Ag-39.9 at.% Cu eutectic alloy is solidified under different cooling conditions by using techniques of melt fluxing and copper mold casting.The results show that the coupled eutectic growth of this alloy undergoes a transition from a slow eutectic-cellular growth(ECG)to a rapid eutectic-dendritic growth(EDG)above a undercooling of 72 K,accompanying with an abrupt change of the distribution and amount of AES in as-solidified microstructures.Two kinds of primary lamellar eutectic structures are formed by ECG and EDG during recalescence,respectively.The destabilization of PLES that causes the formation of AES is ascribed to two different mechanisms based on the microstructural examination and theoretical calculations.Below 72 K,the destabilization of PLES formed by slow ECG is caused by the mechanism of"termination migration"driven by interfacial energy.While above 72 K,the destabilization of PLES formed by rapid EDG is attributed to the unstable perturbation of interface driven by interfacial energy and solute supersaturation.
基金the Arak University research fund for providing financial support for this study
文摘In this work,ultrasonic irradiation and destabilizer solvent were used for destabilizing colloidal platinum dispersions.The stabilized platinum nanoparticles were prepared in w/o microemulsion systems composed of sodium bis-(2-ethylhexyl) sulfosuccinate(AOT) and four different solvents,namely,cyclohexane,n-hexane,n-heptane,and n-nonane.The recovery process of Pt nanoparticles from the colloidal systems was performed by exposing the colloidal samples to ultrasonic irradiation and applying various destabilizing solvents.Analysis of UV-visible spectra confirms that the quantity of Pt nanoparticles removed from the suspension depends on the length of time of the ultrasonic irradiation and the nature of the microemulsion oil phase.A critical time for the ultrasonic irradiation has been introduced for the phase separation of colloidal systems.To perform the solvent study,four destabilizer solvents,namely,dioxane,ethyl acetate,diethyl ether,and tetrahydrofuran,were used for breaking the colloidal suspension of platinum nanoparticles.Based on the ’good solvent’ and ’poor solvent’ idea,it is verified that the effect of the destabilizer solvents on the aggregation process follows the following order:tetrahydrofuran 〉 ethyl acetate 〉dioxane〉 diethyl ether.
基金supported by the Research Intensified Grant Scheme (RIGS) under grant number VOT 55440 provided by Universiti Malaysia Terengganu (UMT)the SIPP Incentive sponsored by UMT
文摘For the first time,the MgH_(2)–NaAlH_(4)(ratio 4:1)destabilized system with CoTiO_(3) addition has been explored.The CoTiO_(3)-doped MgH_(2)–NaAlH_(4) sample begins to dehydrogenate at 130℃,which is declined by 40℃ compared to the undoped MgH_(2)–NaAlH_(4).Moreover,the de/rehydrogenation kinetics characteristics of the CoTiO_(3)-doped MgH_(2)–NaAlH_(4) were greatly ameliorated.With the inclusion of CoTiO_(3),the MgH_(2)–NaAlH_(4) composite absorbed 5.2 wt.%H_(2),higher than undoped MgH_(2)–NaAlH_(4).In the context of dehydrogenation,the CoTiO_(3)-doped MgH_(2)–NaAlH_(4) sample desorbed 2.6 wt.%H_(2),almost doubled compared to the amount of hydrogen desorbed from the undoped MgH_(2)–NaAlH_(4) sample.The activation energy obtained by the Kissinger analysis for MgH_(2) decomposition was significantly lower by 35.9 kJ/mol than the undoped MgH_(2)–NaAlH_(4) sample.The reaction mechanism demonstrated that new phases of MgCo and AlTi_(3) were generated in situ during the heating process and are likely to play a substantial catalytic function and be useful in ameliorating the de/rehydrogenation properties of the destabilized MgH_(2)–NaAlH_(4) system with the inclusion of CoTiO_(3).
文摘Through the theoretical analysis of overburden destabilization mechanism, FLAC 3D simplified plane numerical simulation method and field measurement method, we compared the relationship of overburden support pressure at 35 m of workface recovery, and the peak overburden support pressure decreased from 13.85 Mpa to 11.97 Mpa from 1:1 to 1:3. With the increase of mining ratio, the peak over-supporting pressure decreases: with the increase of top coal recovery thickness, the peak over-supporting pressure and the influence range will be further expanded, and the distance between the peak over-supporting pressure and the coal wall of the working face will be further increased and the high stress zone of the peak area will be expanded simultaneously.
基金supported by the National Natural Science Foundation of China(No.52071287)the Natural Science Foundation of Zhejiang Province(No.LZ23E010002)the Basic and Applied Basic Research Foundation of Guangdong Province(Nos.2021A1515110676,2022A1515011832).
文摘LiBH_(4) containing 18.5 wt.%H_(2) is an attractive high-capacity hydrogen storage material,however,it suffers from high operation temperature and poor reversibility.Herein,a novel and low-cost bifunctional additive,waxberry-like Fe_(3)O_(4) secondary nanospheres assembled from ultrafine primary Fe_(3)O_(4) nanoparticles,is synthesized,which exhibits significant destabilization and bidirectional catalyzation towards(de)hydrogenation of LiBH_(4).With an optimized addition of 30 wt.% waxberry-like Fe_(3)O_(4),the system initiated dehydrogenation below 100℃ and released a total of 8.1 wt.%H_(2) to 400℃.After 10 cycles,a capacity retention of 70% was achieved,greatly superior to previously reported oxides-modified systems.The destabilizing and catalyzing mechanisms of waxberry-like Fe_(3)O_(4) on LiBH_(4) were systematically analyzed by phase and microstructural evolutions during dehydrogenation and hydrogenation cycling as well as density functional theory(DFT)calculations.The present work provides new insights in developing advanced nano-additives with unique structural and multifunctional designs towards LiBH4 hydrogen storage.
文摘First-principles calculations based on density functional theory were performed to study the effect of alloying on the thermodynamic stability of MgH2 hydride (rutile and fluorite structures) with transitional metals (TM=Sc, Ti, Y) and group IIA elements (M=Ca, Sr, Ba). The results indicate that fluorite structure of these hydrides are more stable than its relative rutile structure at low alloying content (less 20%), structural destabilization of MgH2 appears in the alloying cases of Ti, Sr and Ba respectively. The structure-transition point from rutile structure to fluorite structure is at around 20% for MgH2-TM, and about 40% for MgH2-M. The formation enthalpy of fluorite Mg0.5Ba0.52 is about 0.3 eV and higher than that of fluorite MgH2, indicating that its hydrogen-desorption temperature at atmospheric pressure will be much lower than that of pure MgH2. Good consistency between experimental and calculated data suggests that above-adopted method is useful to predict structural transition and properties of MgH2 based hydrides for hydrogen storage.
文摘The tumor suppressor p53 is a multifunctional, highly regulated, and promoter-specific transcriptional factor that is uniquely sensitive to DNA damage and cellular stress signaling. The mechanisms by which p53 directs a damaged cell down either a cell growth arrest or an apoptotic pathway remain poorly understood. Evidence suggests that the in vivo functions of p53 seem to balance the cell-fate choice with the type and severity of damage that occurs. The concept of antirepression, or inhibition of factors that normally keep p53 at bay, may help explain the physiological mechanisms for p53 activation. These factors also provide novel chemotherapeutic targets for the reactivation of p53 in tumors harboring a wild-type copy of the gene.
基金Projects 50490273 and 50474068 supported by the National Natural Science Foundation of China2006BAK04B02 and 2006BAK03B06 by the Support Programs of the National Science and Technique During the 11th Five-Year Period2005CB221504 by the State Basic Research Program of China
文摘In order to study the rules of rock bursts caused by faults by means of mechanical analysis of a roof rock-mass balanced structure and numerical simulation about fault slip destabilization, the effect of coal mining operation on fault plane stresses and slip displacement were studied. The results indicate that the slip displacement sharply increases due to the decrease of normal stress and the increase of shear stress at the fault plane when the working face advances from the footwall to the fault itself, which may induce a fault rock burst. However, this slip displacement will be very small due to the increase of normal stress and the decrease of shear stress when the working face advances from the hanging wall to the fault itself, which results in a very small risk of a fault rock burst.
基金the National Natural Science Foundation of China(10402033,10772144)
文摘In virtue of effect of N-S intensive ground stress and mining disturbance to +579E2EB_(1+2) mining site at Weihuliang Mine,the dip angle and section height is 65° and 52 m,respectively,the collapses happed frequently during mining.Firstly,mining condi- tions,spatial structure and parameters were investigated.Then physical simulation and dynamic numerical tracing and elaborate simulation relating roof and top-coal were ap- plied based on 2D-Block Program and quantitative regularity of stress at variable depths had been estimated.Furthermore,it was manifested that effective measures,i.e.,fast mining,control symmetrical top-coal-caving at dip and strike directions,optimizing ventila- tion system,active-stereo preventing gas were performed successfully in mining practice. Ultimately,the derived dynamic hazard were prevented so as to safety mining.
基金supported by the Danish Council for Strategic Research via HyFillFast
文摘In this work,the hydrogen sorption properties of the LiBH4-Mg2NiH4 composite system with the molar ratio 2:2.5 were thoroughly investigated as a function of the applied temperature and hydrogen pressure.To the best of our knowledge,it has been possible to prove experimentally the mutual destabilization between LiBH4 and Mg2NiH4.A detailed account of the kinetic and thermodynamic features of the dehydrogenation process is reported here.
文摘The paradox of destabilization of a conservative or non-conservative system by small dissipation,or Ziegler’s paradox(1952),has stimulated a growing interest in the sensitivity of reversible and Hamiltonian systems with respect to dissipative perturbations.Since the last decade it has been widely accepted that dissipation-induced instabilities are closely related to singularities arising on the stability boundary,associated with Whitney’s umbrella.The first explanation of Ziegler’s paradox was given(much earlier)by Oene Bottema in 1956.The aspects of the mechanics and geometry of dissipation-induced instabilities with an application to rotor dynamics are discussed.
基金supported by the NITR research fellowshipfinancially supported by the Ministry of Earth Sciences (Seismology Division), Govt. of India, through grant number (MoES/P.O(Seismo)/1(349)/2018) to Bhaskar Kundu
文摘Characterization of critically stressed seismogenic fault systems in diverse tectonic settings can be used to explore the stress/frictional condition of faults,along with its sensitivity for seismicity modulation by periodic stress perturbation.However,the process of seismicity modulation in response to external stress perturbation remains debated.In this paper,the characteristic difference in the seismicity modulation due to resonance destabilization phenomenon governed by rate-and-state friction is presented and val-idated with the globally reported cases of seismicity modulation in diverse tectonic settings.The rela-tively faster-moving plate boundary regions are equally susceptible for both shorter-period(e.g.,semi-diurnal,diurnal,and other small tidal constituents)and long-period(e.g.,semi-annual,annual,pole tide and pole wobble)seismicity modulation processes in response to stress perturbations from natural har-monic forcing,including tidal,semi-annual,annual,or multi-annual time scales.In contrast,slowly deforming stable plate interior regions and diffuse deformation zones appear to be more sensitive for long-period seismicity modulation of semi-annual,annual,or even multi-annual time scales but less sen-sitive for short-period seismicity modulation.This finding is also supported by the theoretical model pre-dictions from the resonance destabilization process and worldwide documented natural observations of seismicity modulation in diverse types of tectonic settings.
文摘By applying tensile stress along 〈100〉 of β phase, the superelastic behavior and stabilization of stress induced martensite (SIM) of Cu 13.4Al 4.0Ni(mass fraction, %) single crystals were studied. The results show that the pseudo yield stress decreases with the increase of cycling number, and keeping load isothermally has an effect on stabilization of SIM. Previous thermal cycling between ( M s-20 ℃) and ( A f+20 ℃) promotes the superelasticity and the stabilization of SIM as well; the pre thermal cycling also reduces the pseudo yield stress. However, once the stabilization of SIM is produced, it can be destabilized by either the afterwards thermal cooling heating cycling or load and immediately unload cycling in ( A f~ M d). Isothermal treatment in ( A f~ M d) brings restabilization of SIM. The maximum superelastic value from β → β ′ 1(18 R ) is 9% for the studied single crystal. When test temperature is in A f~( A f+50 ℃) and stress is in 0~350 MPa, the superelastic behavior exist. [
文摘Based on practical observation in Mentougou Mine, a general law of roof rockburst is put forward. The destabilization theory of roof rockburst has been established. The general laws of microquake premonition and earth sound in roof rockburst is advanced. The relationship between roof rockburst and rockburst of coal body is studied.