期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Crystallization and Orientation Modulation Enable Highly Efficient Doctor-Bladed Perovskite Solar Cells 被引量:3
1
作者 Jianhui Chang Erming Feng +7 位作者 Hengyue Li Yang Ding Caoyu Long Yuanji Gao Yingguo Yang Chenyi Yi Zijian Zheng Junliang Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期40-52,共13页
With the rapid rise in perovskite solar cells(PSCs)performance,it is imperative to develop scalable fabrication techniques to accelerate potential commercialization.However,the power conversion efficiencies(PCEs)of PS... With the rapid rise in perovskite solar cells(PSCs)performance,it is imperative to develop scalable fabrication techniques to accelerate potential commercialization.However,the power conversion efficiencies(PCEs)of PSCs fabricated via scalable two-step sequential deposition lag far behind the state-of-the-art spin-coated ones.Herein,the additive methylammonium chloride(MACl)is introduced to modulate the crystallization and orientation of a two-step sequential doctorbladed perovskite film in ambient conditions.MACl can significantly improve perovskite film quality and increase grain size and crystallinity,thus decreasing trap density and suppressing nonradiative recombination.Meanwhile,MACl also promotes the preferred face-up orientation of the(100)plane of perovskite film,which is more conducive to the transport and collection of carriers,thereby significantly improving the fill factor.As a result,a champion PCE of 23.14%and excellent longterm stability are achieved for PSCs based on the structure of ITO/SnO_(2)/FA_(1-x)MA_xPb(I_(1-y)Br_y)_3/Spiro-OMeTAD/Ag.The superior PCEs of 21.20%and 17.54%are achieved for 1.03 cm~2 PSC and 10.93 cm~2 mini-module,respectively.These results represent substantial progress in large-scale two-step sequential deposition of high-performance PSCs for practical applications. 展开更多
关键词 Crystallization regulation Orientation modulation Perovskite solar cells doctor-blading Ambient condition
下载PDF
Doctor-bladed Cu_2ZnSnS_4 light absorption layer for low-cost solar cell application
2
作者 陈勤妙 李振庆 +2 位作者 倪一 程抒一 窦晓鸣 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期497-503,共7页
The doctor-blade method is investigated for the preparation of Cu2ZnSnS4 films for low-cost solar cell application. Cu2ZnSnS4 precursor powder, the main raw material for the doctor-blade paste, is synthesized by a sim... The doctor-blade method is investigated for the preparation of Cu2ZnSnS4 films for low-cost solar cell application. Cu2ZnSnS4 precursor powder, the main raw material for the doctor-blade paste, is synthesized by a simple ball-milling process. The doctor-bladed Cu2ZnSnS4 films are annealed in N2 ambient under various conditions and characterized by X-ray diffraction, ultraviolent/vis spectrophotometry, scanning electron microscopy, and current-voltage (J-V) meansurement. Our experimental results indicate that (i) the X-ray diffraction peaks of the Cu2ZnSnS4 precursor powder each show a red shift of about 0.4°; (ii) the high-temperature annealing process can effectively improve the crystallinity of the doctor-bladed Cu2ZnSnS4, whereas an overlong annealing introduces defects; (iii) the band gap value of the doctor-bladed Cu2ZnSnS4 is around 1.41 eV; (iv) the short-circuit current density, the open-circuit voltage, the fill factor, and the efficiency of the best Cu2ZnSnS4 solar cell obtained with the superstrate structure of fluorine-doped tin oxide glass/TiO2/In2S3/Cu2ZnSnS4/Mo are 7.82 mA/cm2, 240 mV, 0.29, and 0.55%, respectively. 展开更多
关键词 Cu2ZnSnS4 non-vacuum process mechanochemical ball-milling process doctor-blade method
下载PDF
Efficient organic-inorganic hybrid cathode interfacial layer enabled by polymeric dopant and its application in large-area polymer solar cells 被引量:4
3
作者 Sheng Dong Kai Zhang +4 位作者 Xiang Liu Qingwu Yin Hin-Lap Yip Fei Huang Yong Cao 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第1期67-73,共7页
An organic-inorganic hybrid cathode interfacial layer(CIL) was developed by doping ZnO with the naphthalene-diimide based derivative NDI-PFNBr. It was found the resulting organic-inorganic hybrid CIL showed apparently... An organic-inorganic hybrid cathode interfacial layer(CIL) was developed by doping ZnO with the naphthalene-diimide based derivative NDI-PFNBr. It was found the resulting organic-inorganic hybrid CIL showed apparently improved conductivity and could act as an effective cathode interlayer to modify indium tin oxide(ITO) transparent electrodes. As a result, by employing the blend of PTB7-Th:PC71BM as the photoactive layer, the inverted polymer solar cells(PSCs) exhibited a remarkable enhancement of power conversion efficiency(PCE) from 8.52% for the control device to 10.04% for the device fabricated with the hybrid CIL. Moreover, all device parameters were simultaneously improved by using this hybrid CIL. The improved open-circuit voltage(VOC) was attributed to the reduced work function of the ITO cathode, whereas the enhancements in fill factor(FF) and short-circuit current density(JSC) were assigned to the increased conductivity and more effective charge extraction and collection at interface. Encouragingly, when the thickness of the hybrid CIL was increased to 80 nm, the resulting device could still keep a PCE of 8.81%, exhibiting less thickness dependence. Considering these advantages, 16 and 93 cm2large-area PSCs modules were successfully fabricated from the hybrid CIL by using doctor-blade coating techniques and yielded a remarkable PCE of8.05% and 4.49%, respectively. These results indicated that the hybrid CIL could be a promising candidate to serve as the cathode interlayer for high-performance large-area inverted PSCs. 展开更多
关键词 hybrid CATHODE INTERFACIAL layer LARGE-AREA module doctor-blade coating polymer solar cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部