Taken the Dalian lake region as the study area,which represents the typical agriculture production mode and agricultural non-point source pollution (ANSP) in Dianshan lake area in Shanghai City,basis on the characte...Taken the Dalian lake region as the study area,which represents the typical agriculture production mode and agricultural non-point source pollution (ANSP) in Dianshan lake area in Shanghai City,basis on the characteristics of regional ANSP and combing with the seasonal water quality monitoring of Dalian Lake and reaches of its main influents,the laws of seasonal impact on the water environment were investigated.The results showed that,the seasonal change of TN and COD concentration of regional water had no significant correlation with the local ANSP emissions,while the seasonal changes of TP was consistent with seasonal emissions of regional TP pollution,and it had a significant correlation with Chl.a in four seasons,indicating that regional TP pollutant was the constriction factor influenced the eutrophication degree of Dalian lake.Because more than 80% of TP emissions came from the drainage of intensive pounds in winter,summer and fall,TP pollutant control should be adopted as the control target of regional ANSP control.展开更多
To understand the spatial and temporal variation characteristics of blue algae in summer in Lake Dianshan,the phytoplankton in Lake Dianshan from June to September in 2009 was surveyed. It found 11 genera and 28 speci...To understand the spatial and temporal variation characteristics of blue algae in summer in Lake Dianshan,the phytoplankton in Lake Dianshan from June to September in 2009 was surveyed. It found 11 genera and 28 species blue algae in total. Microcystis,Oscillatoria and Chroococcus were the main composition communities of blue algae in Lake Dianshan in summer. In the survey period,the average density of blue algae in Lake Dianshan was 16.48×106 cells/L which changed during 1.01×106-59.76×106 cells/L. The characteristics were:September > July > August > June. The mass propagation and aggregation of Microcystis in September caused that the water blooms phenomenon in the partial water areas was serious. In the space,the average density of blue algae in the west and southwest parts of Lake Dianshan was bigger than in the east and southeast. When the nutritive matter was sufficient,the temperature was the main factor which affected the generation and disappearance of blue algae water blooms. The wind direction was also an important factor which affected the distribution of blue algae.展开更多
Abstract: The water quality of Dianshan Lake in Shanghai Municipality, China, is impacted by nutrient losses from agricultural lands around the lake. In this study, nine types of agricultural land use were monitored ...Abstract: The water quality of Dianshan Lake in Shanghai Municipality, China, is impacted by nutrient losses from agricultural lands around the lake. In this study, nine types of agricultural land use were monitored in 2010 and 2011, and a correlation analysis between nutrient losses from agricultural non-point sources (NPS) and nutrient stocks in the lake was conducted over monthly and seasonal time periods. The results indicate that the monthly average concentration of total nitrogen (TN) ranged from 1.41 to 7.34 mg/L in 2010 and from 1.52 to 5.90 mg/L in 2011, while the monthly average concentration of total phosphorous (TP) ranged from 0.11 to 0.26 mg/L in 2010 and from 0.13 to 0.30 mg/L in 2011. The annual loss of TN from agricultural NPS was 195.55 tons in 2010 and 208.40 tons in 2011. The cultivation of water oat made the largest contribution to the loss of TN. The annual loss of TP was 44.58 tons in 2010 and 48.12 tons in 2011, and multi-vegetable cultivation made the largest contribution to the loss of TP. The results of correlation analysis show that the monthly stocks of TN and TP in the lake have a positive correlation with the monthly losses of TN and TP from agricultural NPS. According to the seasonal data, the stocks of TN and TP in the lake both have a much stronger correlation with the losses of TN and TP from agricultural NPS in summer than in other seasons. Agricultural NPS pollution control should be the main focus for the water resource conservation in this area.展开更多
A hydrodynamic model and an aquatic ecology model of Dianshan Lake,Shanghai,were built using a hydrodynamic simulation module and the water quality simulation module of Delft3D,which is an integrated modelling suite o...A hydrodynamic model and an aquatic ecology model of Dianshan Lake,Shanghai,were built using a hydrodynamic simulation module and the water quality simulation module of Delft3D,which is an integrated modelling suite offered by Deltares. The simulated water elevation,current velocity,and direction were validated with observed data to ensure the reliability of hydrodynamic model. The seasonal growth of different algae was analyzed with consideration of observed and historical data,as well as simulated results. In 2008,the dominant algae in Dianshan Lake was Bacillariophyta from February to March,while it was Chlorophyta from April to May,and Cyanophyta from July to August. In summer,the biomass of Cyanophyta grew quickly,reaching levels much higher than the peaks of Bacillariophyta and Chlorophyta. Algae blooms primarily occurred in the stagnation regions. This phenomenon indicates that water residence time can influence algal growth significantly. A longer water residence time was associated with higher algal growth. Two conclusions were drawn from several simulations: reducing the nutrients inflow had little effect on algal blooms in Dianshan Lake; however,increasing the discharge into Dianshan Lake could change the flow field characteristic and narrow the range of stagnation regions,resulting in inhibition of algal aggregation and propagation and a subsequent reduction in areas of high concentration algae.展开更多
The correlation between water quality parameters and hyper-spectral reflectance is studied with models established for each parameter and applied in Dianshan Lake, in the upstream of the Huangpu River running through ...The correlation between water quality parameters and hyper-spectral reflectance is studied with models established for each parameter and applied in Dianshan Lake, in the upstream of the Huangpu River running through Shanghai, China. Models are for dissolved oxygen (DO in mg/L): R720/R680 = 20.362×(R720/R680)2?31.438×(R720/R680)+19.156; for turbidity (NTU): R*714.5 = 206.07× (R*714.5)2?582.5×R*714.5 + 423.24; and for total phosphorus (TP in mg/L): R*509.5 = 16.661× (R*509.5)2?32.646×R*509.5+16.116. The R2 values are 0.770 8, 0.660 4 and 0.738 7, respectively, showing strong positive relationships. The models were then applied to assess water quality of different times. Results are quite satisfactory for some samples.展开更多
Shallow fresh water bodies in peat areas could be an important contributor to greenhouse gases in the atmosphere.In this study,the partial pressure of CO2 in the surface water of the Dianshan Lake was investigated ins...Shallow fresh water bodies in peat areas could be an important contributor to greenhouse gases in the atmosphere.In this study,the partial pressure of CO2 in the surface water of the Dianshan Lake was investigated insitu in August 2011.The average pCO2 in the study area was 2300μatm and fluctuated within the range of 989–5000μatm.pCO2 showed a reverse trend to the variations of pH and DO in the surface water of the Dianshan Lake.The water to air diffusion flux of CO2 of the upstream,middle lake and downstream were respectively 63,33 and 14mmol/m2/d.On average,the diffusion flux of CO2 of the whole lake was 31 mmol/m2/d.Consequently,our results show that during the sampling season,the Dianshan Lake appears to be a great source of CO2.It is also demonstrated that respiration could be the dominant biochemical reaction in the Dianshan Lake in summer.展开更多
基金Supported by Science and Technology Support Program in Shanghai Science and Technology Committee (08DZ1203200, 08DZ1203205)~~
文摘Taken the Dalian lake region as the study area,which represents the typical agriculture production mode and agricultural non-point source pollution (ANSP) in Dianshan lake area in Shanghai City,basis on the characteristics of regional ANSP and combing with the seasonal water quality monitoring of Dalian Lake and reaches of its main influents,the laws of seasonal impact on the water environment were investigated.The results showed that,the seasonal change of TN and COD concentration of regional water had no significant correlation with the local ANSP emissions,while the seasonal changes of TP was consistent with seasonal emissions of regional TP pollution,and it had a significant correlation with Chl.a in four seasons,indicating that regional TP pollutant was the constriction factor influenced the eutrophication degree of Dalian lake.Because more than 80% of TP emissions came from the drainage of intensive pounds in winter,summer and fall,TP pollutant control should be adopted as the control target of regional ANSP control.
基金Supported by The Project of Shanghai Scientific and Technological Commission(08DZ1203102,08dz1203002,08dz1203101)
文摘To understand the spatial and temporal variation characteristics of blue algae in summer in Lake Dianshan,the phytoplankton in Lake Dianshan from June to September in 2009 was surveyed. It found 11 genera and 28 species blue algae in total. Microcystis,Oscillatoria and Chroococcus were the main composition communities of blue algae in Lake Dianshan in summer. In the survey period,the average density of blue algae in Lake Dianshan was 16.48×106 cells/L which changed during 1.01×106-59.76×106 cells/L. The characteristics were:September > July > August > June. The mass propagation and aggregation of Microcystis in September caused that the water blooms phenomenon in the partial water areas was serious. In the space,the average density of blue algae in the west and southwest parts of Lake Dianshan was bigger than in the east and southeast. When the nutritive matter was sufficient,the temperature was the main factor which affected the generation and disappearance of blue algae water blooms. The wind direction was also an important factor which affected the distribution of blue algae.
基金supported by the Project of the Shanghai Science and Technology Committee(Grants No.08DZ1203200 and 08DZ1203205)
文摘Abstract: The water quality of Dianshan Lake in Shanghai Municipality, China, is impacted by nutrient losses from agricultural lands around the lake. In this study, nine types of agricultural land use were monitored in 2010 and 2011, and a correlation analysis between nutrient losses from agricultural non-point sources (NPS) and nutrient stocks in the lake was conducted over monthly and seasonal time periods. The results indicate that the monthly average concentration of total nitrogen (TN) ranged from 1.41 to 7.34 mg/L in 2010 and from 1.52 to 5.90 mg/L in 2011, while the monthly average concentration of total phosphorous (TP) ranged from 0.11 to 0.26 mg/L in 2010 and from 0.13 to 0.30 mg/L in 2011. The annual loss of TN from agricultural NPS was 195.55 tons in 2010 and 208.40 tons in 2011. The cultivation of water oat made the largest contribution to the loss of TN. The annual loss of TP was 44.58 tons in 2010 and 48.12 tons in 2011, and multi-vegetable cultivation made the largest contribution to the loss of TP. The results of correlation analysis show that the monthly stocks of TN and TP in the lake have a positive correlation with the monthly losses of TN and TP from agricultural NPS. According to the seasonal data, the stocks of TN and TP in the lake both have a much stronger correlation with the losses of TN and TP from agricultural NPS in summer than in other seasons. Agricultural NPS pollution control should be the main focus for the water resource conservation in this area.
基金Supported by the Shanghai Municipal Science and Technology Commission(No.08DZ1203000)
文摘A hydrodynamic model and an aquatic ecology model of Dianshan Lake,Shanghai,were built using a hydrodynamic simulation module and the water quality simulation module of Delft3D,which is an integrated modelling suite offered by Deltares. The simulated water elevation,current velocity,and direction were validated with observed data to ensure the reliability of hydrodynamic model. The seasonal growth of different algae was analyzed with consideration of observed and historical data,as well as simulated results. In 2008,the dominant algae in Dianshan Lake was Bacillariophyta from February to March,while it was Chlorophyta from April to May,and Cyanophyta from July to August. In summer,the biomass of Cyanophyta grew quickly,reaching levels much higher than the peaks of Bacillariophyta and Chlorophyta. Algae blooms primarily occurred in the stagnation regions. This phenomenon indicates that water residence time can influence algal growth significantly. A longer water residence time was associated with higher algal growth. Two conclusions were drawn from several simulations: reducing the nutrients inflow had little effect on algal blooms in Dianshan Lake; however,increasing the discharge into Dianshan Lake could change the flow field characteristic and narrow the range of stagnation regions,resulting in inhibition of algal aggregation and propagation and a subsequent reduction in areas of high concentration algae.
基金Supported by the National Science and Technology Infrastructure Program of China (No. 2006BAJ08B02)Students Innovation Training Program of Tongji University
文摘The correlation between water quality parameters and hyper-spectral reflectance is studied with models established for each parameter and applied in Dianshan Lake, in the upstream of the Huangpu River running through Shanghai, China. Models are for dissolved oxygen (DO in mg/L): R720/R680 = 20.362×(R720/R680)2?31.438×(R720/R680)+19.156; for turbidity (NTU): R*714.5 = 206.07× (R*714.5)2?582.5×R*714.5 + 423.24; and for total phosphorus (TP in mg/L): R*509.5 = 16.661× (R*509.5)2?32.646×R*509.5+16.116. The R2 values are 0.770 8, 0.660 4 and 0.738 7, respectively, showing strong positive relationships. The models were then applied to assess water quality of different times. Results are quite satisfactory for some samples.
基金funded jointly by the National Natural Science Foundation of China(Nos.41273128 and 40873066)the Shanghai Education Committee(12YZ017)
文摘Shallow fresh water bodies in peat areas could be an important contributor to greenhouse gases in the atmosphere.In this study,the partial pressure of CO2 in the surface water of the Dianshan Lake was investigated insitu in August 2011.The average pCO2 in the study area was 2300μatm and fluctuated within the range of 989–5000μatm.pCO2 showed a reverse trend to the variations of pH and DO in the surface water of the Dianshan Lake.The water to air diffusion flux of CO2 of the upstream,middle lake and downstream were respectively 63,33 and 14mmol/m2/d.On average,the diffusion flux of CO2 of the whole lake was 31 mmol/m2/d.Consequently,our results show that during the sampling season,the Dianshan Lake appears to be a great source of CO2.It is also demonstrated that respiration could be the dominant biochemical reaction in the Dianshan Lake in summer.