Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtua...Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtual inertia for frequency support,but the larger inertia would worsen the synchronization stability,referring to keeping synchronization with the grid during voltage dips.Thus,this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips.It is revealed that the loss of synchronization(LOS)of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists.In order to enhance synchronization stability during voltage dips,the transient damping is proposed,which is generated by the frequency deviation in active power loop.Additionally,the proposed method can realize seamless switching between normal state and grid fault.Moreover,detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips.Finally,the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method.展开更多
To investigate the interaction of dusty plasma with magnetized plasmas at divertor plasma simulator,radial profiles of plasma density(ne)and electron temperature were measured in terms of plasma discharge currents and...To investigate the interaction of dusty plasma with magnetized plasmas at divertor plasma simulator,radial profiles of plasma density(ne)and electron temperature were measured in terms of plasma discharge currents and magnetic flux intensity by using a fast scanning probes system with triple tips.Dusty plasma with dusts(a generation rate of 3μg s-1 and a size of 1–10μm)was produced via interactions between a high-power laser beam and a full tungsten target.As ne increases,the scale of the effects of dusty plasma injection on magnetized plasmas was decreased.Also,the duration of transient fluctuation was reduced.For numerical estimation of plasma density perturbation due to dusty plasma injection,the result was 10%at a core region of the magnetized plasma with ne of(2–5)×10^11 cm^-3 at steady state condition.展开更多
The correlated spectroscopy revamped by asymmetric Z-gradient echo detection (CRAZED) sequence is modified to investigate intermolecular double-quantum coherence nuclear magnetic resonance signal dips in highly pola...The correlated spectroscopy revamped by asymmetric Z-gradient echo detection (CRAZED) sequence is modified to investigate intermolecular double-quantum coherence nuclear magnetic resonance signal dips in highly polarized spin systems. It is found that the occurrence of intermolecular double-quantum coherence signal dips is related to sample geometry, field inhomogeneity and dipolar correlation distance. If the field inhomogeneity is refocused, the signal dip occurs at a fixed position whenever the dipolar correlation distance approaches the sample dimension. However, the position is shifted when the field inhomogeneity exists. Experiments and simulations are performed to validate our theoretic analysis. These signal features may offer a unique way to investigate porous structures and may find applications in biomedicine and material science.展开更多
Voltage dip is one of the detrimental power quality problems that can lead to huge financial losses in industries. Its economic impact is not only associated with the quality of the supply but also with sensitivity of...Voltage dip is one of the detrimental power quality problems that can lead to huge financial losses in industries. Its economic impact is not only associated with the quality of the supply but also with sensitivity of electronic controls and equipment of the industry which are susceptible to voltage dips. Mitigating solutions are available but the choice depends on the careful assessment of the economic impact of voltage dips and economic gains of solutions. This paper presents an approach for estimating the economic cost of voltage dips based on sensitivity analysis. The voltage-tolerance curves of the sensitive equipment are obtained from experimental tests under different conditions. From the behavior and interaction of process equipment, different failure modes and economic sensitivity density are determined for different types of voltage dips. Voltage events monitored in the MV-network for several years are assessed to determine the frequency and severity of voltage dips at the customer terminal. The economic values of equipment and processes are assessed to get insight into alternative solutions with more rewarding measures. Then, cost-benefit analysis is performed to compare the economic gains of solutions protecting equipment or processes showing more rewarding economic values.展开更多
文摘Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtual inertia for frequency support,but the larger inertia would worsen the synchronization stability,referring to keeping synchronization with the grid during voltage dips.Thus,this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips.It is revealed that the loss of synchronization(LOS)of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists.In order to enhance synchronization stability during voltage dips,the transient damping is proposed,which is generated by the frequency deviation in active power loop.Additionally,the proposed method can realize seamless switching between normal state and grid fault.Moreover,detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips.Finally,the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method.
基金National R&D Program through the Nation Research Foundation of Korea(NRF)funded by the Ministry of Education(2017R1D1A1B03033076)National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(2019M1A7A1A03088471).
文摘To investigate the interaction of dusty plasma with magnetized plasmas at divertor plasma simulator,radial profiles of plasma density(ne)and electron temperature were measured in terms of plasma discharge currents and magnetic flux intensity by using a fast scanning probes system with triple tips.Dusty plasma with dusts(a generation rate of 3μg s-1 and a size of 1–10μm)was produced via interactions between a high-power laser beam and a full tungsten target.As ne increases,the scale of the effects of dusty plasma injection on magnetized plasmas was decreased.Also,the duration of transient fluctuation was reduced.For numerical estimation of plasma density perturbation due to dusty plasma injection,the result was 10%at a core region of the magnetized plasma with ne of(2–5)×10^11 cm^-3 at steady state condition.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10875101 and 11074209)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090121110030)
文摘The correlated spectroscopy revamped by asymmetric Z-gradient echo detection (CRAZED) sequence is modified to investigate intermolecular double-quantum coherence nuclear magnetic resonance signal dips in highly polarized spin systems. It is found that the occurrence of intermolecular double-quantum coherence signal dips is related to sample geometry, field inhomogeneity and dipolar correlation distance. If the field inhomogeneity is refocused, the signal dip occurs at a fixed position whenever the dipolar correlation distance approaches the sample dimension. However, the position is shifted when the field inhomogeneity exists. Experiments and simulations are performed to validate our theoretic analysis. These signal features may offer a unique way to investigate porous structures and may find applications in biomedicine and material science.
文摘Voltage dip is one of the detrimental power quality problems that can lead to huge financial losses in industries. Its economic impact is not only associated with the quality of the supply but also with sensitivity of electronic controls and equipment of the industry which are susceptible to voltage dips. Mitigating solutions are available but the choice depends on the careful assessment of the economic impact of voltage dips and economic gains of solutions. This paper presents an approach for estimating the economic cost of voltage dips based on sensitivity analysis. The voltage-tolerance curves of the sensitive equipment are obtained from experimental tests under different conditions. From the behavior and interaction of process equipment, different failure modes and economic sensitivity density are determined for different types of voltage dips. Voltage events monitored in the MV-network for several years are assessed to determine the frequency and severity of voltage dips at the customer terminal. The economic values of equipment and processes are assessed to get insight into alternative solutions with more rewarding measures. Then, cost-benefit analysis is performed to compare the economic gains of solutions protecting equipment or processes showing more rewarding economic values.