Camera calibration is a critical process in photogrammetry and a necessary step to acquire 3D information from a 2D image. In this paper, a flexible approach for CCD camera calibration using 2D direct linear transform...Camera calibration is a critical process in photogrammetry and a necessary step to acquire 3D information from a 2D image. In this paper, a flexible approach for CCD camera calibration using 2D direct linear transformation (DLT) and bundle adjustment is proposed. The proposed approach assumes that the camera interior orientation elements are known, and addresses a new closed form solution in planar object space based on homogenous coordinate representation and matrix factorization. Homogeneous coordinate representation offers a direct matrix correspondence between the parameters of the 2D DLT and the collinearity equation. The matrix factorization starts by recovering the elements of the rotation matrix and then solving for the camera position with the collinearity equation. Camera calibration with high precision is addressed by bundle adjustment using the initial values of the camera orientation elements. The results show that the calibration precision of principal point and focal length is about 0.2 and 0.3 pixels respectivelv, which can meet the requirements of close-range photogrammetry with high accuracy.展开更多
Chang'e-3 was China's first soft-landing lunar probe that achieved a successful roving exploration on the Moon. A topography camera functioning as the lander's “eye” was one of the main scientific payloads instal...Chang'e-3 was China's first soft-landing lunar probe that achieved a successful roving exploration on the Moon. A topography camera functioning as the lander's “eye” was one of the main scientific payloads installed on the lander. It was composed of a camera probe, an electronic component that performed image compression, and a cable assembly. Its exploration mission was to obtain optical images of the lunar topography in the landing zone for investigation and research. It also observed rover movement on the lunar surface and finished taking pictures of the lander and rover. After starting up successfully, the topography camera obtained static images and video of rover movement from different directions, 360?panoramic pictures of the lunar surface around the lander from multiple angles, and numerous pictures of the Earth. All images of the rover, lunar surface, and the Earth were clear, and those of the Chinese national flag were recorded in true color. This paper describes the exploration mission, system design, working principle, quality assessment of image compression, and color correction of the topography camera. Finally, test results from the lunar surface are provided to serve as a reference for scientific data processing and application.展开更多
This paper retrieves the bidirectional polarization distribution functions (BPDFs) of the distinct urban cover in the Pearl River Delta (PRD) region employing the high spatial resolution of multi-angle polarized measu...This paper retrieves the bidirectional polarization distribution functions (BPDFs) of the distinct urban cover in the Pearl River Delta (PRD) region employing the high spatial resolution of multi-angle polarized measurements made by the Directional Polarimetric Camera (DPC).The BPDF operational products of MICROPOL and POLDER measurements were used to validate the BPDF products of the DPC,with the results demonstrating that the BPDF product of the DPC measurements accurately expresses the surface polarized reflectance.The polarized reflectance of distinct surface types in the PRD region was studied using the DPC measurements.The results demonstrate that the polarized reflectances of different surface types differ and decrease as the normalized difference vegetation index increases.The polarized reflectance of a distinct surface type in the PRD region decreases with increasing scattering angle.The basic theory of investigating surface properties using multi-angle polarized measurements is proposed.展开更多
A method based on the XYZLMS interim connection space is proposed to accurately acquire the multi-spectral images by digital still cameras. The XYZLMS values are firstly predicted from RGB values by polynomial model w...A method based on the XYZLMS interim connection space is proposed to accurately acquire the multi-spectral images by digital still cameras. The XYZLMS values are firstly predicted from RGB values by polynomial model with local training samples and then spectral reflectance is constructed from XYZLMS values by pseudo-inverse method. An experiment is implemented for multi-spectral image acquisition based on a commercial digital still camera. The results indicate that multi-spectral images can be accurately acquired except the very dark colors.展开更多
针对摄像机位姿问题提出了一种加权线性方法,其关键思想是通过加权使经典线性方法的代数误差近似于重投影算法的几何误差,从而达到接近于最大似然估计(Levenberg-Marquardt简称ML)的精度.通过对经典DLT(direct linear transformation)...针对摄像机位姿问题提出了一种加权线性方法,其关键思想是通过加权使经典线性方法的代数误差近似于重投影算法的几何误差,从而达到接近于最大似然估计(Levenberg-Marquardt简称ML)的精度.通过对经典DLT(direct linear transformation)算法和EPnP算法使用加权的方法,给出了加权DLT算法(WDLT)和加权EPnP算法(WEPnP).大量模拟数据和真实图像实验结果均表明,WDLT和WEPnP算法不仅能提高DLT和EPnP算法的精度,而且在深度较小的情况下优于Lu的非线性算法.展开更多
基金Project 2005A030 supported by the Youth Science and Research Foundation from China University of Mining & Technology
文摘Camera calibration is a critical process in photogrammetry and a necessary step to acquire 3D information from a 2D image. In this paper, a flexible approach for CCD camera calibration using 2D direct linear transformation (DLT) and bundle adjustment is proposed. The proposed approach assumes that the camera interior orientation elements are known, and addresses a new closed form solution in planar object space based on homogenous coordinate representation and matrix factorization. Homogeneous coordinate representation offers a direct matrix correspondence between the parameters of the 2D DLT and the collinearity equation. The matrix factorization starts by recovering the elements of the rotation matrix and then solving for the camera position with the collinearity equation. Camera calibration with high precision is addressed by bundle adjustment using the initial values of the camera orientation elements. The results show that the calibration precision of principal point and focal length is about 0.2 and 0.3 pixels respectivelv, which can meet the requirements of close-range photogrammetry with high accuracy.
基金the special funds of Phase 2 of the Chinese Lunar Exploration program for supporting this workthe strong support from the leadership and colleagues in the Moon and Deep Space Exploration Ground Application System Department of the Chinese Academy of Sciences for help in developing the camera+1 种基金the strong support and assistance from the Moon and Deep Space Exploration Ground Application System Department of the Chinese Academy of Sciences for ground test validation and data preprocessingthe strong support and help from the Overall Payload Space Center of the Chinese Academy of Sciences in camera development and joint tests
文摘Chang'e-3 was China's first soft-landing lunar probe that achieved a successful roving exploration on the Moon. A topography camera functioning as the lander's “eye” was one of the main scientific payloads installed on the lander. It was composed of a camera probe, an electronic component that performed image compression, and a cable assembly. Its exploration mission was to obtain optical images of the lunar topography in the landing zone for investigation and research. It also observed rover movement on the lunar surface and finished taking pictures of the lander and rover. After starting up successfully, the topography camera obtained static images and video of rover movement from different directions, 360?panoramic pictures of the lunar surface around the lander from multiple angles, and numerous pictures of the Earth. All images of the rover, lunar surface, and the Earth were clear, and those of the Chinese national flag were recorded in true color. This paper describes the exploration mission, system design, working principle, quality assessment of image compression, and color correction of the topography camera. Finally, test results from the lunar surface are provided to serve as a reference for scientific data processing and application.
基金supported by the National Basic Research Program of China(Grant No.2010CB950800)the National Natural Science Foundation of China(Grant No.41001207)the Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering(Grant No.KZCX2-EW-QN311)
文摘This paper retrieves the bidirectional polarization distribution functions (BPDFs) of the distinct urban cover in the Pearl River Delta (PRD) region employing the high spatial resolution of multi-angle polarized measurements made by the Directional Polarimetric Camera (DPC).The BPDF operational products of MICROPOL and POLDER measurements were used to validate the BPDF products of the DPC,with the results demonstrating that the BPDF product of the DPC measurements accurately expresses the surface polarized reflectance.The polarized reflectance of distinct surface types in the PRD region was studied using the DPC measurements.The results demonstrate that the polarized reflectances of different surface types differ and decrease as the normalized difference vegetation index increases.The polarized reflectance of a distinct surface type in the PRD region decreases with increasing scattering angle.The basic theory of investigating surface properties using multi-angle polarized measurements is proposed.
基金supported by the National Natural Science Foundation of China(No.61205168)the National Science and Technology Support Program of China(No.2012BAH91F03)
文摘A method based on the XYZLMS interim connection space is proposed to accurately acquire the multi-spectral images by digital still cameras. The XYZLMS values are firstly predicted from RGB values by polynomial model with local training samples and then spectral reflectance is constructed from XYZLMS values by pseudo-inverse method. An experiment is implemented for multi-spectral image acquisition based on a commercial digital still camera. The results indicate that multi-spectral images can be accurately acquired except the very dark colors.
文摘针对摄像机位姿问题提出了一种加权线性方法,其关键思想是通过加权使经典线性方法的代数误差近似于重投影算法的几何误差,从而达到接近于最大似然估计(Levenberg-Marquardt简称ML)的精度.通过对经典DLT(direct linear transformation)算法和EPnP算法使用加权的方法,给出了加权DLT算法(WDLT)和加权EPnP算法(WEPnP).大量模拟数据和真实图像实验结果均表明,WDLT和WEPnP算法不仅能提高DLT和EPnP算法的精度,而且在深度较小的情况下优于Lu的非线性算法.