Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor sig...Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine.展开更多
This paper describes a novel wavelet-based approach to the detection of abrupt fault of Rotorcrafi Unmanned Aerial Vehicle (RUAV) sensor system. By use of wavelet transforms that accurately localize the characterist...This paper describes a novel wavelet-based approach to the detection of abrupt fault of Rotorcrafi Unmanned Aerial Vehicle (RUAV) sensor system. By use of wavelet transforms that accurately localize the characteristics of a signal both in the time and frequency domains, the occurring instants of abnormal status of a sensor in the output signal can be identified by the multi-scale representation of the signal. Once the instants are detected, the distribution differences of the signal energy on all decomposed wavelet scales of the signal before and after the instants are used to claim and classify the sensor faults.展开更多
Failure detection module is one of important components in fault-tolerant distributed systems,especially cloud platform.However,to achieve fast and accurate detection of failure becomes more and more difficult especia...Failure detection module is one of important components in fault-tolerant distributed systems,especially cloud platform.However,to achieve fast and accurate detection of failure becomes more and more difficult especially when network and other resources' status keep changing.This study presented an efficient adaptive failure detection mechanism based on volterra series,which can use a small amount of data for predicting.The mechanism uses a volterra filter for time series prediction and a decision tree for decision making.Major contributions are applying volterra filter in cloud failure prediction,and introducing a user factor for different QoS requirements in different modules and levels of IaaS.Detailed implementation is proposed,and an evaluation is performed in Beijing and Guangzhou experiment environment.展开更多
A study is given on the application of BP neural network (BPNN) in sensorfailure detection in control systems, and on the networ architecture desgn, the redun-dancy,the quickness and the insensitivity to sensor noise ...A study is given on the application of BP neural network (BPNN) in sensorfailure detection in control systems, and on the networ architecture desgn, the redun-dancy,the quickness and the insensitivity to sensor noise of the BPNN based sensor detec-tion methed. Besules, an exploration is made into tbe factors accounting for the quality ofsignal recovery for failed sensor using BPNN. The results reveal clearly that BPNN can besuccessfully used in sensor failure detection and data recovery.展开更多
This paper presents an automatic system for failure detection in hydro-power generators. The main idea of this system is to detect failure using current and voltage signals acquired without any type of internal interf...This paper presents an automatic system for failure detection in hydro-power generators. The main idea of this system is to detect failure using current and voltage signals acquired without any type of internal interference in the generator operation. The detected failures could be mechanical or electrical origins, such as: problems in bearings, unwanted vibrations, partial discharges, misalignment, unbalancing, among others. It is possible because the generator acts as a transducer for mechanical problems, and they appear in current and voltage signals. This automatic system based on electric signature analysis has been installed in Itapebi Power Plant generators since 2012. Some results are presented in this paper.展开更多
Predicting heartbeat message arrival time is crucial for the quality of failure detection service over intemet. However, intemet dynamic characteristics make it very difficult to understand message behavior and accura...Predicting heartbeat message arrival time is crucial for the quality of failure detection service over intemet. However, intemet dynamic characteristics make it very difficult to understand message behavior and accurately predict heartbeat arrival time. To solve this problem, a novel black-box model is proposed to predict the next heartbeat arrival time. Heartbeat arrival time is modeled as auto-regressive process, heartbeat sending time is modeled as exogenous variable, the model' s coefficients are estimated based on the sliding window of observations and this result is used to predict the next heartbeat arrival time. Simulation shows that this adaptive auto-regressive exogenous (ARX) model can accurately capture heartbeat arrival dynamics and minimize prediction error in different network environments.展开更多
A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes ...A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes guides a link failure.This link failure creates more data packet drops that can cause a long time delay.As a result,measuring accurate link failure time is the key factor in the MANET.This paper presents a Fuzzy Linear Regression Method to measure Link Failure(FLRLF)and provide an optimal route in the MANET-Internet of Things(IoT).This work aims to predict link failure and improve routing efficiency in MANET.The Fuzzy Linear Regression Method(FLRM)measures the long lifespan link based on the link failure.The mobile node group is built by the Received Signal Strength(RSS).The Hill Climbing(HC)method selects the Group Leader(GL)based on node mobility,node degree and node energy.Additionally,it uses a Data Gathering node forward the infor-mation from GL to the sink node through multiple GL.The GL is identified by linking lifespan and energy using the Particle Swarm Optimization(PSO)algo-rithm.The simulation results demonstrate that the FLRLF approach increases the GL lifespan and minimizes the link failure time in the MANET.展开更多
Background:Amanita poisoning as a foodborne disease has raised concerning mortality issues.Reducing the interval between mushroom ingestion and medical intervention could greatly influence the outcomes of Amanita pois...Background:Amanita poisoning as a foodborne disease has raised concerning mortality issues.Reducing the interval between mushroom ingestion and medical intervention could greatly influence the outcomes of Amanita poisoning patients,while treatment is highly dependent on a confirmed diagnosis.To this end,we developed an early detection-guided intervention strategy by optimizing diagnostic process with performingα-amanitin detection,and further explored whether this strategy influenced the progression of Amanita poisoning.Methods:This study was a retrospective analysis of 25 Amanita poisoning patients.Thirteen patients in the detection group were diagnosed mainly based onα-amanitin detection,and 12 patients were diagnosed essentially on the basis of mushroom consumption history,typical clinical patterns and mushroom identification(conventional group).Amanita poisoning patients received uniform therapy,in which plasmapheresis was executed once confirming the diagnosis of Amanita poisoning.We compared the demographic baseline,clinical and laboratory data,treatment and outcomes between the two groups,and further explored the predictive value ofα-amanitin concentration in serum.Results:Liver injury induced by Amanita appeared worst at the fourth day and alanine aminotransferase(ALT)rose higher than aspartate aminotransferase(AST).The mortality rate was 7.7%(1/13)in the detection group and 50.0%(6/12)in the conventional group(P=0.030),since patients in the detection group arrived hospital much earlier and received plasmapheresis at the early stage of disease.The early detection-guided intervention helped alleviate liver impairment caused by Amanita and decreased the peak AST as well as ALT.However,the predictive value ofα-amanitin concentration in serum was still considered limited.Conclusions:In the management of mushroom poisoning,consideration should be given to the rapid detection ofα-amanitin in suspected Amanita poisoning patients and the immediate initiation of medical treatment upon a positive toxin screening result.展开更多
In the experimental study, AGE-782 thermal instrument was used to detect the infrared radiation variation of coal and sandstone (wave-length range 3.6~5.5 μm was used). It's discovered that coal and sandstone fa...In the experimental study, AGE-782 thermal instrument was used to detect the infrared radiation variation of coal and sandstone (wave-length range 3.6~5.5 μm was used). It's discovered that coal and sandstone failure under load have three kinds of infrared thermal features as well as infrared forewarning messages. That are: (1) temperature rises gradually but drops before failure ; (2) temperature rises gradually but quickly rises before failure; (3) first rises,then drops and lower temperature emerges before failure. The further researches and the prospect of micro-wave remote sensing detection .on ground pressure is also discussed.展开更多
This paper proposes a heading fault tolerance scheme for operation-level underwater robots subject to external interference.The scheme is based on a double-criterion fault detection method using a redundant structure ...This paper proposes a heading fault tolerance scheme for operation-level underwater robots subject to external interference.The scheme is based on a double-criterion fault detection method using a redundant structure of a dual electronic compass.First,two subexpansion Kalman filters are set up to fuse data with an inertial attitude measurement system.Then,fault detection can effectively identify the fault sensor and fault source.Finally,a fault-tolerant algorithm is used to isolate and alarm the faulty sensor.The program can effectively detect the constant magnetic field interference,change the magnetic field interference and small transient magnetic field interference,and conduct fault tolerance control in time to ensure the heading accuracy of the system.Test verification shows that the system is practical and effective.展开更多
文摘Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine.
文摘This paper describes a novel wavelet-based approach to the detection of abrupt fault of Rotorcrafi Unmanned Aerial Vehicle (RUAV) sensor system. By use of wavelet transforms that accurately localize the characteristics of a signal both in the time and frequency domains, the occurring instants of abnormal status of a sensor in the output signal can be identified by the multi-scale representation of the signal. Once the instants are detected, the distribution differences of the signal energy on all decomposed wavelet scales of the signal before and after the instants are used to claim and classify the sensor faults.
基金supported by the National High-tech Research and Development Program(863) of China under Grant No. 2011AA01A102
文摘Failure detection module is one of important components in fault-tolerant distributed systems,especially cloud platform.However,to achieve fast and accurate detection of failure becomes more and more difficult especially when network and other resources' status keep changing.This study presented an efficient adaptive failure detection mechanism based on volterra series,which can use a small amount of data for predicting.The mechanism uses a volterra filter for time series prediction and a decision tree for decision making.Major contributions are applying volterra filter in cloud failure prediction,and introducing a user factor for different QoS requirements in different modules and levels of IaaS.Detailed implementation is proposed,and an evaluation is performed in Beijing and Guangzhou experiment environment.
文摘A study is given on the application of BP neural network (BPNN) in sensorfailure detection in control systems, and on the networ architecture desgn, the redun-dancy,the quickness and the insensitivity to sensor noise of the BPNN based sensor detec-tion methed. Besules, an exploration is made into tbe factors accounting for the quality ofsignal recovery for failed sensor using BPNN. The results reveal clearly that BPNN can besuccessfully used in sensor failure detection and data recovery.
文摘This paper presents an automatic system for failure detection in hydro-power generators. The main idea of this system is to detect failure using current and voltage signals acquired without any type of internal interference in the generator operation. The detected failures could be mechanical or electrical origins, such as: problems in bearings, unwanted vibrations, partial discharges, misalignment, unbalancing, among others. It is possible because the generator acts as a transducer for mechanical problems, and they appear in current and voltage signals. This automatic system based on electric signature analysis has been installed in Itapebi Power Plant generators since 2012. Some results are presented in this paper.
基金the National Basic Research Program of China(No.2003CB314806)China Next Generation Intemet Project(CNGI-04-6-2T)
文摘Predicting heartbeat message arrival time is crucial for the quality of failure detection service over intemet. However, intemet dynamic characteristics make it very difficult to understand message behavior and accurately predict heartbeat arrival time. To solve this problem, a novel black-box model is proposed to predict the next heartbeat arrival time. Heartbeat arrival time is modeled as auto-regressive process, heartbeat sending time is modeled as exogenous variable, the model' s coefficients are estimated based on the sliding window of observations and this result is used to predict the next heartbeat arrival time. Simulation shows that this adaptive auto-regressive exogenous (ARX) model can accurately capture heartbeat arrival dynamics and minimize prediction error in different network environments.
文摘A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes guides a link failure.This link failure creates more data packet drops that can cause a long time delay.As a result,measuring accurate link failure time is the key factor in the MANET.This paper presents a Fuzzy Linear Regression Method to measure Link Failure(FLRLF)and provide an optimal route in the MANET-Internet of Things(IoT).This work aims to predict link failure and improve routing efficiency in MANET.The Fuzzy Linear Regression Method(FLRM)measures the long lifespan link based on the link failure.The mobile node group is built by the Received Signal Strength(RSS).The Hill Climbing(HC)method selects the Group Leader(GL)based on node mobility,node degree and node energy.Additionally,it uses a Data Gathering node forward the infor-mation from GL to the sink node through multiple GL.The GL is identified by linking lifespan and energy using the Particle Swarm Optimization(PSO)algo-rithm.The simulation results demonstrate that the FLRLF approach increases the GL lifespan and minimizes the link failure time in the MANET.
基金This project was supported by a grant from the Foundation of Key Discipline Construction of Zhejiang Province for Traditional Chinese Medicine (2017-XKA36).
文摘Background:Amanita poisoning as a foodborne disease has raised concerning mortality issues.Reducing the interval between mushroom ingestion and medical intervention could greatly influence the outcomes of Amanita poisoning patients,while treatment is highly dependent on a confirmed diagnosis.To this end,we developed an early detection-guided intervention strategy by optimizing diagnostic process with performingα-amanitin detection,and further explored whether this strategy influenced the progression of Amanita poisoning.Methods:This study was a retrospective analysis of 25 Amanita poisoning patients.Thirteen patients in the detection group were diagnosed mainly based onα-amanitin detection,and 12 patients were diagnosed essentially on the basis of mushroom consumption history,typical clinical patterns and mushroom identification(conventional group).Amanita poisoning patients received uniform therapy,in which plasmapheresis was executed once confirming the diagnosis of Amanita poisoning.We compared the demographic baseline,clinical and laboratory data,treatment and outcomes between the two groups,and further explored the predictive value ofα-amanitin concentration in serum.Results:Liver injury induced by Amanita appeared worst at the fourth day and alanine aminotransferase(ALT)rose higher than aspartate aminotransferase(AST).The mortality rate was 7.7%(1/13)in the detection group and 50.0%(6/12)in the conventional group(P=0.030),since patients in the detection group arrived hospital much earlier and received plasmapheresis at the early stage of disease.The early detection-guided intervention helped alleviate liver impairment caused by Amanita and decreased the peak AST as well as ALT.However,the predictive value ofα-amanitin concentration in serum was still considered limited.Conclusions:In the management of mushroom poisoning,consideration should be given to the rapid detection ofα-amanitin in suspected Amanita poisoning patients and the immediate initiation of medical treatment upon a positive toxin screening result.
文摘In the experimental study, AGE-782 thermal instrument was used to detect the infrared radiation variation of coal and sandstone (wave-length range 3.6~5.5 μm was used). It's discovered that coal and sandstone failure under load have three kinds of infrared thermal features as well as infrared forewarning messages. That are: (1) temperature rises gradually but drops before failure ; (2) temperature rises gradually but quickly rises before failure; (3) first rises,then drops and lower temperature emerges before failure. The further researches and the prospect of micro-wave remote sensing detection .on ground pressure is also discussed.
基金supported by the Natural Science Foundation of Heilongjiang Province(E2017024)13th Five-Year Pre-Research(J040717005)+1 种基金National Defense Basic Research(A0420132202)China International Ministry of Science and Technology International Cooperation Project(2014DFR10010)
文摘This paper proposes a heading fault tolerance scheme for operation-level underwater robots subject to external interference.The scheme is based on a double-criterion fault detection method using a redundant structure of a dual electronic compass.First,two subexpansion Kalman filters are set up to fuse data with an inertial attitude measurement system.Then,fault detection can effectively identify the fault sensor and fault source.Finally,a fault-tolerant algorithm is used to isolate and alarm the faulty sensor.The program can effectively detect the constant magnetic field interference,change the magnetic field interference and small transient magnetic field interference,and conduct fault tolerance control in time to ensure the heading accuracy of the system.Test verification shows that the system is practical and effective.