Neuropathic pain is a severe and chronic condition widely found in the general population.The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients....Neuropathic pain is a severe and chronic condition widely found in the general population.The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients.During the processing of pain,the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation.Furthermore,the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies.Here,we will review the complex interplay between cells(satellite glial cells and inflammatory cells)and factors(cytokines,neurotrophic factors and genetic factors)that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain.More importantly,we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain.展开更多
Dorsal root ganglion neurons transmit peripheral somatic information to the central nervous system,and dorsal root ganglion neuron excitability affects pain perception.Dorsal root ganglion stimulation is a new approac...Dorsal root ganglion neurons transmit peripheral somatic information to the central nervous system,and dorsal root ganglion neuron excitability affects pain perception.Dorsal root ganglion stimulation is a new approach for managing pain sensation.Knowledge of the cell-cell communication among dorsal root ganglion cells may help in the development of new pain and itch management strategies.Here,we used the single-cell RNA-sequencing(scRNA-seq)database to investigate intercellular communication networks among dorsal root ganglion cells.We collected scRNA-seq data from six samples from three studies,yielding data on a total of 17,766 cells.Based on genetic profiles,we identified satellite glial cells,Schwann cells,neurons,vascular endothelial cells,immune cells,fibroblasts,and vascular smooth muscle cells.Further analysis revealed that eight types of dorsal root ganglion neurons mediated proprioceptive,itch,touch,mechanical,heat,and cold sensations.Moreover,we predicted several distinct forms of intercellular communication among dorsal root ganglion cells,including cell-cell contact,secreted signals,extracellular matrix,and neurotransmitter-mediated signals.The data mining predicted that Mrgpra3-positive neurons robustly express the genes encoding the adenosine Adora2b(A2B)receptor and glial cell line-derived neurotrophic factor family receptor alpha 1(GFRα-1).Our immunohistochemistry results confirmed the coexpression of the A2B receptor and GFRα-1.Intrathecal injection of the A2B receptor antagonist PSB-603 effectively prevented histamine-induced scratching behaviour in a dose-dependent manner.Our results demonstrate the involvement of the A2B receptor in the modulation of itch sensation.Furthermore,our findings provide insight into dorsal root ganglion cell-cell communication patterns and mechanisms.Our results should contribute to the development of new strategies for the regulation of dorsal root ganglion excitability.展开更多
ObjectiveFemale urethral stricture (FUS) accounts for about 4%–13% of cases of female bladder outlet obstruction. FUS was and is still managed by repeated dilatations and/or direct visual internal urethrotomy. There ...ObjectiveFemale urethral stricture (FUS) accounts for about 4%–13% of cases of female bladder outlet obstruction. FUS was and is still managed by repeated dilatations and/or direct visual internal urethrotomy. There are many alternative options for reconstruction like buccal or vaginal mucosal graft urethroplasty. Our aim was to describe the technique of dorsal onlay buccal mucosal graft (BMG) urethroplasty for FUS and present the outcomes.MethodsBetween January 2014 and December 2021, 37 patients who underwent dorsal onlay BMG urethroplasty were included in the study. Their pre-operative diagnosis was confirmed with uroflowmetry, micturating cystourethrogram, urethral calibration, and on table cystoscopy. Bladder catheter was removed after 2 weeks. Patients were followed up at 3 months, 6 months, 1 year, and then annually with urine analysis, uroflowmetry, and post-void residual assessment. We defined success as a maximum flow rate (Q_(max)) above 15 mL/s without the need for an additional instrumentation.ResultsThe mean age of patients was 47.8 (standard deviation [SD] 11.3) years. Twenty patients had previously undergone urethral dilatations. The mean pre-operative Q_(max) was 7.79 (SD 3.73) mL/s. However, the mean Q_(max) improved to 23.20 (SD 8.25) mL/s after surgery. The mean post-void residual urine after surgery was 30.50 (SD 10.70) mL. This reduced from a mean value of 139.00 (SD 147.24) mL before surgery. The mean follow-up was 30.2 (SD 18.3, range 18–44) months. There was no post-operative incontinence. There were Clavien–Dindo Grade 1 complications in 6 out of 37 (16.2 %) patients during hospital stay. The only long-term complication was recurrence of stricture in 4 (10.8%) patients.ConclusionDorsal onlay BMG urethroplasty in females is a safe, effective technique which can avoid repeated painful dilatations and multiple urethrotomies. One should always consider reconstruction in FUS without any fear of incontinence.展开更多
BACKGROUND Cheilectomy of the 1^(st)metatarsophalangeal joint(MTPJ)is one of the most common procedures for the management of hallux rigidus.However,there is no consensus regarding outcomes following minimally invasiv...BACKGROUND Cheilectomy of the 1^(st)metatarsophalangeal joint(MTPJ)is one of the most common procedures for the management of hallux rigidus.However,there is no consensus regarding outcomes following minimally invasive dorsal cheilectomy(MIDC)for the management of hallux rigidus.AIM To evaluate outcomes following MIDC for the management of hallux rigidus.METHODS During November 2023,the PubMed,EMBASE and Cochrane Library databases were systematically reviewed to identify clinical studies examining outcomes following MIDC for the management of hallux rigidus.RESULTS Six studies were included.In total,348 patients(370 feet)underwent MIDC for hallux rigidus at a weighted mean follow-up of 37.9±16.5 months.The distribution of patients by Coughlin and Shurna's classification was recorded in 4 studies as follows:Ⅰ(58 patients,27.1%),Ⅱ(112 patients,52.3%),Ⅲ(44 patients,20.6%).Three studies performed an additional 1^(st)MTPJ arthroscopy and debridement following MIDC.Retained intra-articular bone debris was observed in 100%of patients in 1 study.The weighted mean American orthopedic foot and ankle society score improved from a preoperative score of 68.9±3.2 to a postoperative score of 87.1.The complication rate was 8.4%,the most common of which was persistent joint pain and stiffness.Thirty-two failures(8.7%)were observed.Thirty-three secondary procedures(8.9%)were performed at a weighted mean time of 8.6±3.2 months following the index procedure.CONCLUSION This systematic review demonstrated improvements in subjective clinical outcomes together with a moderate complication rate following MIDC for the management of hallux rigidus at short-term follow-up.A moderate reoperation rate at short-term follow-up was recorded.The marked heterogeneity between included studies and paucity of high quality comparative studies limits the generation of any robust conclusions.展开更多
Objective To investigate the regulatory effects of nerve growth factor (NGF) on basal and capsaicin-induced release of neuropeptide substance P (SP) in primary cultured embryonic rat dorsal root ganglion (DRG) n...Objective To investigate the regulatory effects of nerve growth factor (NGF) on basal and capsaicin-induced release of neuropeptide substance P (SP) in primary cultured embryonic rat dorsal root ganglion (DRG) neurons. Methods DRGs were dissected from 15-day-old embryonic Wistar rats. DRG neurons were dissociated and cultured, and then exposed to different concentrations of NGF (10 ng/mL, 30 ng/mL, or 100 ng/mL) for 72 h. The neurons cultured in media without NGF served as control. RT-PCR were used for detecting the mRNAs of SP and vanilloid receptor 1 (VR1) in the DRG neurons. The SP basal and capsaicin (100 nmol/L)-induced release in the culture were measured by radioimmunoassay (RIA). Results SP mRNA and VR1 mRNA expression increased in primary cultured DRG neurons in a dose-dependent manner of NGF. Both basal release and capsaicin-evoked release of SP increased in NGF-treated DRG neurons compared with in control group. The capsaicin-evoked release of SP also increased in a dose-dependent manner of NGF. Conclusion NGF may promote both basal release and capsaicin-evoked release of SP. NGF might increase the sensitivity of nociceptors by increasing the SP mRNA or VR1 mRNA.展开更多
Objective To screen and identify differentially expressed genes in the dorsal root ganglion (DRG) in early experimental diabetic rats. Methods Diabetic model rats were induced by single intraperitoneal injection of ...Objective To screen and identify differentially expressed genes in the dorsal root ganglion (DRG) in early experimental diabetic rats. Methods Diabetic model rats were induced by single intraperitoneal injection of streptozotocin (STZ). At the second week after STZ injection, the sensory nerve conduction velocities (SNCV) of sciatic nerve were measured as an indicator of neuropathy. The technique of silver-staining mRNA differential display polymerase chain reaction (DD-PCR) was used to detect the levels of differentially expressed genes in rat DRG. The cDNA fragments that displayed differentially were identified by reverse-hybridization, cloned and sequenced subsequently, and then confirmed by Northern blot. Results The SNCV in the diabetic model group [n = 9, (45.25±10.38) m/s] reduced obviously compared with the control group [n = 8, (60.10± 11.92) m/s] (P 〈 0.05). Seven distinct cDNA clones, one was up-regulated gene and the others were downregulated ones, were isolated by silver-staining mRNA differential display method and confirmed by Northern blot. According to the results of sequence alignment with GenBank data, majority of the clones had no significant sequence similarity to previously reported genes except only one that showed high homology to 6-pyruvoyl-tetrahydropterin synthase mRNA (accession No., BC059140), which had not been reported to relate to diabetic neuropathy. Conclusion These differentially expressed genes in the diabetic DRG may contribute to the pathogenesis of diabetic peripheral neuropathy.展开更多
Objective This study aimed to investigate the effect of penile selective dorsal neurectomy(SDN)on erectile function in rats.Methods Twelve adult male Sprague-Dawley rats(15 weeks old)were divided into three groups(n=4...Objective This study aimed to investigate the effect of penile selective dorsal neurectomy(SDN)on erectile function in rats.Methods Twelve adult male Sprague-Dawley rats(15 weeks old)were divided into three groups(n=4 per group):in control group,rats received no treatment;in sham group,rats underwent a sham operation;in SDN group,rats underwent SDN with half of the dorsal penile nerve severed.The mating test was performed,and the intracavernous pressure(ICP)assessed six weeks after the surgical treatment.Results At postoperative six weeks,the mating test revealed no significant difference in mounting latency and mounting frequency among the three groups(P>0.05),while the ejaculation latency(EL)was significantly longer and ejaculation frequency(EF)lower in the SDN group than in the control and sham groups(P<0.05).There were no significant differences in preoperative and postoperative ICP and ICP/mean arterial blood pressure(MAP)among the three groups(P>0.05).Conclusion SDN does not adversely affect the erectile function and sexual desire of rats,and at the same time it can reduce EL and EF,providing an application basis for SDN in the clinical treatment of premature ejaculation.展开更多
This study evaluated the value of high-frequency ultrasonograpy for early detection of dorsal artery of foot in patients with type 2 diabetes mellitus (MD). Eighty subjects including 40 patients with type 2 MD (T2D...This study evaluated the value of high-frequency ultrasonograpy for early detection of dorsal artery of foot in patients with type 2 diabetes mellitus (MD). Eighty subjects including 40 patients with type 2 MD (T2DM group) and 40 healthy volunteers (NC group) were recruited. The intima-media thickness (IMT), the inner diameter and the perfusion of dorsal artery of foot were measured by using high-frequency ultrasonograpy. Meanwhile, the parameters of vascular elasticity, including stiffness parameter (]3), pressure-strain elastic modulus (Ep), arterial compliance (AC), augment index (AI), and pulse wave conducting velocity (PWV]3) were detected by means of echo-tracking technique. The results showed that no significant difference was found in the IMT, systolic diameter (Ds), diastolic diameter (Dd) and peak systolic velocity (PSV) between T2DM and NC groups. Ep and PWVβ were increased, and AC was decreased in T2DM group as compared with those in NC group with the differences being significant (P〈0.05 for all). There was no significant difference in β and AI between T2DM and NC groups. It was concluded that high-frequency ultra- sonography in combination with echo-tracking technique is sensitive and non-invasive, and can be used for early detection of sclerosis of the lower extremity artery in patients with type 2 MD.展开更多
AIM: To study the neural mechanism by which electroacupuncture(EA) at RN12(Zhongwan) and BL21(Weishu) regulates gastric motility.METHODS: One hundred and forty-four adult Sprague Dawley rats were studied in four separ...AIM: To study the neural mechanism by which electroacupuncture(EA) at RN12(Zhongwan) and BL21(Weishu) regulates gastric motility.METHODS: One hundred and forty-four adult Sprague Dawley rats were studied in four separate experiments. Intragastric pressure was measured using custommade rubber balloons, and extracellular neuron firing activity, which is sensitive to gastric distention in the dorsal vagal complex(DVC), was recorded by an electrophysiological technique. The expression levels of c-fos, motilin(MTL) and gastrin(GAS) in the paraventricular hypothalamic nucleus(PVN) were assayed by immunohistochemistry, and the expression levels of motilin receptor(MTL-R) and gastrin receptor(GAS-R) in both the PVN and the gastric antrum were assayed by western blotting.RESULTS: EA at RN12 + BL21(gastric Shu and Mu points), BL21(gastric Back-Shu point), RN12(gastric Front-Mu point), resulted in increased neuron-activating frequency in the DVC(2.08 ± 0.050, 1.17 ± 0.023, 1.55 ± 0.079 vs 0.75 ± 0.046, P < 0.001) compared with a model group. The expression of c-fos(36.24 ± 1.67, 29.41 ± 2.55, 31.79 ± 3.00 vs 5.73 ± 2.18, P < 0.001), MTL(22.48 ± 2.66, 20.76 ± 2.41, 19.17 ± 1.71 vs 11.68 ± 2.52, P < 0.001), GAS(24.99 ± 2.95, 21.69 ± 3.24, 23.03 ± 3.09 vs 12.53 ± 2.15, P < 0.001), MTL-R(1.39 ± 0.05, 1.22 ± 0.05, 1.17 ± 0.12 vs 0.84 ± 0.06, P < 0.001), and GAS-R(1.07 ± 0.07, 0.91 ± 0.06, 0.78 ± 0.05 vs 0.45 ± 0.04, P < 0.001) increased in the PVN after EA compared with the model group. The expression of MTL-R(1.46 ± 0.14, 1.26 ± 0.11, 0.99 ± 0.07 vs 0.65 ± 0.03, P < 0.001), and GAS-R(1.63 ± 0.11, 1.26 ± 0.16, 1.13 ± 0.02 vs 0.80 ± 0.11, P < 0.001) increased in the gastric antrum after EA compared with the model group. Damaging the PVN resulted in reduced intragastric pressure(13.67 ± 3.72 vs 4.27 ± 1.48, P < 0.001). These data demonstrate that the signals induced by EA stimulation of acupoints RN12 and BL21 are detectable in the DVC and the PVN, and increase the levels of gastrointestinal hormones and their receptors in the PVN and gastric antrum to regulate gastric motility. CONCLUSION: EA at RN12 and BL21 regulates gastric motility, which may be achieved through the PVN-DVCvagus-gastric neural pathway.展开更多
Subsequent to a peripheral nerve injury, there are changes in gene expression within the dorsal root ganglia in response to the damage. This review selects factors which are well-known to be vital for inflammation, ce...Subsequent to a peripheral nerve injury, there are changes in gene expression within the dorsal root ganglia in response to the damage. This review selects factors which are well-known to be vital for inflammation, cell death and nociception, and highlights how alterations in their gene expression within the dorsal root ganglia can affect functional recovery. The majority of studies used polymerase chain reaction within animal models to analyse the dynamic changes following peripheral nerve injuries. This review aims to highlight the factors at the gene expression level that impede functional recovery and are hence are potential targets for therapeutic approaches. Where possible the experimental model, specific time-points and cellular location of expression levels are reported.展开更多
Nerve conduits have been a viable alternative to the ‘gold standard’ autograft for treating small peripheral nerve gap injuries. However, they often produce inadequate functional recovery outcomes and are ineffectiv...Nerve conduits have been a viable alternative to the ‘gold standard’ autograft for treating small peripheral nerve gap injuries. However, they often produce inadequate functional recovery outcomes and are ineffective in large gap injuries. Ridge/groove surface micropatterning has been shown to promote neural cell orientation and guide growth. However, optimization of the ratio of ridge/groove parameters to promote orientation and extension for dorsal root ganglion (DRG) cells on poly(lactic-co-glycolic acid) (PLGA) films has not been previously conducted. Photolithography and micro-molding were used to define various combinations of ridge/groove dimensions on PLGA films. The DRG cells obtained from chicken embryos were cultured on micropatterned PLGA films for cell orientation and migration evaluation.Biodegradation of the films occurred during the test period, however, this did not cause deformation or distortion of the micropatterns. Results from the DRG cell orientation test suggest that when the ridge/groove ratio equals 1 (ridge/groove width parameters are equal, i.e., 10 μm/10 μm (even)), the degree of alignment depends on the size of the ridges and grooves, when the ratio is smaller than 1 (groove controlled) the alignment increases as the ridge size decreases, and when the ratio is larger than 1 (ridge controlled), the alignment is reduced as the width of the grooves decreases. The migration rate and neurite extension of DRG neurons were greatest on 10 μm/10 μm and 30 μm/30 μm micropatterned PLGA films. Based on the data, the 10 μm/10 μm and 30 μm/30 μm micropatterned PLGA films are the optimized ridge/groove surface patterns for the construction of nerve repair devices.展开更多
This study investigated the possible involvement of microRNAs in the regulation of genes that participate in peripheral neural regeneration. A microRNA microarray analysis was conducted and 23 microRNAs were identiife...This study investigated the possible involvement of microRNAs in the regulation of genes that participate in peripheral neural regeneration. A microRNA microarray analysis was conducted and 23 microRNAs were identiifed whose expression was signiifcantly changed in rat dorsal root ganglia after sciatic nerve transection. The expression of one of the downregulated microRNAs, microRNA-214, was validated using quantitative reverse transcriptase-PCR. MicroRNA-214 was predicted to target the 3′-untranslated region of Slit-Robo GTPase-activating protein 3. In situ hybridization veriifed that microRNA-214 was located in the cytoplasm of dorsal root ganglia primary neurons and was downregulated following sciatic nerve transection. Moreover, a com-bination of in situ hybridization and immunohistochemistry revealed that microRNA-214 and Slit-Robo GTPase-activating protein 3 were co-localized in dorsal root ganglion primary neu-rons. Western blot analysis suggested that Slit-Robo GTPase-activating protein 3 was upregulated in dorsal root ganglion neurons after sciatic nerve transection. These data demonstrate that mi-croRNA-214 is located and differentially expressed in dorsal root ganglion primary neurons and may participate in regulating the gene expression of Slit-Robo GTPase-activating protein 3 after sciatic nerve transection.展开更多
Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in t...Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia.The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain.A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats.These rats were then subcutaneously injected with 17β-estradiol,the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid(AP-5),or both once daily for 15 days.Compared with injured drug na?ve rats,rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency,indicating increased sensitivity to mechanical and thermal pain.Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity(as assessed by immunohistochemistry) and protein(as determined by western blot assay) in spinal dorsal root ganglia.This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5,whereas AP-5 alone did not affect NMDAR1 expression.These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve,and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.展开更多
During the last 100 years in medical literature,there are only 54 reports,including the report of Pasaoglu et al(World J Gastroenterol 2008;14:2915-2916),with clinical descriptions of agenesis of the dorsal pancreas i...During the last 100 years in medical literature,there are only 54 reports,including the report of Pasaoglu et al(World J Gastroenterol 2008;14:2915-2916),with clinical descriptions of agenesis of the dorsal pancreas in humans.Agenesis of the dorsal pancreas,a rare congenital pancreatic malformation,is associated with some other medical conditions such as hyperglycemia,abdominal pain,pancreatitis and a few other diseases.In approximately 50% of reported patients with this congenital malformation,hyperglycemia was demonstrated.Evaluation of hyperglycemia and diabetes mellitus in all patients with agenesis of the dorsal pancreas including description of fasting blood glucose,oral glucose tolerance test,glycated hemoglobin and medical treatment would be a future goal.Since autosomal dominant transmission has been suggested in single families,more family studies including imaging technologies with demonstration of the pancreatic duct system are needed for evaluation of this disease.With this letter to the editor,we aim to increase available information for the better understanding of this rare disease.展开更多
The regenerative capacity of peripheral nerves is limited after nerve injury.A number of growth factors modulate many cellular behaviors,such as proliferation and migration,and may contribute to nerve repair and regen...The regenerative capacity of peripheral nerves is limited after nerve injury.A number of growth factors modulate many cellular behaviors,such as proliferation and migration,and may contribute to nerve repair and regeneration.Our previous study observed the dynamic changes of genes in L4–6 dorsal root ganglion after rat sciatic nerve crush using transcriptome sequencing.Our current study focused on upstream growth factors and found that a total of 19 upstream growth factors were dysregulated in dorsal root ganglions at 3,9 hours,1,4,or 7 days after nerve crush,compared with the 0 hour control.Thirty-six rat models of sciatic nerve crush injury were prepared as described previously.Then,they were divided into six groups to measure the expression changes of representative genes at 0,3,9 hours,1,4 or 7 days post crush.Our current study measured the expression levels of representative upstream growth factors,including nerve growth factor,brain-derived neurotrophic factor,fibroblast growth factor 2 and amphiregulin genes,and explored critical signaling pathways and biological process through bioinformatic analysis.Our data revealed that many of these dysregulated upstream growth factors,including nerve growth factor,brain-derived neurotrophic factor,fibroblast growth factor 2 and amphiregulin,participated in tissue remodeling and axon growth-related biological processes Therefore,the experiment described the expression pattern of upstream growth factors in the dorsal root ganglia after peripheral nerve injury.Bioinformatic analysis revealed growth factors that may promote repair and regeneration of damaged peripheral nerves.All animal surgery procedures were performed in accordance with Institutional Animal Care Guidelines of Nantong University and ethically approved by the Administration Committee of Experimental Animals,China(approval No.20170302-017)on March 2,2017.展开更多
AIM: To investigate and compare the effects of spinal D-(-)-2-amino-7-phosphonoheptanoic acid (AP-7) and 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX),two glutamate receptor antagonists, on the responses of dor...AIM: To investigate and compare the effects of spinal D-(-)-2-amino-7-phosphonoheptanoic acid (AP-7) and 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX),two glutamate receptor antagonists, on the responses of dorsal horn neurons to colorectal distension (CRD) in adult rats exposed to neonatal colon irritation (CI).METHODS: Hypersensitive SD rats were generated by CI during postnatal days 8, 10 and 12. Experiments on adult rats were performed using extracellular single-unit recording. The effects of spinal application of AP-7 (0.001,0.01, 0.1, 1 mmoL) were tested on the CRD-evoked neuronal responses in 16 controls and 17 CI rats. The effects of CNQX (0.2, 2, 5, 10 μmoL) were also tested on the CRD-evoked responses of 17 controls and 18 CI neurons.RESULTS: (1) The average responses of lumbosacral neurons to all intensities of CRD in CI rats were significantly higher than those in control rats; (2) In control rats, AP-7 (0.01 mmoL) had no significant effect on the neuronal response to all intensities of CRD (20,40, 60, 80 mmHg); while AP-7 (0.1 mmoL) inhibited the neuronal response to 80-mmHg CRD. By contrast, in CI rats, AP-7 (0.01-1 mmoL) attenuated the CRD-evoked neuronal responses to all distention pressures in a dosedependent manner; (3) In control rats, CNQX (2 μmoL)had no significantly effect on the neuronal response to all intensities of CRD; however, CNQX (5 μmoL) significantly attenuated the responses to CRD in the 40-80 mmHg range. By contrast, CNQX (2-10 μmoL)significantly decreased the neuronal responses in CI rats to non-noxious and noxious CRD in a dose-dependent manner.CONCLUSION: Our results suggest that spinal N-methyl-D-aspartate (NMDA) and non-NMDA receptors may contribute to the processing of central sensitivity in a neonatal CI rat model, but they may play different roles in it.展开更多
The mechanism underlying the modulatory effect of substance P(SP) on GABA-activated response in rat dorsal root ganglion(DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clam...The mechanism underlying the modulatory effect of substance P(SP) on GABA-activated response in rat dorsal root ganglion(DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA(1–1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons(89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA(1–1000 μmol/L) evoked a depolarizing response in 236 out of 257(91.8%) DRG neurons examined with intracellular recordings. Application of SP(0.001–1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1(NK1) receptors antagonist spantide but not by L659187 and SR142801(1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C(PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca2+-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.展开更多
Sodium-potassium-chloride cotransporter 1 (NKCC1) and potassium-chloride cotransporter 2 (KCC2) are associated with the transmission of peripheral pain.We investigated whether the increase of NKCC1 and KCC2 is associa...Sodium-potassium-chloride cotransporter 1 (NKCC1) and potassium-chloride cotransporter 2 (KCC2) are associated with the transmission of peripheral pain.We investigated whether the increase of NKCC1 and KCC2 is associated with peripheral pain transmission in dorsal root ganglion neurons.To this aim,rats with persistent hyperalgesia were randomly divided into four groups.Rats in the control group received no treatment,and the rat sciatic nerve was only exposed in the sham group.Rats in the chronic constriction injury group were established into chronic constriction injury models by ligating sciatic nerve and rats were given bumetanide,an inhibitor of NKCC1,based on chronic constriction injury modeling in the chronic constriction injury + bumetanide group.In the experiment measuring thermal withdrawal latency,bumetanide (15 mg/kg) was intravenously administered.In the patch clamp experiment,bumetanide (10 μg/μL) and acutely isolated dorsal root ganglion neurons (on day 14) were incubated for 1 hour,or bumetanide (5 μg/μL) was intrathecally injected.The Hargreaves test was conducted to detect changes in thermal hyperalgesia in rats.We found that the thermal withdrawal latency of rats was significantly decreased on days 7,14,and 21 after model establishment.After intravenous injection of bumetanide,the reduction in thermal retraction latency caused by model establishment was significantly inhibited.Immunohistochemistry and western blot assay results revealed that the immune response and protein expression of NKCC1 in dorsal root ganglion neurons of the chronic constriction injury group increased significantly on days 7,14,and 21 after model establishment.No immune response or protein expression of KCC2 was observed in dorsal root ganglion neurons before and after model establishment.The Cl^– (chloride ion) fluorescent probe technique was used to evaluate the change of Cl^– concentration in dorsal root ganglion neurons of chronic constriction injury model rats.We found that the relative optical density of N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (a Cl^– fluorescent probe whose fluorescence Cenintensity decreases as Cl– concentration increases) in the dorsal root ganglion neurons of the chronic constriction injury group was significantly decreased on days 7 and 14 after model establishment.The whole-cell patch clamp technique revealed that the resting potential and action potential frequency of dorsal root ganglion neurons increased,and the threshold and rheobase of action potentials decreased in the chronic constriction injury group on day 14 after model establishment.After bumetanide administration,the above indicators were significantly suppressed.These results confirm that CCI can induce abnormal overexpression of NKCC1,thereby increasing the Cl^– concentration in dorsal root ganglion neurons;this then enhances the excitability of dorsal root ganglion neurons and ultimately promotes hyperalgesia and allodynia.In addition,bumetanide can achieve analgesic effects.All experiments were approved by the Institutional Ethics Review Board at the First Affiliated Hospital,College of Medicine,Shihezi University,China on February 22,2017 (approval No.A2017-169-01).展开更多
Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to si...Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to simultaneously analyze hundreds or thousands of proteins differentially expressed in the dorsal horn of the spinal cord in rats or dorsal root ganglion of rats with certain type of peripheral nerve injury. However, a proteomic study using a mouse model of neuropathic pain could be attempted because of abundant protein database and the availability of transgenic mice. In this study, whole proteins were extracted from the ipsilateral dorsal half of the 4th-6th lumbar spinal cord in a mouse model of spared nerve injury(SNI)-induced neuropathic pain. In-gel digests of the proteins size-separated on a polyacrylamide gel were subjected to reverse-phase liquid-chromatography coupled with electrospray ionization ion trap tandem mass spectrometry(MS/MS). After identifying proteins, the data were analyzed with subtractive proteomics using ProtAn, an in-house analytic program. Consequently, 15 downregulated and 35 upregulated proteins were identified in SNI mice. The identified proteins may contribute to the maintenance of neuropathic pain,and may provide new or valuable information in the discovery of new therapeutic targets for neuropathic pain.展开更多
基金under a contract of the“Nicolás Monardes”program(RC-0002-2021)from the Andalusian Health Service,Andalusian Regional Ministry of Health and Consumptionfunds from the Excellent Project from Andalusian Government(Proy Excel_00996)+8 种基金funded by the French Multiple Sclerosis Foundation(ARSEP,1259&1254)the National Multiple Sclerosis Society(NMSS,RG 5088-A-1)the program“Investissements d’Avenir”(ANR-10-IAIHU-06 and ANR-11-INBS-0011–Neur ATRIS)under a“Miguel Servet”contract(CP20-0049)from the Health Institute CarlosⅢ,Ministry of Science and Innovation,Spainreceived grants from Andalusian Government and the European Commission under the Seventh Framework Program of the European Union(agreement Num.291730,contract TAHUB-II-107)ARSEP 1254IBRO Return Home FellowshipAES2022 from Health Institute CarlosⅢ(PI22/01141)the Excellent Project from Andalusian Regional Ministry of University,Research and Innovation(Proy Excel_00996)。
文摘Neuropathic pain is a severe and chronic condition widely found in the general population.The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients.During the processing of pain,the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation.Furthermore,the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies.Here,we will review the complex interplay between cells(satellite glial cells and inflammatory cells)and factors(cytokines,neurotrophic factors and genetic factors)that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain.More importantly,we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain.
基金supported by the National Natural Science Foundation of China,Nos.32271042 and 31871062(to XL)。
文摘Dorsal root ganglion neurons transmit peripheral somatic information to the central nervous system,and dorsal root ganglion neuron excitability affects pain perception.Dorsal root ganglion stimulation is a new approach for managing pain sensation.Knowledge of the cell-cell communication among dorsal root ganglion cells may help in the development of new pain and itch management strategies.Here,we used the single-cell RNA-sequencing(scRNA-seq)database to investigate intercellular communication networks among dorsal root ganglion cells.We collected scRNA-seq data from six samples from three studies,yielding data on a total of 17,766 cells.Based on genetic profiles,we identified satellite glial cells,Schwann cells,neurons,vascular endothelial cells,immune cells,fibroblasts,and vascular smooth muscle cells.Further analysis revealed that eight types of dorsal root ganglion neurons mediated proprioceptive,itch,touch,mechanical,heat,and cold sensations.Moreover,we predicted several distinct forms of intercellular communication among dorsal root ganglion cells,including cell-cell contact,secreted signals,extracellular matrix,and neurotransmitter-mediated signals.The data mining predicted that Mrgpra3-positive neurons robustly express the genes encoding the adenosine Adora2b(A2B)receptor and glial cell line-derived neurotrophic factor family receptor alpha 1(GFRα-1).Our immunohistochemistry results confirmed the coexpression of the A2B receptor and GFRα-1.Intrathecal injection of the A2B receptor antagonist PSB-603 effectively prevented histamine-induced scratching behaviour in a dose-dependent manner.Our results demonstrate the involvement of the A2B receptor in the modulation of itch sensation.Furthermore,our findings provide insight into dorsal root ganglion cell-cell communication patterns and mechanisms.Our results should contribute to the development of new strategies for the regulation of dorsal root ganglion excitability.
文摘ObjectiveFemale urethral stricture (FUS) accounts for about 4%–13% of cases of female bladder outlet obstruction. FUS was and is still managed by repeated dilatations and/or direct visual internal urethrotomy. There are many alternative options for reconstruction like buccal or vaginal mucosal graft urethroplasty. Our aim was to describe the technique of dorsal onlay buccal mucosal graft (BMG) urethroplasty for FUS and present the outcomes.MethodsBetween January 2014 and December 2021, 37 patients who underwent dorsal onlay BMG urethroplasty were included in the study. Their pre-operative diagnosis was confirmed with uroflowmetry, micturating cystourethrogram, urethral calibration, and on table cystoscopy. Bladder catheter was removed after 2 weeks. Patients were followed up at 3 months, 6 months, 1 year, and then annually with urine analysis, uroflowmetry, and post-void residual assessment. We defined success as a maximum flow rate (Q_(max)) above 15 mL/s without the need for an additional instrumentation.ResultsThe mean age of patients was 47.8 (standard deviation [SD] 11.3) years. Twenty patients had previously undergone urethral dilatations. The mean pre-operative Q_(max) was 7.79 (SD 3.73) mL/s. However, the mean Q_(max) improved to 23.20 (SD 8.25) mL/s after surgery. The mean post-void residual urine after surgery was 30.50 (SD 10.70) mL. This reduced from a mean value of 139.00 (SD 147.24) mL before surgery. The mean follow-up was 30.2 (SD 18.3, range 18–44) months. There was no post-operative incontinence. There were Clavien–Dindo Grade 1 complications in 6 out of 37 (16.2 %) patients during hospital stay. The only long-term complication was recurrence of stricture in 4 (10.8%) patients.ConclusionDorsal onlay BMG urethroplasty in females is a safe, effective technique which can avoid repeated painful dilatations and multiple urethrotomies. One should always consider reconstruction in FUS without any fear of incontinence.
文摘BACKGROUND Cheilectomy of the 1^(st)metatarsophalangeal joint(MTPJ)is one of the most common procedures for the management of hallux rigidus.However,there is no consensus regarding outcomes following minimally invasive dorsal cheilectomy(MIDC)for the management of hallux rigidus.AIM To evaluate outcomes following MIDC for the management of hallux rigidus.METHODS During November 2023,the PubMed,EMBASE and Cochrane Library databases were systematically reviewed to identify clinical studies examining outcomes following MIDC for the management of hallux rigidus.RESULTS Six studies were included.In total,348 patients(370 feet)underwent MIDC for hallux rigidus at a weighted mean follow-up of 37.9±16.5 months.The distribution of patients by Coughlin and Shurna's classification was recorded in 4 studies as follows:Ⅰ(58 patients,27.1%),Ⅱ(112 patients,52.3%),Ⅲ(44 patients,20.6%).Three studies performed an additional 1^(st)MTPJ arthroscopy and debridement following MIDC.Retained intra-articular bone debris was observed in 100%of patients in 1 study.The weighted mean American orthopedic foot and ankle society score improved from a preoperative score of 68.9±3.2 to a postoperative score of 87.1.The complication rate was 8.4%,the most common of which was persistent joint pain and stiffness.Thirty-two failures(8.7%)were observed.Thirty-three secondary procedures(8.9%)were performed at a weighted mean time of 8.6±3.2 months following the index procedure.CONCLUSION This systematic review demonstrated improvements in subjective clinical outcomes together with a moderate complication rate following MIDC for the management of hallux rigidus at short-term follow-up.A moderate reoperation rate at short-term follow-up was recorded.The marked heterogeneity between included studies and paucity of high quality comparative studies limits the generation of any robust conclusions.
文摘Objective To investigate the regulatory effects of nerve growth factor (NGF) on basal and capsaicin-induced release of neuropeptide substance P (SP) in primary cultured embryonic rat dorsal root ganglion (DRG) neurons. Methods DRGs were dissected from 15-day-old embryonic Wistar rats. DRG neurons were dissociated and cultured, and then exposed to different concentrations of NGF (10 ng/mL, 30 ng/mL, or 100 ng/mL) for 72 h. The neurons cultured in media without NGF served as control. RT-PCR were used for detecting the mRNAs of SP and vanilloid receptor 1 (VR1) in the DRG neurons. The SP basal and capsaicin (100 nmol/L)-induced release in the culture were measured by radioimmunoassay (RIA). Results SP mRNA and VR1 mRNA expression increased in primary cultured DRG neurons in a dose-dependent manner of NGF. Both basal release and capsaicin-evoked release of SP increased in NGF-treated DRG neurons compared with in control group. The capsaicin-evoked release of SP also increased in a dose-dependent manner of NGF. Conclusion NGF may promote both basal release and capsaicin-evoked release of SP. NGF might increase the sensitivity of nociceptors by increasing the SP mRNA or VR1 mRNA.
基金the grant from Technical Program of Social Development ofNantong Municipality (No.S30043)the Natural ScienceFoundation of Nantong University (No. 05Z084)
文摘Objective To screen and identify differentially expressed genes in the dorsal root ganglion (DRG) in early experimental diabetic rats. Methods Diabetic model rats were induced by single intraperitoneal injection of streptozotocin (STZ). At the second week after STZ injection, the sensory nerve conduction velocities (SNCV) of sciatic nerve were measured as an indicator of neuropathy. The technique of silver-staining mRNA differential display polymerase chain reaction (DD-PCR) was used to detect the levels of differentially expressed genes in rat DRG. The cDNA fragments that displayed differentially were identified by reverse-hybridization, cloned and sequenced subsequently, and then confirmed by Northern blot. Results The SNCV in the diabetic model group [n = 9, (45.25±10.38) m/s] reduced obviously compared with the control group [n = 8, (60.10± 11.92) m/s] (P 〈 0.05). Seven distinct cDNA clones, one was up-regulated gene and the others were downregulated ones, were isolated by silver-staining mRNA differential display method and confirmed by Northern blot. According to the results of sequence alignment with GenBank data, majority of the clones had no significant sequence similarity to previously reported genes except only one that showed high homology to 6-pyruvoyl-tetrahydropterin synthase mRNA (accession No., BC059140), which had not been reported to relate to diabetic neuropathy. Conclusion These differentially expressed genes in the diabetic DRG may contribute to the pathogenesis of diabetic peripheral neuropathy.
基金study was supported by Wuhan Application Foundation Frontier Project(No.2019020701011428).
文摘Objective This study aimed to investigate the effect of penile selective dorsal neurectomy(SDN)on erectile function in rats.Methods Twelve adult male Sprague-Dawley rats(15 weeks old)were divided into three groups(n=4 per group):in control group,rats received no treatment;in sham group,rats underwent a sham operation;in SDN group,rats underwent SDN with half of the dorsal penile nerve severed.The mating test was performed,and the intracavernous pressure(ICP)assessed six weeks after the surgical treatment.Results At postoperative six weeks,the mating test revealed no significant difference in mounting latency and mounting frequency among the three groups(P>0.05),while the ejaculation latency(EL)was significantly longer and ejaculation frequency(EF)lower in the SDN group than in the control and sham groups(P<0.05).There were no significant differences in preoperative and postoperative ICP and ICP/mean arterial blood pressure(MAP)among the three groups(P>0.05).Conclusion SDN does not adversely affect the erectile function and sexual desire of rats,and at the same time it can reduce EL and EF,providing an application basis for SDN in the clinical treatment of premature ejaculation.
文摘This study evaluated the value of high-frequency ultrasonograpy for early detection of dorsal artery of foot in patients with type 2 diabetes mellitus (MD). Eighty subjects including 40 patients with type 2 MD (T2DM group) and 40 healthy volunteers (NC group) were recruited. The intima-media thickness (IMT), the inner diameter and the perfusion of dorsal artery of foot were measured by using high-frequency ultrasonograpy. Meanwhile, the parameters of vascular elasticity, including stiffness parameter (]3), pressure-strain elastic modulus (Ep), arterial compliance (AC), augment index (AI), and pulse wave conducting velocity (PWV]3) were detected by means of echo-tracking technique. The results showed that no significant difference was found in the IMT, systolic diameter (Ds), diastolic diameter (Dd) and peak systolic velocity (PSV) between T2DM and NC groups. Ep and PWVβ were increased, and AC was decreased in T2DM group as compared with those in NC group with the differences being significant (P〈0.05 for all). There was no significant difference in β and AI between T2DM and NC groups. It was concluded that high-frequency ultra- sonography in combination with echo-tracking technique is sensitive and non-invasive, and can be used for early detection of sclerosis of the lower extremity artery in patients with type 2 MD.
基金Supported by The National Nature Science Foundation Council of ChinaNo.81473784+3 种基金the Natural Science Foundation of Anhui ProvinceNo.1408085MH166the Natural Science Foundation of Anhui University of Traditional Chinese MedicineNo.2013qn002
文摘AIM: To study the neural mechanism by which electroacupuncture(EA) at RN12(Zhongwan) and BL21(Weishu) regulates gastric motility.METHODS: One hundred and forty-four adult Sprague Dawley rats were studied in four separate experiments. Intragastric pressure was measured using custommade rubber balloons, and extracellular neuron firing activity, which is sensitive to gastric distention in the dorsal vagal complex(DVC), was recorded by an electrophysiological technique. The expression levels of c-fos, motilin(MTL) and gastrin(GAS) in the paraventricular hypothalamic nucleus(PVN) were assayed by immunohistochemistry, and the expression levels of motilin receptor(MTL-R) and gastrin receptor(GAS-R) in both the PVN and the gastric antrum were assayed by western blotting.RESULTS: EA at RN12 + BL21(gastric Shu and Mu points), BL21(gastric Back-Shu point), RN12(gastric Front-Mu point), resulted in increased neuron-activating frequency in the DVC(2.08 ± 0.050, 1.17 ± 0.023, 1.55 ± 0.079 vs 0.75 ± 0.046, P < 0.001) compared with a model group. The expression of c-fos(36.24 ± 1.67, 29.41 ± 2.55, 31.79 ± 3.00 vs 5.73 ± 2.18, P < 0.001), MTL(22.48 ± 2.66, 20.76 ± 2.41, 19.17 ± 1.71 vs 11.68 ± 2.52, P < 0.001), GAS(24.99 ± 2.95, 21.69 ± 3.24, 23.03 ± 3.09 vs 12.53 ± 2.15, P < 0.001), MTL-R(1.39 ± 0.05, 1.22 ± 0.05, 1.17 ± 0.12 vs 0.84 ± 0.06, P < 0.001), and GAS-R(1.07 ± 0.07, 0.91 ± 0.06, 0.78 ± 0.05 vs 0.45 ± 0.04, P < 0.001) increased in the PVN after EA compared with the model group. The expression of MTL-R(1.46 ± 0.14, 1.26 ± 0.11, 0.99 ± 0.07 vs 0.65 ± 0.03, P < 0.001), and GAS-R(1.63 ± 0.11, 1.26 ± 0.16, 1.13 ± 0.02 vs 0.80 ± 0.11, P < 0.001) increased in the gastric antrum after EA compared with the model group. Damaging the PVN resulted in reduced intragastric pressure(13.67 ± 3.72 vs 4.27 ± 1.48, P < 0.001). These data demonstrate that the signals induced by EA stimulation of acupoints RN12 and BL21 are detectable in the DVC and the PVN, and increase the levels of gastrointestinal hormones and their receptors in the PVN and gastric antrum to regulate gastric motility. CONCLUSION: EA at RN12 and BL21 regulates gastric motility, which may be achieved through the PVN-DVCvagus-gastric neural pathway.
基金supported by the Hargreaves and Ball Trust,the National Institute for Health Research(II-LA-0313-20003)(to AJR)the Rosetrees Trust,the Academy of Medical Sciences,and the Manchester Regenerative Medicine Network(MaRMN)(to AF and AJR)Progetto Eccellenza from the Italian Ministry of Research(to VM)
文摘Subsequent to a peripheral nerve injury, there are changes in gene expression within the dorsal root ganglia in response to the damage. This review selects factors which are well-known to be vital for inflammation, cell death and nociception, and highlights how alterations in their gene expression within the dorsal root ganglia can affect functional recovery. The majority of studies used polymerase chain reaction within animal models to analyse the dynamic changes following peripheral nerve injuries. This review aims to highlight the factors at the gene expression level that impede functional recovery and are hence are potential targets for therapeutic approaches. Where possible the experimental model, specific time-points and cellular location of expression levels are reported.
文摘Nerve conduits have been a viable alternative to the ‘gold standard’ autograft for treating small peripheral nerve gap injuries. However, they often produce inadequate functional recovery outcomes and are ineffective in large gap injuries. Ridge/groove surface micropatterning has been shown to promote neural cell orientation and guide growth. However, optimization of the ratio of ridge/groove parameters to promote orientation and extension for dorsal root ganglion (DRG) cells on poly(lactic-co-glycolic acid) (PLGA) films has not been previously conducted. Photolithography and micro-molding were used to define various combinations of ridge/groove dimensions on PLGA films. The DRG cells obtained from chicken embryos were cultured on micropatterned PLGA films for cell orientation and migration evaluation.Biodegradation of the films occurred during the test period, however, this did not cause deformation or distortion of the micropatterns. Results from the DRG cell orientation test suggest that when the ridge/groove ratio equals 1 (ridge/groove width parameters are equal, i.e., 10 μm/10 μm (even)), the degree of alignment depends on the size of the ridges and grooves, when the ratio is smaller than 1 (groove controlled) the alignment increases as the ridge size decreases, and when the ratio is larger than 1 (ridge controlled), the alignment is reduced as the width of the grooves decreases. The migration rate and neurite extension of DRG neurons were greatest on 10 μm/10 μm and 30 μm/30 μm micropatterned PLGA films. Based on the data, the 10 μm/10 μm and 30 μm/30 μm micropatterned PLGA films are the optimized ridge/groove surface patterns for the construction of nerve repair devices.
基金supported by the National Natural Science Foundation of China,No.81160158 and 30860290
文摘This study investigated the possible involvement of microRNAs in the regulation of genes that participate in peripheral neural regeneration. A microRNA microarray analysis was conducted and 23 microRNAs were identiifed whose expression was signiifcantly changed in rat dorsal root ganglia after sciatic nerve transection. The expression of one of the downregulated microRNAs, microRNA-214, was validated using quantitative reverse transcriptase-PCR. MicroRNA-214 was predicted to target the 3′-untranslated region of Slit-Robo GTPase-activating protein 3. In situ hybridization veriifed that microRNA-214 was located in the cytoplasm of dorsal root ganglia primary neurons and was downregulated following sciatic nerve transection. Moreover, a com-bination of in situ hybridization and immunohistochemistry revealed that microRNA-214 and Slit-Robo GTPase-activating protein 3 were co-localized in dorsal root ganglion primary neu-rons. Western blot analysis suggested that Slit-Robo GTPase-activating protein 3 was upregulated in dorsal root ganglion neurons after sciatic nerve transection. These data demonstrate that mi-croRNA-214 is located and differentially expressed in dorsal root ganglion primary neurons and may participate in regulating the gene expression of Slit-Robo GTPase-activating protein 3 after sciatic nerve transection.
基金supported by the Youth Shihezi University Applied Basic Research Project of China,No.2015ZRKYQ-LH19
文摘Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia.The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain.A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats.These rats were then subcutaneously injected with 17β-estradiol,the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid(AP-5),or both once daily for 15 days.Compared with injured drug na?ve rats,rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency,indicating increased sensitivity to mechanical and thermal pain.Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity(as assessed by immunohistochemistry) and protein(as determined by western blot assay) in spinal dorsal root ganglia.This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5,whereas AP-5 alone did not affect NMDAR1 expression.These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve,and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.
文摘During the last 100 years in medical literature,there are only 54 reports,including the report of Pasaoglu et al(World J Gastroenterol 2008;14:2915-2916),with clinical descriptions of agenesis of the dorsal pancreas in humans.Agenesis of the dorsal pancreas,a rare congenital pancreatic malformation,is associated with some other medical conditions such as hyperglycemia,abdominal pain,pancreatitis and a few other diseases.In approximately 50% of reported patients with this congenital malformation,hyperglycemia was demonstrated.Evaluation of hyperglycemia and diabetes mellitus in all patients with agenesis of the dorsal pancreas including description of fasting blood glucose,oral glucose tolerance test,glycated hemoglobin and medical treatment would be a future goal.Since autosomal dominant transmission has been suggested in single families,more family studies including imaging technologies with demonstration of the pancreatic duct system are needed for evaluation of this disease.With this letter to the editor,we aim to increase available information for the better understanding of this rare disease.
基金supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Major Program),No.16KJA310005(to SYL)the Natural Science Foundation of Nantong City of China,No.JC2018058(to TMQ)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘The regenerative capacity of peripheral nerves is limited after nerve injury.A number of growth factors modulate many cellular behaviors,such as proliferation and migration,and may contribute to nerve repair and regeneration.Our previous study observed the dynamic changes of genes in L4–6 dorsal root ganglion after rat sciatic nerve crush using transcriptome sequencing.Our current study focused on upstream growth factors and found that a total of 19 upstream growth factors were dysregulated in dorsal root ganglions at 3,9 hours,1,4,or 7 days after nerve crush,compared with the 0 hour control.Thirty-six rat models of sciatic nerve crush injury were prepared as described previously.Then,they were divided into six groups to measure the expression changes of representative genes at 0,3,9 hours,1,4 or 7 days post crush.Our current study measured the expression levels of representative upstream growth factors,including nerve growth factor,brain-derived neurotrophic factor,fibroblast growth factor 2 and amphiregulin genes,and explored critical signaling pathways and biological process through bioinformatic analysis.Our data revealed that many of these dysregulated upstream growth factors,including nerve growth factor,brain-derived neurotrophic factor,fibroblast growth factor 2 and amphiregulin,participated in tissue remodeling and axon growth-related biological processes Therefore,the experiment described the expression pattern of upstream growth factors in the dorsal root ganglia after peripheral nerve injury.Bioinformatic analysis revealed growth factors that may promote repair and regeneration of damaged peripheral nerves.All animal surgery procedures were performed in accordance with Institutional Animal Care Guidelines of Nantong University and ethically approved by the Administration Committee of Experimental Animals,China(approval No.20170302-017)on March 2,2017.
文摘AIM: To investigate and compare the effects of spinal D-(-)-2-amino-7-phosphonoheptanoic acid (AP-7) and 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX),two glutamate receptor antagonists, on the responses of dorsal horn neurons to colorectal distension (CRD) in adult rats exposed to neonatal colon irritation (CI).METHODS: Hypersensitive SD rats were generated by CI during postnatal days 8, 10 and 12. Experiments on adult rats were performed using extracellular single-unit recording. The effects of spinal application of AP-7 (0.001,0.01, 0.1, 1 mmoL) were tested on the CRD-evoked neuronal responses in 16 controls and 17 CI rats. The effects of CNQX (0.2, 2, 5, 10 μmoL) were also tested on the CRD-evoked responses of 17 controls and 18 CI neurons.RESULTS: (1) The average responses of lumbosacral neurons to all intensities of CRD in CI rats were significantly higher than those in control rats; (2) In control rats, AP-7 (0.01 mmoL) had no significant effect on the neuronal response to all intensities of CRD (20,40, 60, 80 mmHg); while AP-7 (0.1 mmoL) inhibited the neuronal response to 80-mmHg CRD. By contrast, in CI rats, AP-7 (0.01-1 mmoL) attenuated the CRD-evoked neuronal responses to all distention pressures in a dosedependent manner; (3) In control rats, CNQX (2 μmoL)had no significantly effect on the neuronal response to all intensities of CRD; however, CNQX (5 μmoL) significantly attenuated the responses to CRD in the 40-80 mmHg range. By contrast, CNQX (2-10 μmoL)significantly decreased the neuronal responses in CI rats to non-noxious and noxious CRD in a dose-dependent manner.CONCLUSION: Our results suggest that spinal N-methyl-D-aspartate (NMDA) and non-NMDA receptors may contribute to the processing of central sensitivity in a neonatal CI rat model, but they may play different roles in it.
基金supported by grants from the National Natural Science Foundation of China(No.30160026)the Youth Science and Technology Innovation Special Foundation of Xinjiang Production and Construction Corps,China(No.2010JC33)
文摘The mechanism underlying the modulatory effect of substance P(SP) on GABA-activated response in rat dorsal root ganglion(DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA(1–1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons(89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA(1–1000 μmol/L) evoked a depolarizing response in 236 out of 257(91.8%) DRG neurons examined with intracellular recordings. Application of SP(0.001–1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1(NK1) receptors antagonist spantide but not by L659187 and SR142801(1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C(PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca2+-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.
基金supported by the National Natural Science Foundation of China,No.30160026(to JQS)the High Level Talent Research Project of Shihezi University of China,No.RCSX201705(to YW)
文摘Sodium-potassium-chloride cotransporter 1 (NKCC1) and potassium-chloride cotransporter 2 (KCC2) are associated with the transmission of peripheral pain.We investigated whether the increase of NKCC1 and KCC2 is associated with peripheral pain transmission in dorsal root ganglion neurons.To this aim,rats with persistent hyperalgesia were randomly divided into four groups.Rats in the control group received no treatment,and the rat sciatic nerve was only exposed in the sham group.Rats in the chronic constriction injury group were established into chronic constriction injury models by ligating sciatic nerve and rats were given bumetanide,an inhibitor of NKCC1,based on chronic constriction injury modeling in the chronic constriction injury + bumetanide group.In the experiment measuring thermal withdrawal latency,bumetanide (15 mg/kg) was intravenously administered.In the patch clamp experiment,bumetanide (10 μg/μL) and acutely isolated dorsal root ganglion neurons (on day 14) were incubated for 1 hour,or bumetanide (5 μg/μL) was intrathecally injected.The Hargreaves test was conducted to detect changes in thermal hyperalgesia in rats.We found that the thermal withdrawal latency of rats was significantly decreased on days 7,14,and 21 after model establishment.After intravenous injection of bumetanide,the reduction in thermal retraction latency caused by model establishment was significantly inhibited.Immunohistochemistry and western blot assay results revealed that the immune response and protein expression of NKCC1 in dorsal root ganglion neurons of the chronic constriction injury group increased significantly on days 7,14,and 21 after model establishment.No immune response or protein expression of KCC2 was observed in dorsal root ganglion neurons before and after model establishment.The Cl^– (chloride ion) fluorescent probe technique was used to evaluate the change of Cl^– concentration in dorsal root ganglion neurons of chronic constriction injury model rats.We found that the relative optical density of N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (a Cl^– fluorescent probe whose fluorescence Cenintensity decreases as Cl– concentration increases) in the dorsal root ganglion neurons of the chronic constriction injury group was significantly decreased on days 7 and 14 after model establishment.The whole-cell patch clamp technique revealed that the resting potential and action potential frequency of dorsal root ganglion neurons increased,and the threshold and rheobase of action potentials decreased in the chronic constriction injury group on day 14 after model establishment.After bumetanide administration,the above indicators were significantly suppressed.These results confirm that CCI can induce abnormal overexpression of NKCC1,thereby increasing the Cl^– concentration in dorsal root ganglion neurons;this then enhances the excitability of dorsal root ganglion neurons and ultimately promotes hyperalgesia and allodynia.In addition,bumetanide can achieve analgesic effects.All experiments were approved by the Institutional Ethics Review Board at the First Affiliated Hospital,College of Medicine,Shihezi University,China on February 22,2017 (approval No.A2017-169-01).
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2015RIDIAIA01059432)
文摘Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to simultaneously analyze hundreds or thousands of proteins differentially expressed in the dorsal horn of the spinal cord in rats or dorsal root ganglion of rats with certain type of peripheral nerve injury. However, a proteomic study using a mouse model of neuropathic pain could be attempted because of abundant protein database and the availability of transgenic mice. In this study, whole proteins were extracted from the ipsilateral dorsal half of the 4th-6th lumbar spinal cord in a mouse model of spared nerve injury(SNI)-induced neuropathic pain. In-gel digests of the proteins size-separated on a polyacrylamide gel were subjected to reverse-phase liquid-chromatography coupled with electrospray ionization ion trap tandem mass spectrometry(MS/MS). After identifying proteins, the data were analyzed with subtractive proteomics using ProtAn, an in-house analytic program. Consequently, 15 downregulated and 35 upregulated proteins were identified in SNI mice. The identified proteins may contribute to the maintenance of neuropathic pain,and may provide new or valuable information in the discovery of new therapeutic targets for neuropathic pain.