The removal of phosphate from aqueous solution by Donnan dialysis with anion-exchange membrane was investigated.The results show that phosphate could be removed from aqueous solution without supplying external high pr...The removal of phosphate from aqueous solution by Donnan dialysis with anion-exchange membrane was investigated.The results show that phosphate could be removed from aqueous solution without supplying external high pressure or electrical potential.Under the conditions of influent phosphate of 2.0 mg/L,counterion(Cl-)concentration of 0.1 mol/L,stirring speed of 500 r/min and phase temperature of 298 K,the removal of phosphate achieves 70.0%.Decreasing counterion concentration has little influence on the removal of phosphate,but phosphate amount in anion-exchange membrane increases significantly.With the increase of stirring speed and phase temperature,the removal efficiency of phosphate greatly is improved.Existing forms of phosphate in aqueous solution affected transport of phosphate and only strong acidic pH of feed solution(pH=3.0)decreases the removal of phosphate.Transport of phosphate is also accompanied by change of pH value of feed solution.In consequence,it might be a promise potential process for phosphate advanced wastewater treatment,especially in the area where high salted nature water can be utilized.展开更多
A new method for production of ammonium metatungstate (AMT) directly from ammonium tungstate solution—Donnan dialysis method is advanced. Laboratory experiments are conducted by a Donnan dialysis cell with the membra...A new method for production of ammonium metatungstate (AMT) directly from ammonium tungstate solution—Donnan dialysis method is advanced. Laboratory experiments are conducted by a Donnan dialysis cell with the membrane area of 140 mm×200 mm. The result shows that the transformation rate of AMT reaches 370 g WO 3/(m 2·h), the recovery ratio of AMT by the Donnan dialysis method is nearly 100%, and the loss of tungsten is less than 0.2%. It has been proved that the Donnan dialysis method is effective for production of AMT.展开更多
A laser trapping-microspectroscopy technique combined with excitation energy transfer from a fluorescent cationic dye (Rhodamine B, RB+) to a non-fluorescent cationic dye (Malachite Green, MG+) was employed to study p...A laser trapping-microspectroscopy technique combined with excitation energy transfer from a fluorescent cationic dye (Rhodamine B, RB+) to a non-fluorescent cationic dye (Malachite Green, MG+) was employed to study pH effects on the diffusion coefficients of MG+ (D(MG+)) in single cation-exchange resin microparticles with the diameters of 16 μm. When RB+-pre-adsorbed resin particles were soaked in an aqueous MG+ solution, the RB+ fluorescence was quenched gradually with the soaking time. The time course of the quenching efficiency of RB+ by MG+ was then used to evaluate the D(MG+) value in the particle. The D(MG+) value increased from 1.1 × 10-11 to 4.3 × 10-11 cm2.s–1 on going the solu- tion pH value from 9 to 4. The results were explained reasonably by a Donnan electric potential model.展开更多
Excess or lack of levels of nitrate in drinking water is harmful to the human health, the concentration of NO-3 ions must be maintained at 50 mg/l. Donnan dialysis (DD) used as a driving force of the concentration gra...Excess or lack of levels of nitrate in drinking water is harmful to the human health, the concentration of NO-3 ions must be maintained at 50 mg/l. Donnan dialysis (DD) used as a driving force of the concentration gradient is an effective and simple technique for nitrate removal. In this paper, the transport of nitrate through an AMX anion-exchange membrane has been studied as a function of driving ion nature, receiver phase concentration, flow rate, temperature and agitation rate under Donnan dialysis condition. It was observed that the hydrodynamic conditions and temperature were the main variables affecting the transmembrane flow. As the driving ion, the chloride ion is more efficient than the hydrogeneocarbonate ion. The systematic study of the different parameters involved showed that the nitrate removal efficiency obtained with a feed synthetic nitrate solution (62 ppm) was off 96%. This efficiency slightly decreases for a tap water containing the same nitrate concentration;it was about 84%. This can be attributed to the complex ionic composition of the natural water.展开更多
The aim of this paper is the assessment of Donnan dialysis coupled to adsorption process for the removal of chromium from aqueous solutions. This study was conducted in order to benefit from each process, and it was a...The aim of this paper is the assessment of Donnan dialysis coupled to adsorption process for the removal of chromium from aqueous solutions. This study was conducted in order to benefit from each process, and it was an original and new combination. The coupling was a solution to improve the contact time and the amount of chromium (VI) removed. The coupling was successfully performed with 90% of chromium (VI) removed after 6 hours.展开更多
The removal of chromium (VI) from aqueous solutions by Donnan dialysis has been investigated in this paper. In this process, two anion-exchange membranes (AEMs) were used: Selemion? AMV and Neosepta? AFN. The amount o...The removal of chromium (VI) from aqueous solutions by Donnan dialysis has been investigated in this paper. In this process, two anion-exchange membranes (AEMs) were used: Selemion? AMV and Neosepta? AFN. The amount of chromium (VI) removed was determined in terms of the following parameters: initial concentration of chromium (VI), type of anion-exchange membrane, concentration of counter-ion and magnetic stirring rate. A 24 full factorial design analysis was performed to screen the parameters affecting the Cr (VI) removal efficiency. Using the experimental results, a linear mathematical model representing the influence of the different parameters as well as their interactions was obtained. Analysis of the variance (ANOVA), the F-test and the student’s test shows that the type of anion-exchange membrane is the most significant parameter affecting the chromium (VI) removal. The statistical analysis of the experimental data assumes it to be a normal distribution.展开更多
A membrane process for metal recovery from aqueous solutions was studied. Metal ions diffused from the feed compartment to the stripping compartment through an hybrid Donnan dialysis which consists to combine two ion ...A membrane process for metal recovery from aqueous solutions was studied. Metal ions diffused from the feed compartment to the stripping compartment through an hybrid Donnan dialysis which consists to combine two ion exchange membranes with solvent impregnated resin (SIR). The aim of this work is to study the recovery of Pb(II), Ag(I) and Cu(II) from nitrate solutions by using SIR combined with classical Donnan dialysis. The resin has been prepared by impregnating the Amberlite XAD-4 using three different extractants namely: di-2-ethyl hexyl phosphine acide (D2EHPA), tris-octyl phosphine oxide (TOPO) and Diphenylthiourea (DPT). Experiments were performed as a function of nature of the extractant impregnated on the XAD-4 resin as well as the concentration in the resin phase, the stripping pH, the concentration ratio of metal ions in the feed compartment and the nature of the counter ions in strip compartment. The results show that the D2EHPA is the better extractant for the metal ions used in this work, and it’s shown a good selectivity for the separation between ions.展开更多
It has been theoretically predicted that under conditions leading to Gibbs-Donnan equilibrium in case when size of one compartment is very different from another (as in system “membrane vesicle/liposomes—incubation ...It has been theoretically predicted that under conditions leading to Gibbs-Donnan equilibrium in case when size of one compartment is very different from another (as in system “membrane vesicle/liposomes—incubation medium”) stable transmembrane potential can be formed, which value is sufficient to fit requirement of real transmembrane potential. Four partial cases were considered with different location and charge of impermeable ion and it was concluded that locations of impermeable ions in medium provide stable transmembrane potential with sufficient value of 60 - 70 mV. Potential-sensitive probe, such as DiOC6(3) and oxonol VI, were used to confirm the calculated potential. According to the change in fluorescence level and emission/excitation shift, a stable and relatively high transmembrane potential can be formed if salt of impermeable ion is located in incubation medium. Impermeable cations and anions may be used to create positive and negative transmembrane potential respectively.展开更多
In natural systems heavy metals are present in very low concentrations (less than micro-molar), so precise measurement of the free metal ions is difficult. Recently, a new method has been developed called the Donnan m...In natural systems heavy metals are present in very low concentrations (less than micro-molar), so precise measurement of the free metal ions is difficult. Recently, a new method has been developed called the Donnan membrane technique (DMT). Several heavy metals could be measured simultaneously using this method. Furthermore, all the metals did not interfere with each other, and the balance between the measured system and the surrounding condition could not be disturbed. Improvements were made according to the internal condition. The free heavy metal ion concentrations were measured in different systems using the improved method, and satisfied results have been obtained.展开更多
Ammonia recovery from wastewater is crucial,yet technology of low carbon emission and high ammonia perm-selectivity against complex stream compositions is urgently needed.Herein,a membrane-based hybrid process of the ...Ammonia recovery from wastewater is crucial,yet technology of low carbon emission and high ammonia perm-selectivity against complex stream compositions is urgently needed.Herein,a membrane-based hybrid process of the Donnan dialysiseelectrodialysis process(DDeED)was proposed for sustainable and efficient ammonia recovery.In principle,DD removes the majority of ammonia in wastewater by exploring the concentration gradient of NH4 t and driven cation(Nat)across the cation exchange membrane,given industrial sodium salt as a driving chemical.An additional ED stage driven by solar energy realizes a further removal of ammonia,recovery of driven cation,and replenishment of OHtoward ammonia stripping.Our results demonstrated that the hybrid DDeED process achieved ammonia removal efficiency>95%,driving cation(Nat)recovery efficiency>87.1%for synthetic streams,and reduced the OH-loss by up to 78%compared to a standalone DD case.Ammonia fluxes of 98.2 gN m^(-2)d^(-1)with the real anaerobic digestion effluent were observed using only solar energy input at 3.8 kWh kgN^(-1).With verified mass transfer modeling,reasonably controlled operation,and beneficial recovery performance,the hybrid process can be a promising candidate for future nutrient recovery from wastewater in a rural,remote area.展开更多
基金Project(50778065)supported by the National Natural Science Foundation of China
文摘The removal of phosphate from aqueous solution by Donnan dialysis with anion-exchange membrane was investigated.The results show that phosphate could be removed from aqueous solution without supplying external high pressure or electrical potential.Under the conditions of influent phosphate of 2.0 mg/L,counterion(Cl-)concentration of 0.1 mol/L,stirring speed of 500 r/min and phase temperature of 298 K,the removal of phosphate achieves 70.0%.Decreasing counterion concentration has little influence on the removal of phosphate,but phosphate amount in anion-exchange membrane increases significantly.With the increase of stirring speed and phase temperature,the removal efficiency of phosphate greatly is improved.Existing forms of phosphate in aqueous solution affected transport of phosphate and only strong acidic pH of feed solution(pH=3.0)decreases the removal of phosphate.Transport of phosphate is also accompanied by change of pH value of feed solution.In consequence,it might be a promise potential process for phosphate advanced wastewater treatment,especially in the area where high salted nature water can be utilized.
文摘A new method for production of ammonium metatungstate (AMT) directly from ammonium tungstate solution—Donnan dialysis method is advanced. Laboratory experiments are conducted by a Donnan dialysis cell with the membrane area of 140 mm×200 mm. The result shows that the transformation rate of AMT reaches 370 g WO 3/(m 2·h), the recovery ratio of AMT by the Donnan dialysis method is nearly 100%, and the loss of tungsten is less than 0.2%. It has been proved that the Donnan dialysis method is effective for production of AMT.
文摘A laser trapping-microspectroscopy technique combined with excitation energy transfer from a fluorescent cationic dye (Rhodamine B, RB+) to a non-fluorescent cationic dye (Malachite Green, MG+) was employed to study pH effects on the diffusion coefficients of MG+ (D(MG+)) in single cation-exchange resin microparticles with the diameters of 16 μm. When RB+-pre-adsorbed resin particles were soaked in an aqueous MG+ solution, the RB+ fluorescence was quenched gradually with the soaking time. The time course of the quenching efficiency of RB+ by MG+ was then used to evaluate the D(MG+) value in the particle. The D(MG+) value increased from 1.1 × 10-11 to 4.3 × 10-11 cm2.s–1 on going the solu- tion pH value from 9 to 4. The results were explained reasonably by a Donnan electric potential model.
文摘Excess or lack of levels of nitrate in drinking water is harmful to the human health, the concentration of NO-3 ions must be maintained at 50 mg/l. Donnan dialysis (DD) used as a driving force of the concentration gradient is an effective and simple technique for nitrate removal. In this paper, the transport of nitrate through an AMX anion-exchange membrane has been studied as a function of driving ion nature, receiver phase concentration, flow rate, temperature and agitation rate under Donnan dialysis condition. It was observed that the hydrodynamic conditions and temperature were the main variables affecting the transmembrane flow. As the driving ion, the chloride ion is more efficient than the hydrogeneocarbonate ion. The systematic study of the different parameters involved showed that the nitrate removal efficiency obtained with a feed synthetic nitrate solution (62 ppm) was off 96%. This efficiency slightly decreases for a tap water containing the same nitrate concentration;it was about 84%. This can be attributed to the complex ionic composition of the natural water.
文摘The aim of this paper is the assessment of Donnan dialysis coupled to adsorption process for the removal of chromium from aqueous solutions. This study was conducted in order to benefit from each process, and it was an original and new combination. The coupling was a solution to improve the contact time and the amount of chromium (VI) removed. The coupling was successfully performed with 90% of chromium (VI) removed after 6 hours.
文摘The removal of chromium (VI) from aqueous solutions by Donnan dialysis has been investigated in this paper. In this process, two anion-exchange membranes (AEMs) were used: Selemion? AMV and Neosepta? AFN. The amount of chromium (VI) removed was determined in terms of the following parameters: initial concentration of chromium (VI), type of anion-exchange membrane, concentration of counter-ion and magnetic stirring rate. A 24 full factorial design analysis was performed to screen the parameters affecting the Cr (VI) removal efficiency. Using the experimental results, a linear mathematical model representing the influence of the different parameters as well as their interactions was obtained. Analysis of the variance (ANOVA), the F-test and the student’s test shows that the type of anion-exchange membrane is the most significant parameter affecting the chromium (VI) removal. The statistical analysis of the experimental data assumes it to be a normal distribution.
文摘A membrane process for metal recovery from aqueous solutions was studied. Metal ions diffused from the feed compartment to the stripping compartment through an hybrid Donnan dialysis which consists to combine two ion exchange membranes with solvent impregnated resin (SIR). The aim of this work is to study the recovery of Pb(II), Ag(I) and Cu(II) from nitrate solutions by using SIR combined with classical Donnan dialysis. The resin has been prepared by impregnating the Amberlite XAD-4 using three different extractants namely: di-2-ethyl hexyl phosphine acide (D2EHPA), tris-octyl phosphine oxide (TOPO) and Diphenylthiourea (DPT). Experiments were performed as a function of nature of the extractant impregnated on the XAD-4 resin as well as the concentration in the resin phase, the stripping pH, the concentration ratio of metal ions in the feed compartment and the nature of the counter ions in strip compartment. The results show that the D2EHPA is the better extractant for the metal ions used in this work, and it’s shown a good selectivity for the separation between ions.
文摘It has been theoretically predicted that under conditions leading to Gibbs-Donnan equilibrium in case when size of one compartment is very different from another (as in system “membrane vesicle/liposomes—incubation medium”) stable transmembrane potential can be formed, which value is sufficient to fit requirement of real transmembrane potential. Four partial cases were considered with different location and charge of impermeable ion and it was concluded that locations of impermeable ions in medium provide stable transmembrane potential with sufficient value of 60 - 70 mV. Potential-sensitive probe, such as DiOC6(3) and oxonol VI, were used to confirm the calculated potential. According to the change in fluorescence level and emission/excitation shift, a stable and relatively high transmembrane potential can be formed if salt of impermeable ion is located in incubation medium. Impermeable cations and anions may be used to create positive and negative transmembrane potential respectively.
文摘In natural systems heavy metals are present in very low concentrations (less than micro-molar), so precise measurement of the free metal ions is difficult. Recently, a new method has been developed called the Donnan membrane technique (DMT). Several heavy metals could be measured simultaneously using this method. Furthermore, all the metals did not interfere with each other, and the balance between the measured system and the surrounding condition could not be disturbed. Improvements were made according to the internal condition. The free heavy metal ion concentrations were measured in different systems using the improved method, and satisfied results have been obtained.
基金support provided by the National Natural Science Foundation of China(51908083,52270058)the Venture&Innovation Support Program for Chongqing Overseas Returnees(CX2021121)+1 种基金the National Key Research and Development Program of China(2022YFC3203402)the Graduate Research and Innovation Foundation of Chongqing,China(CYS22066)。
文摘Ammonia recovery from wastewater is crucial,yet technology of low carbon emission and high ammonia perm-selectivity against complex stream compositions is urgently needed.Herein,a membrane-based hybrid process of the Donnan dialysiseelectrodialysis process(DDeED)was proposed for sustainable and efficient ammonia recovery.In principle,DD removes the majority of ammonia in wastewater by exploring the concentration gradient of NH4 t and driven cation(Nat)across the cation exchange membrane,given industrial sodium salt as a driving chemical.An additional ED stage driven by solar energy realizes a further removal of ammonia,recovery of driven cation,and replenishment of OHtoward ammonia stripping.Our results demonstrated that the hybrid DDeED process achieved ammonia removal efficiency>95%,driving cation(Nat)recovery efficiency>87.1%for synthetic streams,and reduced the OH-loss by up to 78%compared to a standalone DD case.Ammonia fluxes of 98.2 gN m^(-2)d^(-1)with the real anaerobic digestion effluent were observed using only solar energy input at 3.8 kWh kgN^(-1).With verified mass transfer modeling,reasonably controlled operation,and beneficial recovery performance,the hybrid process can be a promising candidate for future nutrient recovery from wastewater in a rural,remote area.