The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)conten...The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)content on the PDBD morphology, and revealed the possible underlying mechanism of the U-shaped formation. First, the morphological evolution under different conditions was recorded. A unique U-shaped region appears in the middle edge region when the gap is larger than 2 mm, while the entire discharge region remains columnar under a 2 mm gap in He PDBD. The width of the discharge and the U-shaped region increase with the increase in voltage, and decrease with the increase of the gap and O_(2)content. To explain this phenomenon,a two-dimensional symmetric model was developed to simulate the spatiotemporal evolution of different species and calculate the electric thrust. The discharge morphology evolution directly corresponds to the excited-state atomic reduction process. The electric thrust on the charged particles mainly determines the reaction region and strongly influences the U-shaped formation.When the gap is less than 2 mm, the electric thrust is homogeneous throughout the entire region,resulting in a columnar shape. However, when the gap is larger than 2 mm or O_(2)is added, the electric thrust in the edge region becomes greater than that in the middle, leading to the U-shaped formation. Furthermore, in He PDBD, the charged particles generating electric thrust are mainly electrons and helium ions, while in He/O_(2)PDBD those that generate electric thrust at the outer edge of the electrode surface are mainly various oxygen-containing ions.展开更多
Sustainable nitrogen fixation driven by renewable energy sources under mild conditions has been widely sought to replace the industrial Haber-Bosch process.The fixation of nitrogen in the form of NO_(x)^(-)and NH_4^(+...Sustainable nitrogen fixation driven by renewable energy sources under mild conditions has been widely sought to replace the industrial Haber-Bosch process.The fixation of nitrogen in the form of NO_(x)^(-)and NH_4^(+)into aqueous solutions using electricity-driven gas-liquid discharge plasma is considered a promising prescription.In this paper,a scalable bubble discharge excited by nanosecond pulse power is employed for nitrogen fixation in the liquid phase.The nitrogen fixation performance and the mechanisms are analyzed by varying the power supply parameters,working gas flow rate and composition.The results show that an increase in voltage and frequency can result in an enhanced NO_(3)^(-)yield.Increases in the gas flow rate can result in inadequate activation of the working gas,which together with more inefficient mass transfer efficiencies can reduce the yield.The addition of O_(2) effectively elevates NO_(3)^(-)production while simultaneously inhibiting NH_4^(+) production.The addition of H_(2)O vapor increases the production of OH and H,thereby promoting the generation of reactive nitrogen and enhancing the yield of nitrogen fixation.However,the excessive addition of O_(2) and H_(2)O vapor results in negative effect on the yield of nitrogen fixation,due to the significant weakening of the discharge intensity.The optimal nitrogen fixation yield was up to 16.5 μmol/min,while the optimal energy consumption was approximately 21.3 MJ/mol in this study.Finally,the mechanism related to nitrogen fixation is discussed through the optical emission spectral(OES) information in conjunction with the simulation of energy loss paths in the plasma by BOLSIG+.The work advances knowledge of the effect of parameter variations on nitrogen fixation by gas-liquid discharge for higher yield and energy production.展开更多
The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications ...The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications of gas discharge plasmas. In this study, a self-consistent two-dimensional nonequilibrium fluid model coupled with an external circuit model is established to reveal the mechanisms related to the discharge modes, including the normal glow, abnormal glow,arc, and glow-to-arc transition modes, with an atmospheric-pressure direct-current(DC) argon discharge as a model plasma system. The modeling results show that, under different discharge modes, the most significant difference between the preceding four discharge modes lies in the current and energy transfer processes on the cathode side. On one hand, the current to the cathode surface is mainly delivered by the ions coming from the plasma column under the glow discharge mode due to the low temperature of the solid cathode, whereas the thermionic and secondary electrons emitted from the hot cathode surface play a very important role under the arc mode with a higher cathode surface temperature and higher ion flux toward the cathode. On the other hand, the energy transfer channel on the cathode side changes from mainly heating the solid cathode under the glow mode to simultaneously heating both the solid cathode and plasma column under the arc mode with an increase in the discharge current. Consequently, the power density in the cathode sheath(P_c) was used as a key parameter for judging different discharge modes, and the range of(0.28–1.2) × 10^(12) W m^(-3) was determined as a critical window of P_c corresponding to the glow-to-arc-mode transition for the atmospheric-pressure DC argon discharge, which was also verified by comparison with the experimental results in this study and the data in the previous literature.展开更多
Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physi...Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model.展开更多
Deep-sea mining may disturb the water column environment,including the surface water and deep-sea,and these disturbances should be carefully treated.Remote sensing provides high-resolution and accurate long-term obser...Deep-sea mining may disturb the water column environment,including the surface water and deep-sea,and these disturbances should be carefully treated.Remote sensing provides high-resolution and accurate long-term observations in the area around deep-sea mining.Discharge from mining ships can be identified within few days from satellite observations based on changes in reflectance.A pioneer twomonth experimental deep-sea mining cruise was conducted by The Metal Company in the eastern Pacific Ocean from September 15 to November 17,2022.A report from Greenpeace indicated incidents of surface discharge and leakage during this mining experiment.In this study,satellite observations captured a clear signal over the surface water from September 24 to October 28,indicating the location with discharged water from the mothership.The number of pixels where the potential discharged water was identified in the satellite imagery ranged from 4 to 13.The discharged water was transported by the combined effects of wind and currents,locating continuously to the downwind side of the mothership's mooring location.Remote sensing provides a timely and accurate monitoring system for tracking water discharge during deep-sea mining.展开更多
In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open ...In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.展开更多
Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DB...Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity.In this work,the uniformity and discharge characteristics of the nanosecond(ns)pulsed DBD with dielectric barrier layers made of alumina,quartz glass,polycarbonate(PC),and polypropylene(PP)are investigated via discharge image observation,voltage-current waveform measurement and optical emission spectral diagnosis.Through analyzing discharge image by gray value standard deviation method,the discharge uniformity is quantitatively calculated.The effects of the space electric field intensity,the electron density(Ne),and the space reactive species on the uniformity are studied with quantifying the gap voltage Ug and the discharge current Ig,analyzing the recorded optical emission spectra,and simulating the temporal distribution of Ne with a one-dimensional fluid model.It is found that as the relative permittivity of the dielectric materials increases,the space electric field intensity is enhanced,which results in a higher Ne and electron temperature(Te).Therefore,an appropriate value of space electric field intensity can promote electron avalanches,resulting in uniform and stable plasma by the merging of electron avalanches.However,an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field,which reduce the discharge uniformity.The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity.The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity,and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform,stable,and reactive plasma sources.展开更多
In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the...In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.展开更多
It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel...It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761.展开更多
SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the a...SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the atmosphere,it is not easily degradable and is of great potential harm to the environment.Based on pulsed dielectric barrier discharge plasma technology,the effects of H_(2)O and 0_(2) on the degradation of SF_(6) were studied.Studies have shown that H_(2)O can effectively promote the decomposition of SF_(6) and improve its degradation rate and energy efficiency of degradation.Under the action of a pulse input voltage and input frequency of 15 kV and 15 kHz,respectively,when H_(2)O is added alone the effect of 1% H_(2)O is the best,and the rate and energy efficiency of degradation of SF_(6) reach their maximum values,which are 91.9% and 8.25 g kWh^(-1),respectively.The synergistic effect of H_(2)O and O_(2) on the degradation of SF_(6) was similar to that of H_(2)O.When the concentration of H_(2)O and O_(2) was 1%,the system obtained the best rate and energy efficiency of degradation,namely 89.7% and 8.05 g kWh~(-1),respectively.At the same time,different external gases exhibit different capabilities to regulate decomposition products.The addition of H_(2)O can effectively improve the selectivity of S0_(2).Under the synergistic effect of H_(2)O and O_(2),with increase in O_(2) concentration the degradation products gradually transformed into SO_(2)F_(2).From the perspective of harmless treatment of the degradation products of SF_(6),the addition of O_(2) during the SF_(6) degradation process should be avoided.展开更多
The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a par...The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.展开更多
Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of...Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of the current,the voltage,and the instantaneous images of the plasma columns.The GA in the flame has a thicker and more diffusive plasma column,and it is more frequently ignited at a smaller breakdown voltage than that in the air.The GA extension velocity and the gliding velocity in the flame are larger than those in the air.The electrode voltage drop of the GA discharge in the flame is about 160 V,whereas that in the air is about 220 V.Compared with the GA in the air,the different features of the GA in the flame can be explained by high-temperature,weakly ionized,and species-abundant environment that are generated by the premixed CH_(4)/air flame.Effects of the gliding arc discharge on the premixed flames were demonstrated using planar laser-induced fluorescence of hydroxyl radicals(OH)and formaldehyde(CH_(2)O).OH and CH_(2)O can be formed in the CH_(4)/air mixture in the presence of the GA due to kinetic effects,and the increase of OH and CH_(2)O shows the great potential of the GA for combustion enhancement.展开更多
Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less com...Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less complex source of discharge information.This study harnesses machine learning to decode these signals.It establishes links between electro-acoustic signals and gas discharge parameters,such as power and distance,thus streamlining the prediction process.By building a spark discharge platform to collect electro-acoustic signals and implementing a series of acoustic signal processing techniques,the Mel-Frequency Cepstral Coefficients(MFCCs)of the acoustic signals are extracted to construct the predictors.Three machine learning models(Linear Regression,k-Nearest Neighbors,and Random Forest)are introduced and applied to the predictors to achieve real-time rapid diagnostic measurement of typical spark discharge power and discharge distance.All models display impressive performance in prediction precision and fitting abilities.Among them,the k-Nearest Neighbors model shows the best performance on discharge power prediction with the lowest mean square error(MSE=0.00571)and the highest R-squared value(R^(2)=0.93877).The experimental results show that the relationship between the electro-acoustic signal and the gas discharge power and distance can be effectively constructed based on the machine learning algorithm,which provides a new idea and basis for the online monitoring and real-time diagnosis of plasma parameters.展开更多
The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with ...The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.展开更多
The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mod...The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mode transition, discharge image, spatial profiles of plasma density and electron temperature are diagnosed using a Langmuir probe, a Nikon D90 camera,an intensified charge-coupled device camera and an optical emission spectrometer, respectively.The results demonstrated that the blue core phenomenon appeared in the upstream region of the discharge tube at a fixed magnetic field under both helical antennas. However, it is more likely to appear in a right-handed helical antenna, in which the plasma density and ionization rate of the helicon plasma are higher. The spatial profiles of the plasma density and electron temperature are also different in both axial and radial directions for these two kinds of helical antenna. The wavelength calculated based on the dispersion relation of the bounded whistler wave is consistent with the order of magnitude of plasma length. It is proved that the helicon plasma is part of the wave mode discharge mechanism.展开更多
Bipolar membranes(BPMs)exhibit the unique capability to regulate the operating environment of electrochemical system through the water dissociation-combination processes.However,the industrial utilization of BPMs is l...Bipolar membranes(BPMs)exhibit the unique capability to regulate the operating environment of electrochemical system through the water dissociation-combination processes.However,the industrial utilization of BPMs is limited by instability and serious energy consumption.The current-induced membrane discharge(CIMD)at high-current conditions has a negative influence on the performance of anion-exchange membranes,but the underlying ion transport mechanisms in the BPMs remain unclear.Here,the CIMD-coupled Poisson-Nernst-Planck(PNP)equations are used to explore the ion transport mechanisms in the BPMs for both reverse bias and forward bias at neutral and acid-base conditions.It is demonstrated that the CIMD effect in the reverse-bias mode can be suppressed by enhancing the diffusive transport of salt counter-ions(Na^(+)and Cl^(−))into the BPMs,and that in the forward-bias mode with acid-base electrolytes can be suppressed by matching the transport rate of water counter-ions(H_(3)O^(+)and OH^(−)).Suppressing the CIMD can promote the water dissociation in the reverse-bias mode,as well as overcome the plateau of limiting current density and reduce the interfacial blockage of salt co-ions(Cl^(−))in the anion-exchange layer in the forward-bias mode with acid-base electrolytes.Our work highlights the importance of regulating ion crossover transport on improving the performance of BPMs.展开更多
This work presents an analysis of the research conducted in many countries in recent years on the so-called Gatchina discharge.The findings indicate that the Gatchina discharge exhibits the majority of the characteris...This work presents an analysis of the research conducted in many countries in recent years on the so-called Gatchina discharge.The findings indicate that the Gatchina discharge exhibits the majority of the characteristics of natural ball lightning,making it the most effective method for reproducing and studying this phenomenon.To a large extent,our new results are based on experiments performed for the first time to visualize dust particles arising in an erosive emission,as well as the formation of vortex flows.These experiments make it possible to explain the ability of the Gatchina discharge to maintain its shape for a long time in the afterglow.展开更多
Silicon is considered to be one of the most promising anode materials for lithium-ion batteries(LIBs),but its application is limited by the large volume expansion during alloying and dealloying.The constructing of a h...Silicon is considered to be one of the most promising anode materials for lithium-ion batteries(LIBs),but its application is limited by the large volume expansion during alloying and dealloying.The constructing of a high-performance solid electrolyte interface(SEI) film on the surface of the anode material is considered to be one of the effective strategies to mitigate volume expansion of silicon-based anode.In this study,an intermittent discharge strategy which helps to improve the utilization efficiency of electrolyte additive of lithium difluorobisoxalate phosphate(LiDFBOP) is proposed to construct a highly conductive and dense SEI film.The results of electrochemical and physical characterization and theoretical calculations show that the intermittent discharge in the voltage range from open circuit voltage(OCV) to 1.8 V facilitates the diffusion of the soluble products,creates the conditions for the repeated direct contact between Si@C anode and LiDFBOP additive,increases the decomposition of LiDFBOP additive,and thus produces a uniform,dense and inorganics-rich(Li_(2)C_(2)O_(4),LiF and Li_(x)PO_yF_z) SEI film.Subsequently,this SEI film helps to ensure the even intercalation/de-intercalation of Li^(+) in the SEI film and the homogeneous diffusion of Li^(+) inside the Si particles,decreasing the internal stresses and anisotropic phase transitions,maintaining the integrity of Si particles,inhibiting the volume expansion and thu s improving the electrochemical performance of cells.This study not only improves the utilization efficiency of expensive additives through a simply and low-cost method,but also enriches the strategy to improve the electrochemical performance of Si@C anode through interfacial engineering.展开更多
To optimize the design of plasma injectors,the influence of different external electrodes on plasma-assisted flame stabilization was assessed by using a nonequilibrium plasma injector flame control setup.The electrica...To optimize the design of plasma injectors,the influence of different external electrodes on plasma-assisted flame stabilization was assessed by using a nonequilibrium plasma injector flame control setup.The electrical characteristics of the injector,flame structure parameters,flame intensity,discharge power,and cost-to-effectiveness ratio under different external electrodes(four mesh electrodes and one copper foil electrode)were analyzed using electrical and optical methods.The results show that reducing the mesh size of the external electrode leads to a decrease in breakdown voltage.Compared with a ceramic dielectric barrier-based injector,an injector with a quartz dielectric barrier produces a higher breakdown voltage under the same conditions.For the same actuation voltage,the discharge current increases as the mesh size of the external electrode decreases,and combustion is enhanced by the discharge plasma;therefore,it is better to adopt a smaller mesh hole size to realize good flame stabilization under a lower actuation voltage.However,under the studied working conditions,reducing the mesh hole size of the external electrode increases the cost-to-effectiveness ratio of plasma injector-based flame stabilization.Thus,considering the cost-to-effectiveness ratio and the weight of the injector,an external electrode with a larger mesh hole size should be chosen,which contradicts the above rule.展开更多
Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parame...Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parameters. In this study, electrospray experiments were conducted on the ionic liquid EMI-BF4. The observations revealed that the operating modes of the ionic liquid depend on the voltage polarity at high voltages. Additionally, a correspondence between the operating mode of ILE and the current signal in the circuit was established. The shape of the liquid cone formed at the needle tip bore a striking resemblance to the plume of corona discharge, suggesting that the motion trajectory of electrons influenced the curvature of the liquid cone. Steamer theory provided a clear explanation for the change in curvature as the voltage increased.展开更多
基金financial support from the Interdisciplinary Fund of the Wuhan National High Magnetic Field Center (No. WHMFC202101)。
文摘The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)content on the PDBD morphology, and revealed the possible underlying mechanism of the U-shaped formation. First, the morphological evolution under different conditions was recorded. A unique U-shaped region appears in the middle edge region when the gap is larger than 2 mm, while the entire discharge region remains columnar under a 2 mm gap in He PDBD. The width of the discharge and the U-shaped region increase with the increase in voltage, and decrease with the increase of the gap and O_(2)content. To explain this phenomenon,a two-dimensional symmetric model was developed to simulate the spatiotemporal evolution of different species and calculate the electric thrust. The discharge morphology evolution directly corresponds to the excited-state atomic reduction process. The electric thrust on the charged particles mainly determines the reaction region and strongly influences the U-shaped formation.When the gap is less than 2 mm, the electric thrust is homogeneous throughout the entire region,resulting in a columnar shape. However, when the gap is larger than 2 mm or O_(2)is added, the electric thrust in the edge region becomes greater than that in the middle, leading to the U-shaped formation. Furthermore, in He PDBD, the charged particles generating electric thrust are mainly electrons and helium ions, while in He/O_(2)PDBD those that generate electric thrust at the outer edge of the electrode surface are mainly various oxygen-containing ions.
基金National Natural Science Foundation of China (Grant Nos. 52277151 and 51907088)。
文摘Sustainable nitrogen fixation driven by renewable energy sources under mild conditions has been widely sought to replace the industrial Haber-Bosch process.The fixation of nitrogen in the form of NO_(x)^(-)and NH_4^(+)into aqueous solutions using electricity-driven gas-liquid discharge plasma is considered a promising prescription.In this paper,a scalable bubble discharge excited by nanosecond pulse power is employed for nitrogen fixation in the liquid phase.The nitrogen fixation performance and the mechanisms are analyzed by varying the power supply parameters,working gas flow rate and composition.The results show that an increase in voltage and frequency can result in an enhanced NO_(3)^(-)yield.Increases in the gas flow rate can result in inadequate activation of the working gas,which together with more inefficient mass transfer efficiencies can reduce the yield.The addition of O_(2) effectively elevates NO_(3)^(-)production while simultaneously inhibiting NH_4^(+) production.The addition of H_(2)O vapor increases the production of OH and H,thereby promoting the generation of reactive nitrogen and enhancing the yield of nitrogen fixation.However,the excessive addition of O_(2) and H_(2)O vapor results in negative effect on the yield of nitrogen fixation,due to the significant weakening of the discharge intensity.The optimal nitrogen fixation yield was up to 16.5 μmol/min,while the optimal energy consumption was approximately 21.3 MJ/mol in this study.Finally,the mechanism related to nitrogen fixation is discussed through the optical emission spectral(OES) information in conjunction with the simulation of energy loss paths in the plasma by BOLSIG+.The work advances knowledge of the effect of parameter variations on nitrogen fixation by gas-liquid discharge for higher yield and energy production.
基金supported by National Natural Science Foundation of China (No. 12075132)。
文摘The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications of gas discharge plasmas. In this study, a self-consistent two-dimensional nonequilibrium fluid model coupled with an external circuit model is established to reveal the mechanisms related to the discharge modes, including the normal glow, abnormal glow,arc, and glow-to-arc transition modes, with an atmospheric-pressure direct-current(DC) argon discharge as a model plasma system. The modeling results show that, under different discharge modes, the most significant difference between the preceding four discharge modes lies in the current and energy transfer processes on the cathode side. On one hand, the current to the cathode surface is mainly delivered by the ions coming from the plasma column under the glow discharge mode due to the low temperature of the solid cathode, whereas the thermionic and secondary electrons emitted from the hot cathode surface play a very important role under the arc mode with a higher cathode surface temperature and higher ion flux toward the cathode. On the other hand, the energy transfer channel on the cathode side changes from mainly heating the solid cathode under the glow mode to simultaneously heating both the solid cathode and plasma column under the arc mode with an increase in the discharge current. Consequently, the power density in the cathode sheath(P_c) was used as a key parameter for judging different discharge modes, and the range of(0.28–1.2) × 10^(12) W m^(-3) was determined as a critical window of P_c corresponding to the glow-to-arc-mode transition for the atmospheric-pressure DC argon discharge, which was also verified by comparison with the experimental results in this study and the data in the previous literature.
基金support from the Department of Science and Technology (DST),Government of India (Grant No.ECR/DST/2017/000918)the Indian Institute of Technology Ropar for providing financial support under an ISIRD grant (F.No.9-282/2017IITRPR/705).
文摘Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model.
基金Supported by the National Key Research and Development Program of China(No.2023YFC2811800)the National Natural Science Foundation of China(Nos.42371380,42071387)。
文摘Deep-sea mining may disturb the water column environment,including the surface water and deep-sea,and these disturbances should be carefully treated.Remote sensing provides high-resolution and accurate long-term observations in the area around deep-sea mining.Discharge from mining ships can be identified within few days from satellite observations based on changes in reflectance.A pioneer twomonth experimental deep-sea mining cruise was conducted by The Metal Company in the eastern Pacific Ocean from September 15 to November 17,2022.A report from Greenpeace indicated incidents of surface discharge and leakage during this mining experiment.In this study,satellite observations captured a clear signal over the surface water from September 24 to October 28,indicating the location with discharged water from the mothership.The number of pixels where the potential discharged water was identified in the satellite imagery ranged from 4 to 13.The discharged water was transported by the combined effects of wind and currents,locating continuously to the downwind side of the mothership's mooring location.Remote sensing provides a timely and accurate monitoring system for tracking water discharge during deep-sea mining.
基金supported by the Fundamental Research Funds for the Central Universities(No.2022YJS094)。
文摘In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.
基金supported by National Natural Science Foundation of China(Nos.52037004 and 52177148)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_1449).
文摘Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity.In this work,the uniformity and discharge characteristics of the nanosecond(ns)pulsed DBD with dielectric barrier layers made of alumina,quartz glass,polycarbonate(PC),and polypropylene(PP)are investigated via discharge image observation,voltage-current waveform measurement and optical emission spectral diagnosis.Through analyzing discharge image by gray value standard deviation method,the discharge uniformity is quantitatively calculated.The effects of the space electric field intensity,the electron density(Ne),and the space reactive species on the uniformity are studied with quantifying the gap voltage Ug and the discharge current Ig,analyzing the recorded optical emission spectra,and simulating the temporal distribution of Ne with a one-dimensional fluid model.It is found that as the relative permittivity of the dielectric materials increases,the space electric field intensity is enhanced,which results in a higher Ne and electron temperature(Te).Therefore,an appropriate value of space electric field intensity can promote electron avalanches,resulting in uniform and stable plasma by the merging of electron avalanches.However,an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field,which reduce the discharge uniformity.The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity.The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity,and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform,stable,and reactive plasma sources.
基金supported by 173 Program of China,and National Natural Science Foundation of China(No.92271116).
文摘In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.
基金provided by the shale gas resource evaluation methods and exploration technology research project of the National Science and Technology Major Project of China(No.2016ZX05034)Graduate Innovative Engineering Funding Project of China University of Petroleum(East China)(No.YCX2021109)。
文摘It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761.
基金supported by Guizhou Province (Ceneral), grant/award number Qian Ke He Zhi Cheng [2022] General 207, National Natural Science Foundation of China (No. 52307170)Natural Science Foundation of Hubei Province, China (No. 2023AFB382)。
文摘SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the atmosphere,it is not easily degradable and is of great potential harm to the environment.Based on pulsed dielectric barrier discharge plasma technology,the effects of H_(2)O and 0_(2) on the degradation of SF_(6) were studied.Studies have shown that H_(2)O can effectively promote the decomposition of SF_(6) and improve its degradation rate and energy efficiency of degradation.Under the action of a pulse input voltage and input frequency of 15 kV and 15 kHz,respectively,when H_(2)O is added alone the effect of 1% H_(2)O is the best,and the rate and energy efficiency of degradation of SF_(6) reach their maximum values,which are 91.9% and 8.25 g kWh^(-1),respectively.The synergistic effect of H_(2)O and O_(2) on the degradation of SF_(6) was similar to that of H_(2)O.When the concentration of H_(2)O and O_(2) was 1%,the system obtained the best rate and energy efficiency of degradation,namely 89.7% and 8.05 g kWh~(-1),respectively.At the same time,different external gases exhibit different capabilities to regulate decomposition products.The addition of H_(2)O can effectively improve the selectivity of S0_(2).Under the synergistic effect of H_(2)O and O_(2),with increase in O_(2) concentration the degradation products gradually transformed into SO_(2)F_(2).From the perspective of harmless treatment of the degradation products of SF_(6),the addition of O_(2) during the SF_(6) degradation process should be avoided.
基金supported by National Natural Science Foundation of China (Nos. 61971345 and 52107174)。
文摘The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.
基金financially supported by National Natural Science Foundation of China(Nos.12172379,12322211,and 11925207)。
文摘Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of the current,the voltage,and the instantaneous images of the plasma columns.The GA in the flame has a thicker and more diffusive plasma column,and it is more frequently ignited at a smaller breakdown voltage than that in the air.The GA extension velocity and the gliding velocity in the flame are larger than those in the air.The electrode voltage drop of the GA discharge in the flame is about 160 V,whereas that in the air is about 220 V.Compared with the GA in the air,the different features of the GA in the flame can be explained by high-temperature,weakly ionized,and species-abundant environment that are generated by the premixed CH_(4)/air flame.Effects of the gliding arc discharge on the premixed flames were demonstrated using planar laser-induced fluorescence of hydroxyl radicals(OH)and formaldehyde(CH_(2)O).OH and CH_(2)O can be formed in the CH_(4)/air mixture in the presence of the GA due to kinetic effects,and the increase of OH and CH_(2)O shows the great potential of the GA for combustion enhancement.
基金partially supported by National Natural Science Foundation of China(No.52377155)the State Key Laboratory of Reliability and Intelligence of Electrical Equipment(No.EERI-KF2021001)Hebei University of Technology。
文摘Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less complex source of discharge information.This study harnesses machine learning to decode these signals.It establishes links between electro-acoustic signals and gas discharge parameters,such as power and distance,thus streamlining the prediction process.By building a spark discharge platform to collect electro-acoustic signals and implementing a series of acoustic signal processing techniques,the Mel-Frequency Cepstral Coefficients(MFCCs)of the acoustic signals are extracted to construct the predictors.Three machine learning models(Linear Regression,k-Nearest Neighbors,and Random Forest)are introduced and applied to the predictors to achieve real-time rapid diagnostic measurement of typical spark discharge power and discharge distance.All models display impressive performance in prediction precision and fitting abilities.Among them,the k-Nearest Neighbors model shows the best performance on discharge power prediction with the lowest mean square error(MSE=0.00571)and the highest R-squared value(R^(2)=0.93877).The experimental results show that the relationship between the electro-acoustic signal and the gas discharge power and distance can be effectively constructed based on the machine learning algorithm,which provides a new idea and basis for the online monitoring and real-time diagnosis of plasma parameters.
基金National Natural Science Foundation of China(61974116)。
文摘The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.
基金supported by the Beijing Municipal Natural Science Foundation (No. 1242015)Discipline Construction of Material Science and Engineering (Nos. 21090122014 and 21090123007)。
文摘The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mode transition, discharge image, spatial profiles of plasma density and electron temperature are diagnosed using a Langmuir probe, a Nikon D90 camera,an intensified charge-coupled device camera and an optical emission spectrometer, respectively.The results demonstrated that the blue core phenomenon appeared in the upstream region of the discharge tube at a fixed magnetic field under both helical antennas. However, it is more likely to appear in a right-handed helical antenna, in which the plasma density and ionization rate of the helicon plasma are higher. The spatial profiles of the plasma density and electron temperature are also different in both axial and radial directions for these two kinds of helical antenna. The wavelength calculated based on the dispersion relation of the bounded whistler wave is consistent with the order of magnitude of plasma length. It is proved that the helicon plasma is part of the wave mode discharge mechanism.
基金sponsored by the National Key R&D Program of China(2022YFB4602101)the Fundamental Research Funds for the Central Universities(2022ZFJH004 and 2024SMECP05)+2 种基金the National Natural Science Foundation of China(22278127 and 22378112)the Shanghai Pilot Program for Basic Research(22T01400100-18)the Postdoctoral Fellowship Program of CPSF(GZC20230801)。
文摘Bipolar membranes(BPMs)exhibit the unique capability to regulate the operating environment of electrochemical system through the water dissociation-combination processes.However,the industrial utilization of BPMs is limited by instability and serious energy consumption.The current-induced membrane discharge(CIMD)at high-current conditions has a negative influence on the performance of anion-exchange membranes,but the underlying ion transport mechanisms in the BPMs remain unclear.Here,the CIMD-coupled Poisson-Nernst-Planck(PNP)equations are used to explore the ion transport mechanisms in the BPMs for both reverse bias and forward bias at neutral and acid-base conditions.It is demonstrated that the CIMD effect in the reverse-bias mode can be suppressed by enhancing the diffusive transport of salt counter-ions(Na^(+)and Cl^(−))into the BPMs,and that in the forward-bias mode with acid-base electrolytes can be suppressed by matching the transport rate of water counter-ions(H_(3)O^(+)and OH^(−)).Suppressing the CIMD can promote the water dissociation in the reverse-bias mode,as well as overcome the plateau of limiting current density and reduce the interfacial blockage of salt co-ions(Cl^(−))in the anion-exchange layer in the forward-bias mode with acid-base electrolytes.Our work highlights the importance of regulating ion crossover transport on improving the performance of BPMs.
基金supported by Province Key R&D Program of Heilongjiang(No.JD22A005)National Natural Science Foundation of China(Nos.12175050 and 12205067)。
文摘This work presents an analysis of the research conducted in many countries in recent years on the so-called Gatchina discharge.The findings indicate that the Gatchina discharge exhibits the majority of the characteristics of natural ball lightning,making it the most effective method for reproducing and studying this phenomenon.To a large extent,our new results are based on experiments performed for the first time to visualize dust particles arising in an erosive emission,as well as the formation of vortex flows.These experiments make it possible to explain the ability of the Gatchina discharge to maintain its shape for a long time in the afterglow.
基金Department of Education of Gansu Province: Industrial Support Plan Project (2022CYZC-23)National Natural Science Foundation of China (22269012)Gansu Key Research and Development Program (23YFGA0053)。
文摘Silicon is considered to be one of the most promising anode materials for lithium-ion batteries(LIBs),but its application is limited by the large volume expansion during alloying and dealloying.The constructing of a high-performance solid electrolyte interface(SEI) film on the surface of the anode material is considered to be one of the effective strategies to mitigate volume expansion of silicon-based anode.In this study,an intermittent discharge strategy which helps to improve the utilization efficiency of electrolyte additive of lithium difluorobisoxalate phosphate(LiDFBOP) is proposed to construct a highly conductive and dense SEI film.The results of electrochemical and physical characterization and theoretical calculations show that the intermittent discharge in the voltage range from open circuit voltage(OCV) to 1.8 V facilitates the diffusion of the soluble products,creates the conditions for the repeated direct contact between Si@C anode and LiDFBOP additive,increases the decomposition of LiDFBOP additive,and thus produces a uniform,dense and inorganics-rich(Li_(2)C_(2)O_(4),LiF and Li_(x)PO_yF_z) SEI film.Subsequently,this SEI film helps to ensure the even intercalation/de-intercalation of Li^(+) in the SEI film and the homogeneous diffusion of Li^(+) inside the Si particles,decreasing the internal stresses and anisotropic phase transitions,maintaining the integrity of Si particles,inhibiting the volume expansion and thu s improving the electrochemical performance of cells.This study not only improves the utilization efficiency of expensive additives through a simply and low-cost method,but also enriches the strategy to improve the electrochemical performance of Si@C anode through interfacial engineering.
基金supported by Beijing Natural Science Foundation(No.3222062)National Natural Science Foundation of China(No.12102482)。
文摘To optimize the design of plasma injectors,the influence of different external electrodes on plasma-assisted flame stabilization was assessed by using a nonequilibrium plasma injector flame control setup.The electrical characteristics of the injector,flame structure parameters,flame intensity,discharge power,and cost-to-effectiveness ratio under different external electrodes(four mesh electrodes and one copper foil electrode)were analyzed using electrical and optical methods.The results show that reducing the mesh size of the external electrode leads to a decrease in breakdown voltage.Compared with a ceramic dielectric barrier-based injector,an injector with a quartz dielectric barrier produces a higher breakdown voltage under the same conditions.For the same actuation voltage,the discharge current increases as the mesh size of the external electrode decreases,and combustion is enhanced by the discharge plasma;therefore,it is better to adopt a smaller mesh hole size to realize good flame stabilization under a lower actuation voltage.However,under the studied working conditions,reducing the mesh hole size of the external electrode increases the cost-to-effectiveness ratio of plasma injector-based flame stabilization.Thus,considering the cost-to-effectiveness ratio and the weight of the injector,an external electrode with a larger mesh hole size should be chosen,which contradicts the above rule.
基金supported by the National Key Research and Development Program of China(No.2020YFC2201004)National Natural Science Foundation of China(No.12172110)。
文摘Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parameters. In this study, electrospray experiments were conducted on the ionic liquid EMI-BF4. The observations revealed that the operating modes of the ionic liquid depend on the voltage polarity at high voltages. Additionally, a correspondence between the operating mode of ILE and the current signal in the circuit was established. The shape of the liquid cone formed at the needle tip bore a striking resemblance to the plume of corona discharge, suggesting that the motion trajectory of electrons influenced the curvature of the liquid cone. Steamer theory provided a clear explanation for the change in curvature as the voltage increased.