Cu/Al bar clad material was fabricated by a drawing process and a subsequent heat treatment.During these processes,intermetallic compounds have been formed at the interface of Cu/Al and have affected its bonding prope...Cu/Al bar clad material was fabricated by a drawing process and a subsequent heat treatment.During these processes,intermetallic compounds have been formed at the interface of Cu/Al and have affected its bonding property.Microstructures of Cu/Al interfaces were observed by OM,SEM and EDX Analyser in order to investigate the bonding properties of the material.According to the microstructure a series of diffusion layers were observed at the interface and the thicknesses of diffusion layers have increased with aging time as a result of the diffusion bonding.The interfaces were composed of 3-ply diffusion layers and their compositions were changed with aging time at 400 °C.These compositional compounds were revealed to be η2,(θ+η2),(α+θ) intermetallic phases.It is evident from V-notch impact tests that the growth of the brittle diffusion layers with the increasing aging time directly influenced delamination distance between the Cu sleeve and the Al core.It is suggested that the proper holding time at 400 °C for aging as post heat treatment of a drawn Cu/Al bar clad material would be within 1 h.展开更多
The effect of strain and drawing temperature on the evolution of microstructure and fiber textures of aluminum wiresdrawn at room temperature and cryogenic temperature was investigated by TEM and EBSD observations.The...The effect of strain and drawing temperature on the evolution of microstructure and fiber textures of aluminum wiresdrawn at room temperature and cryogenic temperature was investigated by TEM and EBSD observations.The results show that lowangle boundaries frequency increases and high angle boundaries frequency decreases with strain increasing when the strain is low.Athigh strain,most of grain and dislocation boundaries are parallel to the drawn direction and low angle boundaries frequencydecreases and high angle boundaries frequency increases with strain increasing.The decrease of deformation temperature leads tomicrostructure finer and low angle boundaries frequency increasing.Texture analysis indicates that volume fraction of complextexture component decreases with strain increasing and a mixture of?111?and?100?fiber texture forms at high strain.?111?is stableat low strains but?100?becomes stable at high strain.The decrease of temperature can enhance the stability of?111?orientation athigh strain.展开更多
The present study used electroencephalography to examine mu rhythm suppression (a putative index of human mirror neuron system activation) at frontal sites (F3, Fz and F4), central sites (C3, Cz and C4), parieta...The present study used electroencephalography to examine mu rhythm suppression (a putative index of human mirror neuron system activation) at frontal sites (F3, Fz and F4), central sites (C3, Cz and C4), parietal sites (P3, Pz and P4) and occipital sites (O1 and O2), while subjects observed real hand motion (real hand motion condition) and illustrative depictions of hand motion (drawn hand motion condition). Experimental data revealed that mu rhythm suppression was exhibited in the mirror neuron system when subjects observed both real and drawn hand motion. Moreover, the mu rhythm recorded at the F3, Fz, F4, and Pz poles was significantly suppressed while observing both stimulus types, but no obvious mu suppression occurred at the O1, 02 and 03 poles. These results suggest that the observation of drawings of human hand actions can activate the human mirror neuron system. This evidence supports the hypothesis that the mirror neuron system may be involved in intransitively abstract action understanding.展开更多
The recrystallization behavior of cold-drawn 0.12 wt% C steel during annealing at temperatures 600°C and 650°C was investigated. Hardness tests were used to characterize the recrystallization kinetics. The m...The recrystallization behavior of cold-drawn 0.12 wt% C steel during annealing at temperatures 600°C and 650°C was investigated. Hardness tests were used to characterize the recrystallization kinetics. The micrographs of the steel were obtained using optical microscopy (OM) to characterize the grain microstructure of the non-treated and the annealed steel samples. Annihilation of dislocation defects occur within the soaking time of 5 - 10 minutes for all the deformed steel after annealing at 650°C. Specifically at 5 minutes soaking time the grains elongation is still observed indicating that reformation of grains is not taking place but recovery of the deformed grains. At the 10 minutes annealing time, new grains are observed to begin and full recrystallization is achieved at 15 minutes annealing time. At annealing time between 20 - 25 minutes, grains coarsening are observed indicating the onset of grain growth. The hardness of the material reduces with increasing annealing temperature for all the degree of cold drawn deformation. On the basis of the experimentally obtained hardness values, recrystallization increases with increasing degree of cold drawn deformation for the annealed steel. Recovery process was found to prolong in the 20% cold drawn steel as compared to the 55% cold drawn steel. The prolong recovery process is due to reduction in the driving force. Full recrystallization of the annealed steel is achieved at different soaking time depending on the degree of the cold drawn steel.展开更多
Although line drawings consist of only line segments on a plane, they convey much information about the three-dimensional object structures. For a computer interpreting line drawings, some intelligent mechanism is req...Although line drawings consist of only line segments on a plane, they convey much information about the three-dimensional object structures. For a computer interpreting line drawings, some intelligent mechanism is required to extract three-dimensional information from the two-dimensional line drawings. In this paper, a new labeling theory and method are proposed for the two-dimensional line drawing with hidden-part-draw of a three-dimensional planar object with trihedral vertices. Some rules for labeling line drawing are established. There are 24 kinds of possible junctions for line drawing with hidden-part-draw, in which there are 8 possible Y and 16 W junctions. The three problems are solved that Sugihara's line drawing labeling technique exists. By analyzing the projections of the holes in manifold planar object, we have put forward a labeling method for the line drawing. Our labeling theory and method can discriminate between correct and incorrect hidden-part-draw natural line drawings. The hidden-part-draw natural line drawings can be labeled correctly by our labeling theory and method, whereas the labeling theory of Sugihara can only label the hidden-part-draw unnatural line drawings in which some visible lines must be drawn as hidden lines, and some invisible lines must be drawn as continuous lines.展开更多
It was shown by the study of TEM that the fine lamellar pearlite becomes a ductile phase dur- ing cold drawing.There exist many ledges to emit dislocations at Fe_3C/Fe interface.It is one of the reasons that high dens...It was shown by the study of TEM that the fine lamellar pearlite becomes a ductile phase dur- ing cold drawing.There exist many ledges to emit dislocations at Fe_3C/Fe interface.It is one of the reasons that high density of dislocations emerges at the Fe_3C/Fe interface. Furthermore,there are some evidences to support that dislocation cuts through Fe_3C.There- fore,it is necessary to consider the contribution of cementite being sheared strengthening.展开更多
Drawn low carbon steel is characterized by brittle fracture. These defects are associated with the poor ductility and high strain hardening due to the cold work. There is a need therefore to determine optimum heat tre...Drawn low carbon steel is characterized by brittle fracture. These defects are associated with the poor ductility and high strain hardening due to the cold work. There is a need therefore to determine optimum heat treatment parameters that could ensure improved toughness and ductility. Determining the optimum annealing parameters ensures valued recrystallization and also minimizes grain growth that could be detrimental to the resulting product. 40% and 55% cold drawn steels were annealed at temperatures 500℃ to 650℃ at intervals of 50℃ and soaked for 10 to 60 minutes at interval of 10 minutes to identify the temperature range and soaking time where optimum combination of properties could be obtained. Tensile test and impact toughness experiments were done to determine the required properties of the steel. Polynomial regression analysis was used to fit the properties relationship with soaking time and temperatures and the classical optimization technique was used to determine the minimum soaking time and temperature required for improved properties of the steel. Annealing treatment at 588℃ for 11 minutes at grain size of 44.7 mm can be considered to be the optimum annealing treatment for the 40% cold drawn 0.12 wt% C steel and 539℃ for 17 minutes at grain size of 19.5 mm for the 55% cold drawn 0.12 wt% C steel.展开更多
The effect of prior-heat treatments at 500℃, 600℃ and 700℃ on the creep behavior of an industrial drawn copper has been studied under constant stresses (98, 108 and 118 MPa) and temperatures (290℃ and 340℃). The ...The effect of prior-heat treatments at 500℃, 600℃ and 700℃ on the creep behavior of an industrial drawn copper has been studied under constant stresses (98, 108 and 118 MPa) and temperatures (290℃ and 340℃). The results revealed that the creep behavior and the creep life of the material depend strongly on these prior-heat treatments. The apparent activation energy Qc for different creep tests of a drawn copper wire was calculated. The fracture mechanism of the material is characterized using optical microscopy.展开更多
The paper presents the results of investigation on the effect of soaking time on the yield strength, ductility and hardness properties of annealed cold-drawn low carbon steel. The low carbon steel cold-drawn at 40% de...The paper presents the results of investigation on the effect of soaking time on the yield strength, ductility and hardness properties of annealed cold-drawn low carbon steel. The low carbon steel cold-drawn at 40% deformation was annealed at 900 deg Celsius for soaking times of 10, 20, 30, 40, 50 and 60 minutes. Tensile, charpy and Brinnel hardness tests were conducted to determine the yield strengths, tensile strengths, impact strengths, ductility and hardness of the annealed steel with increasing soaking time. The yield strength, tensile strength, hardness and impact strength of the steel showed a continuous drop in value with increasing soaking time up to 60 minutes with a steep drop between 30 and 40 minutes. Ductility values followed the same decreasing trend up to 40 minutes soaking time after which the values started increasing again till 60 minutes soaking time. There was a linear relationship between the tensile strength and hardness of the material for different soaking times. This linear relationship was also observed for yield strength and hardness of the material.展开更多
In January 1985, our Institute formed a topic research team aimed at treating underwater soft foundations with explosive techniques. Its research target was the West Seawall in the Harbour of Lianyungang in northern J...In January 1985, our Institute formed a topic research team aimed at treating underwater soft foundations with explosive techniques. Its research target was the West Seawall in the Harbour of Lianyungang in northern Jiangsu Province. The West Seawall is a key engineering project in the construction and development of the Harbour.展开更多
From 1942 to 1945 more than 15,000 Jewish children passed through Terezin,a former military garrison set up as a ghetto.It soon became a transition station for hundreds of thousands of Jews on their way to the gas cha...From 1942 to 1945 more than 15,000 Jewish children passed through Terezin,a former military garrison set up as a ghetto.It soon became a transition station for hundreds of thousands of Jews on their way to the gas chambers of Auschwitz.While most of the children imprisoned at Terezin perished at Auschwitz,some of their stories of life during the Holocaust are preserved in drawings and poems,published in the book,I Never Saw Another Butterfly. When Terezin was liberated in 1945,only about 100 children were alive to return to what was left of their lives.展开更多
Several excellent well-organized reviews and research papers on two special topics, "The challenges of avian influenza virus: mechanism, epidemiology, and control" and "Molecular
Agriculture is the largest consumer of freshwater.Desalinated seawater is an important alternative water source for sustainable irrigation.However,some issues of the current desalination technology hinder its use for ...Agriculture is the largest consumer of freshwater.Desalinated seawater is an important alternative water source for sustainable irrigation.However,some issues of the current desalination technology hinder its use for agriculture irrigation,including low boron removal and high energy consumption.This study systematically explored the feasibility of employing fertilizer drawn forward osmosis(FDFO)as an alternative to 2nd pass reverse osmosis(RO)by considering the boron removal performance and specific energy consumption(SEC).Different operating conditions were investigated,such as the boron and NaCl concentrations in feed solution(FS),draw solution(DS)concentration,pH,the volume ratio of FS to DS,membrane orientation,flow rate,and operating temperature.The results indicated that a low boron concentration in FS and high DS pH(pH=11.0)decreased the boron solute flux,and led to low final boron concentration in the DS.The other operating conditions had negligible influence on the final DS boron concentration.Also,a lower flow rate and higher specific water flux with certain permeate water volumes were conducive to reducing the SEC of the FDFO process.Overall,our study paves a new way of using FDFO in irrigation,which avoids the phytotoxicity and human health risk of boron.The results show the potential of FDFO as an alternative to 2nd pass RO for irrigation water production.展开更多
基金Project supported by the Fundamental Materials Development funded by the Korean Ministry of Knowledge Economy
文摘Cu/Al bar clad material was fabricated by a drawing process and a subsequent heat treatment.During these processes,intermetallic compounds have been formed at the interface of Cu/Al and have affected its bonding property.Microstructures of Cu/Al interfaces were observed by OM,SEM and EDX Analyser in order to investigate the bonding properties of the material.According to the microstructure a series of diffusion layers were observed at the interface and the thicknesses of diffusion layers have increased with aging time as a result of the diffusion bonding.The interfaces were composed of 3-ply diffusion layers and their compositions were changed with aging time at 400 °C.These compositional compounds were revealed to be η2,(θ+η2),(α+θ) intermetallic phases.It is evident from V-notch impact tests that the growth of the brittle diffusion layers with the increasing aging time directly influenced delamination distance between the Cu sleeve and the Al core.It is suggested that the proper holding time at 400 °C for aging as post heat treatment of a drawn Cu/Al bar clad material would be within 1 h.
基金Projects(51471123,51171135)supported by the National Natural Science Foundation of ChinaProjects(2012K07-08,2013KJXX-61)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(2013JC14)supported by the Industrialization Program of Shaanxi Province,China
文摘The effect of strain and drawing temperature on the evolution of microstructure and fiber textures of aluminum wiresdrawn at room temperature and cryogenic temperature was investigated by TEM and EBSD observations.The results show that lowangle boundaries frequency increases and high angle boundaries frequency decreases with strain increasing when the strain is low.Athigh strain,most of grain and dislocation boundaries are parallel to the drawn direction and low angle boundaries frequencydecreases and high angle boundaries frequency increases with strain increasing.The decrease of deformation temperature leads tomicrostructure finer and low angle boundaries frequency increasing.Texture analysis indicates that volume fraction of complextexture component decreases with strain increasing and a mixture of?111?and?100?fiber texture forms at high strain.?111?is stableat low strains but?100?becomes stable at high strain.The decrease of temperature can enhance the stability of?111?orientation athigh strain.
基金the Grants from the National Natural Science Foundation of China, No. 60775019, 60970062the Shanghai Pujiang Program, No. 09PJ1410200the Project-sponsored by SRF for ROCS, SEM
文摘The present study used electroencephalography to examine mu rhythm suppression (a putative index of human mirror neuron system activation) at frontal sites (F3, Fz and F4), central sites (C3, Cz and C4), parietal sites (P3, Pz and P4) and occipital sites (O1 and O2), while subjects observed real hand motion (real hand motion condition) and illustrative depictions of hand motion (drawn hand motion condition). Experimental data revealed that mu rhythm suppression was exhibited in the mirror neuron system when subjects observed both real and drawn hand motion. Moreover, the mu rhythm recorded at the F3, Fz, F4, and Pz poles was significantly suppressed while observing both stimulus types, but no obvious mu suppression occurred at the O1, 02 and 03 poles. These results suggest that the observation of drawings of human hand actions can activate the human mirror neuron system. This evidence supports the hypothesis that the mirror neuron system may be involved in intransitively abstract action understanding.
文摘The recrystallization behavior of cold-drawn 0.12 wt% C steel during annealing at temperatures 600°C and 650°C was investigated. Hardness tests were used to characterize the recrystallization kinetics. The micrographs of the steel were obtained using optical microscopy (OM) to characterize the grain microstructure of the non-treated and the annealed steel samples. Annihilation of dislocation defects occur within the soaking time of 5 - 10 minutes for all the deformed steel after annealing at 650°C. Specifically at 5 minutes soaking time the grains elongation is still observed indicating that reformation of grains is not taking place but recovery of the deformed grains. At the 10 minutes annealing time, new grains are observed to begin and full recrystallization is achieved at 15 minutes annealing time. At annealing time between 20 - 25 minutes, grains coarsening are observed indicating the onset of grain growth. The hardness of the material reduces with increasing annealing temperature for all the degree of cold drawn deformation. On the basis of the experimentally obtained hardness values, recrystallization increases with increasing degree of cold drawn deformation for the annealed steel. Recovery process was found to prolong in the 20% cold drawn steel as compared to the 55% cold drawn steel. The prolong recovery process is due to reduction in the driving force. Full recrystallization of the annealed steel is achieved at different soaking time depending on the degree of the cold drawn steel.
文摘Although line drawings consist of only line segments on a plane, they convey much information about the three-dimensional object structures. For a computer interpreting line drawings, some intelligent mechanism is required to extract three-dimensional information from the two-dimensional line drawings. In this paper, a new labeling theory and method are proposed for the two-dimensional line drawing with hidden-part-draw of a three-dimensional planar object with trihedral vertices. Some rules for labeling line drawing are established. There are 24 kinds of possible junctions for line drawing with hidden-part-draw, in which there are 8 possible Y and 16 W junctions. The three problems are solved that Sugihara's line drawing labeling technique exists. By analyzing the projections of the holes in manifold planar object, we have put forward a labeling method for the line drawing. Our labeling theory and method can discriminate between correct and incorrect hidden-part-draw natural line drawings. The hidden-part-draw natural line drawings can be labeled correctly by our labeling theory and method, whereas the labeling theory of Sugihara can only label the hidden-part-draw unnatural line drawings in which some visible lines must be drawn as hidden lines, and some invisible lines must be drawn as continuous lines.
文摘It was shown by the study of TEM that the fine lamellar pearlite becomes a ductile phase dur- ing cold drawing.There exist many ledges to emit dislocations at Fe_3C/Fe interface.It is one of the reasons that high density of dislocations emerges at the Fe_3C/Fe interface. Furthermore,there are some evidences to support that dislocation cuts through Fe_3C.There- fore,it is necessary to consider the contribution of cementite being sheared strengthening.
文摘Drawn low carbon steel is characterized by brittle fracture. These defects are associated with the poor ductility and high strain hardening due to the cold work. There is a need therefore to determine optimum heat treatment parameters that could ensure improved toughness and ductility. Determining the optimum annealing parameters ensures valued recrystallization and also minimizes grain growth that could be detrimental to the resulting product. 40% and 55% cold drawn steels were annealed at temperatures 500℃ to 650℃ at intervals of 50℃ and soaked for 10 to 60 minutes at interval of 10 minutes to identify the temperature range and soaking time where optimum combination of properties could be obtained. Tensile test and impact toughness experiments were done to determine the required properties of the steel. Polynomial regression analysis was used to fit the properties relationship with soaking time and temperatures and the classical optimization technique was used to determine the minimum soaking time and temperature required for improved properties of the steel. Annealing treatment at 588℃ for 11 minutes at grain size of 44.7 mm can be considered to be the optimum annealing treatment for the 40% cold drawn 0.12 wt% C steel and 539℃ for 17 minutes at grain size of 19.5 mm for the 55% cold drawn 0.12 wt% C steel.
文摘The effect of prior-heat treatments at 500℃, 600℃ and 700℃ on the creep behavior of an industrial drawn copper has been studied under constant stresses (98, 108 and 118 MPa) and temperatures (290℃ and 340℃). The results revealed that the creep behavior and the creep life of the material depend strongly on these prior-heat treatments. The apparent activation energy Qc for different creep tests of a drawn copper wire was calculated. The fracture mechanism of the material is characterized using optical microscopy.
文摘The paper presents the results of investigation on the effect of soaking time on the yield strength, ductility and hardness properties of annealed cold-drawn low carbon steel. The low carbon steel cold-drawn at 40% deformation was annealed at 900 deg Celsius for soaking times of 10, 20, 30, 40, 50 and 60 minutes. Tensile, charpy and Brinnel hardness tests were conducted to determine the yield strengths, tensile strengths, impact strengths, ductility and hardness of the annealed steel with increasing soaking time. The yield strength, tensile strength, hardness and impact strength of the steel showed a continuous drop in value with increasing soaking time up to 60 minutes with a steep drop between 30 and 40 minutes. Ductility values followed the same decreasing trend up to 40 minutes soaking time after which the values started increasing again till 60 minutes soaking time. There was a linear relationship between the tensile strength and hardness of the material for different soaking times. This linear relationship was also observed for yield strength and hardness of the material.
文摘In January 1985, our Institute formed a topic research team aimed at treating underwater soft foundations with explosive techniques. Its research target was the West Seawall in the Harbour of Lianyungang in northern Jiangsu Province. The West Seawall is a key engineering project in the construction and development of the Harbour.
文摘From 1942 to 1945 more than 15,000 Jewish children passed through Terezin,a former military garrison set up as a ghetto.It soon became a transition station for hundreds of thousands of Jews on their way to the gas chambers of Auschwitz.While most of the children imprisoned at Terezin perished at Auschwitz,some of their stories of life during the Holocaust are preserved in drawings and poems,published in the book,I Never Saw Another Butterfly. When Terezin was liberated in 1945,only about 100 children were alive to return to what was left of their lives.
文摘Several excellent well-organized reviews and research papers on two special topics, "The challenges of avian influenza virus: mechanism, epidemiology, and control" and "Molecular
基金supported by the National Key Research and Development Program of China(No.2018YFC040800202)the National Natural Science Foundation of China(Grant No.21878177)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2019LFG003)the grants from the Tai Shan Scholar Foundation(No.ts201511003)。
文摘Agriculture is the largest consumer of freshwater.Desalinated seawater is an important alternative water source for sustainable irrigation.However,some issues of the current desalination technology hinder its use for agriculture irrigation,including low boron removal and high energy consumption.This study systematically explored the feasibility of employing fertilizer drawn forward osmosis(FDFO)as an alternative to 2nd pass reverse osmosis(RO)by considering the boron removal performance and specific energy consumption(SEC).Different operating conditions were investigated,such as the boron and NaCl concentrations in feed solution(FS),draw solution(DS)concentration,pH,the volume ratio of FS to DS,membrane orientation,flow rate,and operating temperature.The results indicated that a low boron concentration in FS and high DS pH(pH=11.0)decreased the boron solute flux,and led to low final boron concentration in the DS.The other operating conditions had negligible influence on the final DS boron concentration.Also,a lower flow rate and higher specific water flux with certain permeate water volumes were conducive to reducing the SEC of the FDFO process.Overall,our study paves a new way of using FDFO in irrigation,which avoids the phytotoxicity and human health risk of boron.The results show the potential of FDFO as an alternative to 2nd pass RO for irrigation water production.