针对旋转机械工况复杂多变、有标签样本不足而导致的故障特征提取困难等问题,提出了一种用于旋转机械故障诊断的改进深度残差网络(improved deep residual network,IDRN)。首先,采集旋转机械一维振动信号进行数据预处理;然后,在深度残...针对旋转机械工况复杂多变、有标签样本不足而导致的故障特征提取困难等问题,提出了一种用于旋转机械故障诊断的改进深度残差网络(improved deep residual network,IDRN)。首先,采集旋转机械一维振动信号进行数据预处理;然后,在深度残差网络的基础上引入了长短时记忆(long short-term memory,LSTM)网络,其中,LSTM网络可以有效捕捉故障的时序信息;在残差块中引入Dropout层提高了故障诊断的精度和收敛速度;最后在轴承与齿轮数据集上验证本文提出方法的有效性。实验结果表明,该方法在堆叠多层网络模型时,没有出现明显的网络退化现象,与当前广泛使用的几种诊断方法进行对比实验,表现出了较高的平均诊断精度和良好的适用性。展开更多