A novel stochastic resonance algorithm was employed to enhance the signal-to-noise ratio (SNR) of signals of analytical chemistry. By using a gas chromatographic data set, it was proven that the SNR was greatly impro...A novel stochastic resonance algorithm was employed to enhance the signal-to-noise ratio (SNR) of signals of analytical chemistry. By using a gas chromatographic data set, it was proven that the SNR was greatly improved and the quantitative relationship between concentrations and chromatographic responses remained simultaneously. The linear range was extended beyond the instrumental detection limit.展开更多
In SPECT, noise is one of the major limitations that degrade image quality. To suppress the noisy signals in an image, digital filters are most commonly applied. However, in SPECT image reconstruction, selection of an...In SPECT, noise is one of the major limitations that degrade image quality. To suppress the noisy signals in an image, digital filters are most commonly applied. However, in SPECT image reconstruction, selection of an appropriate filter and its functions has always remained a difficult task. In this work an attempt was made to investigate the effects of varying cut-off frequencies and in keeping the order of Butterworth filter constant on detectability and contrast of hot and cold re-gions images. A new insert simulating hot and cold regions which provides similar views in a reconstructed image was placed in the phantom’s cylindrical source tank and imaged. Tc-99m radionuclide was distributed uniformly in the phantom. SPECT data were collected in a 20% energy window centered at 140 keV by a Philips ADAC Forte dual head gamma camera mounted with a LEHR collimator. Images were generated by using the filtered backprojection technique. A Butterworth filter of order 5 with cut-off frequencies 0.35 and 0.45 cycles·cm<sup>-1</sup> was applied. Images were examined in terms of hot and cold regions, detectability and contrast. Results show that the hot and cold regions’ detectability and contrast vary with the change of cut-off frequency. With a 0.45 cycles·cm<sup>-1</sup> cut-off frequency, a significant enhancement in contrast of cold regions was achieved as compared to a 0.35 cycles·cm<sup>-1</sup> cut-off frequency. Furthermore, the detectability of hot and cold regions improved with the use of a 0.45 cycles·cm<sup>-1</sup> cut-off frequency. In conclusion, image quality of hot and cold regions affected in a different way with a change of cut-off frequency. Thus, care should be taken in selecting the filter cut-off frequency prior to reconstruction of images;particularly, when both types of regions are expected in the reconstructed image.展开更多
The behavior of resistive short defects in FPGA interconnects is investigated through simulation and theoretical analysis.The results show that these defects result in timing failures and even Boolean faults for small...The behavior of resistive short defects in FPGA interconnects is investigated through simulation and theoretical analysis.The results show that these defects result in timing failures and even Boolean faults for small defect resistance values.The best detection situations for large resistance defect happen when the path under test makes a v-to-v′ transition and another path causing short faults remains at value v.Small defects can be detected easily through static analysis.Under the best test situations,the effects of supply voltage and temperature on test results are evaluated.The results verify that lower voltage helps to improve detectability.If short material has positive temperature coefficient,low temperature is better;otherwise,high temperature is better.展开更多
The detectability and reliability analysis for the local seismic network is performed employing by Bungum and Husebye technique. The events were relocated using standard computer codes for hypocentral locations. The d...The detectability and reliability analysis for the local seismic network is performed employing by Bungum and Husebye technique. The events were relocated using standard computer codes for hypocentral locations. The detectability levels are estimated from the twenty-five years of recorded data in terms of 50%, 90% and 100% cumulative detectability thresholds, which were derived from frequency-magnitude distribution. From this analysis the 100% level of detectability of the network is M L=1.7 for events which occur within the network. The accuracy in hypocentral solutions of the network is investigated by considering the fixed real hypocenter within the network. The epicentral errors are found to be less than 4 km when the events occur within the network. Finally, the problems faced during continuous operation of the local network, which effects its detectability, are discussed.展开更多
This paper mainly discusses stabilizatbility, exact observability and exact detectability of discrete stochastic systems with both static and control dependent noise via the spectrum technique. The authors put forward...This paper mainly discusses stabilizatbility, exact observability and exact detectability of discrete stochastic systems with both static and control dependent noise via the spectrum technique. The authors put forward a definition of the spectrum and give some theorems based on the spectrum. Then the relation between discrete generalized Lyapunov equation and discrete generalized algebraic Riccati equation is also analyzed.展开更多
Phase identification procedures for teleseismic events at Syowa Station (69.0°S, 39.6°E;SYO), East Antarctica have been carried out since 1967 after the International Geophysical Year (IGY;1957-1958). Since ...Phase identification procedures for teleseismic events at Syowa Station (69.0°S, 39.6°E;SYO), East Antarctica have been carried out since 1967 after the International Geophysical Year (IGY;1957-1958). Since the development of INTELSAT telecommunication link, digital waveform data have been transmitted to the National Institute of Polar Research (NIPR) for the utilization of phase identification. Arrival times of teleseismic phases, P, PKP, PP, S, SKS have been detected manually and reported to the International Seismological Centre (ISC), and published by “JARE Data Reports” from NIPR. In this paper, hypocentral distribution and time variations for detected earthquakes are demonstrated over the last four decades in 1967-2010. Characteristics of detected events, magnitude dependency, spatial distributions, seasonal variations, together with classification by focal depth are investigated. Besides the natural increase in the occurrence of teleseismic events on the globe, a technical advance in the observing system and station infrastructure, as well as the improvement of procedures for reading seismic phases, could all combine to produce the increase in detection of events in last few decades. Variations in teleseismic detectability for longer terms may be possible by association with the meteorological environment and seaice spreading area around the Antarctic continent. Recorded teleseismic and local seismic signals have sufficient quality for many analyses on dynamics and structure of the Earth as viewed from Antarctica. The continuously recorded data are applied not only to lithospheric studies but also to the Earth’s deep interiors, as a significant contribution to the Federation of Digital Seismological Networks (FDSN) from high southern latitude.展开更多
The hidden water-bearing structures near the roadway tunnelling face are very likely to cause water seepage accidents in coal mines.Currently,transient electromagnetic(EM)technology has be-come an important method to ...The hidden water-bearing structures near the roadway tunnelling face are very likely to cause water seepage accidents in coal mines.Currently,transient electromagnetic(EM)technology has be-come an important method to detect water damage in advance of roadway excavation.In this paper,the time-domain finite element algorithm based on unstructured tetrahedron grids is used to accurate-ly simulate the geological body in front of the roadway excavation face and analyze its response.The authors detect the distance between the roadway excavation face and the low-resistivity water-bearing body,the resistivity difference between the low-resistivity body and surrounding rock,and the influence of the size of the low-resistivity body on the transient EM response.Furthermore,the common types of low-resistivity bodies in the roadway drivage process are used for modeling to analyze the attenuation of the detected EM response when there are low-resistivity bodies in front of the roadway.The research in this paper can help effectively detecting the water-bearing low-resistivity body in front of the roadway drivage and lay a foundation for reducing the risk of water seepage accidents.展开更多
This paper presents the notions of exact observability and exact detectability for Markov jump linear stochastic systems of Ito type with multiplieative noise (for short, MJLSS). Stochastic Popov-Belevith-Hautus (...This paper presents the notions of exact observability and exact detectability for Markov jump linear stochastic systems of Ito type with multiplieative noise (for short, MJLSS). Stochastic Popov-Belevith-Hautus (PBH) Criterions for exact observability and exact detectability are respectively obtained. As an application, stochastic H2/H∞ control for such MJLSS is discussed under exact detectability.展开更多
This paper mainly studies observability and detectability for continuous-time stochastic Markov jump systems.Two concepts called W-observability and W-detectability for such systems are introduced,which are shown to c...This paper mainly studies observability and detectability for continuous-time stochastic Markov jump systems.Two concepts called W-observability and W-detectability for such systems are introduced,which are shown to coincide with various notions of observability and detectability reported recently in literature,such as exact observability,exact detectability and detectability.Besides,by introducing an accumulated energy function,some efficient criteria and interesting properties for both W-observability and W-detectability are obtained.展开更多
Aiming at the drawbacks of low contrast and high noise in the thermal images, a novel method based on the combination of the thermal image sequence reconstruction and the first-order differential processing is propose...Aiming at the drawbacks of low contrast and high noise in the thermal images, a novel method based on the combination of the thermal image sequence reconstruction and the first-order differential processing is proposed in this work, which is comprised of the following procedures. Firstly, the specimen with four fabricated defects with different sizes is detected by using pulsed infrared thennography. Then, a piecewise fitting based method is proposed to reconstruct the thermal image sequence to compress the data and remove the temporal noise of each pixel in the thermal image. Finally, the first-order differential processing based method is proposed to enhance the contrast. An experimental investigation into the specimen containing de-bond defects between the steel and the heat insulation layer is carried out to validate the effectiveness of the proposed method via the above procedures. The obtained results show that the proposed method can remove the noise, enhance the contrast, and even compress the data reaching at 99.1%, thus improving the detectability of pulsed infrared thermography on metal defects.展开更多
Aims to determine the detectability of a global weedy perennial weed Hypochaeris radicata and its relationship with five common observer,species and environmental variables.Methods trained independent observers conduc...Aims to determine the detectability of a global weedy perennial weed Hypochaeris radicata and its relationship with five common observer,species and environmental variables.Methods trained independent observers conducted time-limited repeat sur-veys of H.radicata during autumn in an endangered grassy box-gum woodland ecosystem in south-east australia.single-species single-season site-occupancy modelling was used to determine if detectability of H.radicata was altered by five covariates,observer,litter height,grazing,maximum plant height and flowering state.Important Findings Detectability for H.radicata varied significantly with observer,litter height,plant maximum height and flowering state,but not with graz-ing.Despite significant observer-specific variation,there was a con-sistent increase in detectability with plant height and when plants are in flower for all observers.Detectability generally decreased as litter height increases.Perfect or constant detection rates cannot be assumed in plant surveys,even for easily recognizable plants in simple survey conditions.understanding how detectability is influ-enced by common survey variables can help improve the efficacy of plant monitoring programs by quantifying the extent of uncertainty in inferences made from survey data,or by determining optimal sur-vey conditions to increase the reliability of collected data.For plants with traits similar to H.radicata,surveying when most plants are at maximum height or in flower,increasing search intensity when litter levels are high and minimizing observer-related heterogeneity are potentially simple and effective ways to reduce detection errors.We speculate that detection rates may be lower,more variable and involve additional covariates when surveying during the peak flow-ering spring season with the presence of more warm season and taller annual species.展开更多
Seed traits play an important role in affecting seed preference and hoarding behaviors of small rodents.Despite greatly affected by seed traits,seed detectability of competitors represents pilfering risks and may also...Seed traits play an important role in affecting seed preference and hoarding behaviors of small rodents.Despite greatly affected by seed traits,seed detectability of competitors represents pilfering risks and may also modify seed hoarding preference of animals.However,whether seed traits and seed detectability show consistent effects on seed hoarding preference of animals remain largely unknown.Here,we explored how seed traits and seed detectability correlate with seed hoarding preference of Leopoldamys edwardsi and Apodemus chevrieri in a subtropical forest.Despite the effects of seed coat thickness and caloric value on hoarding preference of L.edwardsi,we detected no significant effects of other seed traits on hording preference of the 2 rodent species.There was no correlation between larder-hoarding preference and inter-or intra-specific seed detectability of L.edwardsi;however,seed detectability of L.edwardsi was negatively correlated with its own scatter-hoarding preference.Although scatter-hoarding preference of A.chevrieri was not correlated with inter-and intra-specific seed detectability,larder-hoarding preference of A.chevrieri was positively correlated with intra-specific seed detectability.Our study may provide evidence that intra-specific seed detectability rather than seed traits and inter-specific pilfering risks play an important role in modifying seed hoarding preference of rodents.展开更多
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are...Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.展开更多
Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor strugg...Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy.展开更多
CuO nanoparticles were successfully synthesized via a two-jet electrospun method,and then screen-printed on silver-carbon electrodes,forming CuO-modified Ag-C(CuO/Ag-C)disposable strip electrodes.In natural environmen...CuO nanoparticles were successfully synthesized via a two-jet electrospun method,and then screen-printed on silver-carbon electrodes,forming CuO-modified Ag-C(CuO/Ag-C)disposable strip electrodes.In natural environment condition for glucose detection,the obtained CuO/Ag-C electrodes show a high sensitivity of 540 nA·mM^(-1)·cm^(-2),and a low limit of detection(0.68 mM)in a wide linear response range of 0.68 mM and 3 mM(signal/noise=3),respectively.In addition,the CuO/Ag-C electrodes also exhibit excellent anti-interference,air stability and repeatability.As a result,the fabrication of CuO nanoparticles via an electrospun process and the technique of screen-printed electrodes are of great significance for glucose detection.展开更多
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Num...Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact.展开更多
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc...Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.展开更多
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable...Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.展开更多
Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present wi...Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges.展开更多
基金supported by the National Natural Science Foundation of China (No.20075024).
文摘A novel stochastic resonance algorithm was employed to enhance the signal-to-noise ratio (SNR) of signals of analytical chemistry. By using a gas chromatographic data set, it was proven that the SNR was greatly improved and the quantitative relationship between concentrations and chromatographic responses remained simultaneously. The linear range was extended beyond the instrumental detection limit.
文摘In SPECT, noise is one of the major limitations that degrade image quality. To suppress the noisy signals in an image, digital filters are most commonly applied. However, in SPECT image reconstruction, selection of an appropriate filter and its functions has always remained a difficult task. In this work an attempt was made to investigate the effects of varying cut-off frequencies and in keeping the order of Butterworth filter constant on detectability and contrast of hot and cold re-gions images. A new insert simulating hot and cold regions which provides similar views in a reconstructed image was placed in the phantom’s cylindrical source tank and imaged. Tc-99m radionuclide was distributed uniformly in the phantom. SPECT data were collected in a 20% energy window centered at 140 keV by a Philips ADAC Forte dual head gamma camera mounted with a LEHR collimator. Images were generated by using the filtered backprojection technique. A Butterworth filter of order 5 with cut-off frequencies 0.35 and 0.45 cycles·cm<sup>-1</sup> was applied. Images were examined in terms of hot and cold regions, detectability and contrast. Results show that the hot and cold regions’ detectability and contrast vary with the change of cut-off frequency. With a 0.45 cycles·cm<sup>-1</sup> cut-off frequency, a significant enhancement in contrast of cold regions was achieved as compared to a 0.35 cycles·cm<sup>-1</sup> cut-off frequency. Furthermore, the detectability of hot and cold regions improved with the use of a 0.45 cycles·cm<sup>-1</sup> cut-off frequency. In conclusion, image quality of hot and cold regions affected in a different way with a change of cut-off frequency. Thus, care should be taken in selecting the filter cut-off frequency prior to reconstruction of images;particularly, when both types of regions are expected in the reconstructed image.
文摘The behavior of resistive short defects in FPGA interconnects is investigated through simulation and theoretical analysis.The results show that these defects result in timing failures and even Boolean faults for small defect resistance values.The best detection situations for large resistance defect happen when the path under test makes a v-to-v′ transition and another path causing short faults remains at value v.Small defects can be detected easily through static analysis.Under the best test situations,the effects of supply voltage and temperature on test results are evaluated.The results verify that lower voltage helps to improve detectability.If short material has positive temperature coefficient,low temperature is better;otherwise,high temperature is better.
文摘The detectability and reliability analysis for the local seismic network is performed employing by Bungum and Husebye technique. The events were relocated using standard computer codes for hypocentral locations. The detectability levels are estimated from the twenty-five years of recorded data in terms of 50%, 90% and 100% cumulative detectability thresholds, which were derived from frequency-magnitude distribution. From this analysis the 100% level of detectability of the network is M L=1.7 for events which occur within the network. The accuracy in hypocentral solutions of the network is investigated by considering the fixed real hypocenter within the network. The epicentral errors are found to be less than 4 km when the events occur within the network. Finally, the problems faced during continuous operation of the local network, which effects its detectability, are discussed.
文摘This paper mainly discusses stabilizatbility, exact observability and exact detectability of discrete stochastic systems with both static and control dependent noise via the spectrum technique. The authors put forward a definition of the spectrum and give some theorems based on the spectrum. Then the relation between discrete generalized Lyapunov equation and discrete generalized algebraic Riccati equation is also analyzed.
文摘Phase identification procedures for teleseismic events at Syowa Station (69.0°S, 39.6°E;SYO), East Antarctica have been carried out since 1967 after the International Geophysical Year (IGY;1957-1958). Since the development of INTELSAT telecommunication link, digital waveform data have been transmitted to the National Institute of Polar Research (NIPR) for the utilization of phase identification. Arrival times of teleseismic phases, P, PKP, PP, S, SKS have been detected manually and reported to the International Seismological Centre (ISC), and published by “JARE Data Reports” from NIPR. In this paper, hypocentral distribution and time variations for detected earthquakes are demonstrated over the last four decades in 1967-2010. Characteristics of detected events, magnitude dependency, spatial distributions, seasonal variations, together with classification by focal depth are investigated. Besides the natural increase in the occurrence of teleseismic events on the globe, a technical advance in the observing system and station infrastructure, as well as the improvement of procedures for reading seismic phases, could all combine to produce the increase in detection of events in last few decades. Variations in teleseismic detectability for longer terms may be possible by association with the meteorological environment and seaice spreading area around the Antarctic continent. Recorded teleseismic and local seismic signals have sufficient quality for many analyses on dynamics and structure of the Earth as viewed from Antarctica. The continuously recorded data are applied not only to lithospheric studies but also to the Earth’s deep interiors, as a significant contribution to the Federation of Digital Seismological Networks (FDSN) from high southern latitude.
文摘The hidden water-bearing structures near the roadway tunnelling face are very likely to cause water seepage accidents in coal mines.Currently,transient electromagnetic(EM)technology has be-come an important method to detect water damage in advance of roadway excavation.In this paper,the time-domain finite element algorithm based on unstructured tetrahedron grids is used to accurate-ly simulate the geological body in front of the roadway excavation face and analyze its response.The authors detect the distance between the roadway excavation face and the low-resistivity water-bearing body,the resistivity difference between the low-resistivity body and surrounding rock,and the influence of the size of the low-resistivity body on the transient EM response.Furthermore,the common types of low-resistivity bodies in the roadway drivage process are used for modeling to analyze the attenuation of the detected EM response when there are low-resistivity bodies in front of the roadway.The research in this paper can help effectively detecting the water-bearing low-resistivity body in front of the roadway drivage and lay a foundation for reducing the risk of water seepage accidents.
基金supported by National Natural Science Foundation of China under Grant Nos 60774020, 60736028,and 60821091
文摘This paper presents the notions of exact observability and exact detectability for Markov jump linear stochastic systems of Ito type with multiplieative noise (for short, MJLSS). Stochastic Popov-Belevith-Hautus (PBH) Criterions for exact observability and exact detectability are respectively obtained. As an application, stochastic H2/H∞ control for such MJLSS is discussed under exact detectability.
基金supported by the Natural Science Foundation of China under Grant No.61174078the Research Fund for the Taishan Scholar Project of Shandong Province of China+1 种基金the SDUST Research Fund under Grant No.2011KYTD105the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant No.LAPS13018
文摘This paper mainly studies observability and detectability for continuous-time stochastic Markov jump systems.Two concepts called W-observability and W-detectability for such systems are introduced,which are shown to coincide with various notions of observability and detectability reported recently in literature,such as exact observability,exact detectability and detectability.Besides,by introducing an accumulated energy function,some efficient criteria and interesting properties for both W-observability and W-detectability are obtained.
基金the National Natural Science Foundation of China (Grant Nos.51575516 and 51605481)Xi'an Science and Technology Project(Grant No. 2017089CG/RC052 HJKC001).
文摘Aiming at the drawbacks of low contrast and high noise in the thermal images, a novel method based on the combination of the thermal image sequence reconstruction and the first-order differential processing is proposed in this work, which is comprised of the following procedures. Firstly, the specimen with four fabricated defects with different sizes is detected by using pulsed infrared thennography. Then, a piecewise fitting based method is proposed to reconstruct the thermal image sequence to compress the data and remove the temporal noise of each pixel in the thermal image. Finally, the first-order differential processing based method is proposed to enhance the contrast. An experimental investigation into the specimen containing de-bond defects between the steel and the heat insulation layer is carried out to validate the effectiveness of the proposed method via the above procedures. The obtained results show that the proposed method can remove the noise, enhance the contrast, and even compress the data reaching at 99.1%, thus improving the detectability of pulsed infrared thermography on metal defects.
文摘Aims to determine the detectability of a global weedy perennial weed Hypochaeris radicata and its relationship with five common observer,species and environmental variables.Methods trained independent observers conducted time-limited repeat sur-veys of H.radicata during autumn in an endangered grassy box-gum woodland ecosystem in south-east australia.single-species single-season site-occupancy modelling was used to determine if detectability of H.radicata was altered by five covariates,observer,litter height,grazing,maximum plant height and flowering state.Important Findings Detectability for H.radicata varied significantly with observer,litter height,plant maximum height and flowering state,but not with graz-ing.Despite significant observer-specific variation,there was a con-sistent increase in detectability with plant height and when plants are in flower for all observers.Detectability generally decreased as litter height increases.Perfect or constant detection rates cannot be assumed in plant surveys,even for easily recognizable plants in simple survey conditions.understanding how detectability is influ-enced by common survey variables can help improve the efficacy of plant monitoring programs by quantifying the extent of uncertainty in inferences made from survey data,or by determining optimal sur-vey conditions to increase the reliability of collected data.For plants with traits similar to H.radicata,surveying when most plants are at maximum height or in flower,increasing search intensity when litter levels are high and minimizing observer-related heterogeneity are potentially simple and effective ways to reduce detection errors.We speculate that detection rates may be lower,more variable and involve additional covariates when surveying during the peak flow-ering spring season with the presence of more warm season and taller annual species.
基金supported by the National Natural Science Foundation of China(32070447 and 31760156)Youth Talent Introduction and Education Program of Shandong Province(20190601).
文摘Seed traits play an important role in affecting seed preference and hoarding behaviors of small rodents.Despite greatly affected by seed traits,seed detectability of competitors represents pilfering risks and may also modify seed hoarding preference of animals.However,whether seed traits and seed detectability show consistent effects on seed hoarding preference of animals remain largely unknown.Here,we explored how seed traits and seed detectability correlate with seed hoarding preference of Leopoldamys edwardsi and Apodemus chevrieri in a subtropical forest.Despite the effects of seed coat thickness and caloric value on hoarding preference of L.edwardsi,we detected no significant effects of other seed traits on hording preference of the 2 rodent species.There was no correlation between larder-hoarding preference and inter-or intra-specific seed detectability of L.edwardsi;however,seed detectability of L.edwardsi was negatively correlated with its own scatter-hoarding preference.Although scatter-hoarding preference of A.chevrieri was not correlated with inter-and intra-specific seed detectability,larder-hoarding preference of A.chevrieri was positively correlated with intra-specific seed detectability.Our study may provide evidence that intra-specific seed detectability rather than seed traits and inter-specific pilfering risks play an important role in modifying seed hoarding preference of rodents.
基金supported by the Ministry of Science and Technology of China,No.2020AAA0109605(to XL)Meizhou Major Scientific and Technological Innovation PlatformsProjects of Guangdong Provincial Science & Technology Plan Projects,No.2019A0102005(to HW).
文摘Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.
基金financially supported by the National Key Research and Development Program of China(No.2022YFA1205300 and No.2022YFA1205304)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2022ZD103).
文摘Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy.
基金Funded by Cofoe Medical Technology Co.,Ltd and the Scientific Research Start-up Funds of Hexi University(No.KYQD2022006)。
文摘CuO nanoparticles were successfully synthesized via a two-jet electrospun method,and then screen-printed on silver-carbon electrodes,forming CuO-modified Ag-C(CuO/Ag-C)disposable strip electrodes.In natural environment condition for glucose detection,the obtained CuO/Ag-C electrodes show a high sensitivity of 540 nA·mM^(-1)·cm^(-2),and a low limit of detection(0.68 mM)in a wide linear response range of 0.68 mM and 3 mM(signal/noise=3),respectively.In addition,the CuO/Ag-C electrodes also exhibit excellent anti-interference,air stability and repeatability.As a result,the fabrication of CuO nanoparticles via an electrospun process and the technique of screen-printed electrodes are of great significance for glucose detection.
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.
文摘Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact.
文摘Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.
文摘Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.
基金the“Intelligent Recognition Industry Service Center”as part of the Featured Areas Research Center Program under the Higher Education Sprout Project by the Ministry of Education(MOE)in Taiwan,and the National Science and Technology Council,Taiwan,under grants 113-2221-E-224-041 and 113-2622-E-224-002.Additionally,partial support was provided by Isuzu Optics Corporation.
文摘Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges.