期刊文献+
共找到50,998篇文章
< 1 2 250 >
每页显示 20 50 100
Upcycling the spent graphite/LiCoO_(2) batteries for high-voltage graphite/LiCoPO_(4)-co-workable dual-ion batteries
1
作者 Miao Du Hongyan Lü +5 位作者 Kaidi Du Shuohang Zheng Xiaotong Wang Xiaotong Deng Ronghua Zeng Xinglong Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1745-1751,共7页
The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such h... The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such huge amounts of spent LIBs.Therefore,we proposed an ecofriendly and sustainable double recycling strategy to concurrently reuse the cathode(LiCoO_(2))and anode(graphite)materials of spent LIBs and recycled LiCoPO_(4)/graphite(RLCPG)in Li^(+)/PF^(-)_(6) co-de/intercalation dual-ion batteries.The recycle-derived dualion batteries of Li/RLCPG show impressive electrochemical performance,with an appropriate discharge capacity of 86.2 mAh·g^(-1) at25 mA·g^(-1) and 69%capacity retention after 400 cycles.Dual recycling of the cathode and anode from spent LIBs avoids wastage of resources and yields cathode materials with excellent performance,thereby offering an ecofriendly and sustainable way to design novel secondary batteries. 展开更多
关键词 RECYCLE lithium cobalt oxide lithium cobalt phosphate GRAPHITE dual-ion batteries spent lithium-ion batteries
下载PDF
Charting the course to solid-state dual-ion batteries 被引量:1
2
作者 Habtom D.Asfaw Antonia Kotronia +2 位作者 Nuria Garcia-Araez Kristina Edström Daniel Brandell 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期132-177,共46页
An electrolyte destined for use in a dual-ion battery(DIB)must be stable at the inherently high potential required for anion intercalation in the graphite electrode,while also protecting the Al current collector from ... An electrolyte destined for use in a dual-ion battery(DIB)must be stable at the inherently high potential required for anion intercalation in the graphite electrode,while also protecting the Al current collector from anodic dissolution.A higher salt concentration is needed in the electrolyte,in comparison to typical battery electrolytes,to maximize energy density,while ensuring acceptable ionic conductivity and operational safety.In recent years,studies have demonstrated that highly concentrated organic electrolytes,ionic liquids,gel polymer electrolytes(GPEs),ionogels,and water-in-salt electrolytes can potentially be used in DIBs.GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency,energy density,and long-term cycle life of DIBs.Furthermore,GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance.In this review,we highlight the latest advances in the application of different electrolytes in DIBs,with particular emphasis on GPEs. 展开更多
关键词 anion intercalation concentrated electrolytes dual-ion battery graphite ionic liquids polymer electrolyte
下载PDF
Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life 被引量:1
3
作者 Min Wang Qirong Liu +2 位作者 Guangming Wu Jianmin Ma Yongbing Tang 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期548-558,共11页
Owing to the advantages of high operating voltage,environmental benignity,and low cost,potassium-based dual-ion batteries(KDIBs)have been considered as a potential candidate for large-scale energy storage.However,KDIB... Owing to the advantages of high operating voltage,environmental benignity,and low cost,potassium-based dual-ion batteries(KDIBs)have been considered as a potential candidate for large-scale energy storage.However,KDIBs generally suffer from poor cycling performance and unsatisfied capacity,and inactive components of conductive agents,binders,and current collector further lower their overall capacity.Herein,we prepare coral-like carbon nanowres(CCNWs)doped with nitrogen as a binder-free anode material for K^(+)-ion storage,in which the unique coral-like porous nanostructure and amorphous/short-range-ordered composite feature are conducive to enhancing the structural stability,to facilitating the ion transfer and to boosting the full utilization of active sites during potassiation/de-potassiation process.As a result,the CCNW anode possesses a hybrid K^(+)-storage mechanism of diffusive behavior and capacitive adsorption,and stably delivers a high capacity of 276 mAh g^(-1)at 50 mA g^(-1),good rate capability up to 2 A g^(-1),and long-term cycling stability with 93%capacity retention after 2000 cycles at 1 A g^(-1).Further,assembling this CCNW anode with an environmentally benign expanded graphite(EG)cathode yields a proof-of-concept KDIB,which shows a high specific capacity of 134.4 mAh g^(-1)at 100 mA g^(-1),excellent rate capability of 106.5 mAh g^(-1)at 1 A g^(-1),and long-term cycling stability over 1000 cycles with negligible capacity loss.This study provides a feasible approach to developing high-performance anodes for potassium-based energy storage devices. 展开更多
关键词 Carbon nanowires Binder-free K-ion dual-ion batteries Structural stability
下载PDF
Green and sustainably designed intercalation-type anodes for emerging lithium dual-ion batteries with high energy density
4
作者 Tejaswi Tanaji Salunkhe Abhijit Nanaso Kadam +1 位作者 Jaehyun Hur Il Tae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期466-478,I0011,共14页
Lithium dual-ion batteries(LiDIBs)have attracted significant attention owing to the growing demand for modern anode materials with high energy density.Herein,rust encapsulated in graphite was achieved by utilizing amm... Lithium dual-ion batteries(LiDIBs)have attracted significant attention owing to the growing demand for modern anode materials with high energy density.Herein,rust encapsulated in graphite was achieved by utilizing ammonium bicarbonate(ABC)as a template,which resulted in mesoporous Fe3O4embedded in expanded carbon(Fe3O4@G(ABC))via simple ball milling followed by annealing.This self-assembly approach for graphite-encapsulated Fe3O4composites helps enhance the electrochemical performance,such as the cycling stability and superior rate stability(at 3 A/g),with improved conductivity in Li DIBs.Specifically,Fe3O4@G-1:4(ABC)and Fe3O4@G-1:6(ABC)anodes in a half-cell at 0.1 A/g delivered initial capacities of 1390.6 and 824.4 mA h g^(-1),respectively.The optimized anode(Fe3O4@G-1:4(ABC))coupled with the expanded graphite(EG)cathode in Li DIBs provided a substantial initial specific capacity of 260.9 mA h g^(-1)at 1 A/g and a specific capacity regain of 106.3 mA h g^(-1)(at 0.1 A/g)after 250 cycles,with a very high energy density of 387.9 Wh kg^(-1).The strategically designed Fe3O4@G accelerated Li-ion kinetics,alleviated the volume change,and provided an efficient conductive network with excellent mechanical flexibility,resulting in exceptional performance in Li DIBs.Various postmortem analyses of the anode and cathode(XRD,Raman,EDS,and XPS)are presented to explain the intercalation-type electrochemical mechanisms of Li DIBs.This study offers several advantages,including safety,low cost,sustainability,environmental friendliness,and high energy density. 展开更多
关键词 Lithium dual-ion batteries Rust encapsulated graphite Ammonium bicarbonate Intercalation-type anode Energy density
下载PDF
Anion Defects Engineering of Ternary Nb-Based Chalcogenide Anodes Toward High-Performance Sodium-Based Dual-Ion Batteries 被引量:2
5
作者 Yangjie Liu Min Qiu +7 位作者 Xiang Hu Jun Yuan Weilu Liao Liangmei Sheng Yuhua Chen Yongmin Wu Hongbing Zhan Zhenhai Wen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期218-232,共15页
Sodium-based dual-ion batteries(SDIBs) have gained tremendous attention due to their virtues of high operating voltage and low cost, yet it remains a tough challenge for the development of ideal anode material of SDIB... Sodium-based dual-ion batteries(SDIBs) have gained tremendous attention due to their virtues of high operating voltage and low cost, yet it remains a tough challenge for the development of ideal anode material of SDIBs featuring with high kinetics and long durability. Herein, we report the design and fabrication of N-doped carbon film-modified niobium sulfur–selenium(NbSSe/NC) nanosheets architecture, which holds favorable merits for Na^(+) storage of enlarged interlayer space, improved electrical conductivity, as well as enhanced reaction reversibility, endowing it with high capacity, high-rate capability and high cycling stability. The combined electrochemical studies with density functional theory calculation reveal that the enriched defects in such nanosheets architecture can benefit for facilitating charge transfer and Na+ adsorption to speed the electrochemical kinetics. The NbSSe/NC composites are studied as the anode of a full SDIBs by pairing the expanded graphite as cathode, which shows an impressively cyclic durability with negligible capacity attenuation over 1000 cycles at 0.5 A g^(-1), as well as an outstanding energy density of 230.6 Wh kg^(-1) based on the total mass of anode and cathode. 展开更多
关键词 NbSSe Sodium-based dual-ion battery Anode Nanosheets architecture Anion defects engineering
下载PDF
Boosting the kinetics of PF_(6)^(-) into graphitic layers for the optimal cathode of dual-ion batteries:The rehearsal of pre-intercalating Li^(+) 被引量:2
6
作者 He Yang Tingting Qin +7 位作者 Xinyan Zhou Yu Feng Zizhun Wang Xin Ge Nailin Yue Dabing Li Wei Zhang Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期392-399,I0011,共9页
Large anions exhibit slow diffusion kinetics in graphite cathode of dual-ion batteries(DIBs);particularly at high current density,it suffers severely from the largely-reduced interlayer utilization of graphite cathode... Large anions exhibit slow diffusion kinetics in graphite cathode of dual-ion batteries(DIBs);particularly at high current density,it suffers severely from the largely-reduced interlayer utilization of graphite cathode,which as a bottleneck limits the fast charge application of DIBs.To maximize interlayer utilization and achieve faster anion diffusion kinetics,a fast and uncrowded anion transport channel must be established.Herein,Li^(+)was pre-intercalated into the graphite paper(GP)cathode to increase the interlayer spacing,and then hosted for the PF_(6)^(-)anion storage.Combined with theoretical calculation,it shows that the local interlayer spacing enlargement and the residual Li^(+)reduce the anion intercalation energy and diffusion barrier,leading to better rate stability.The obtained GP with Li^(+)pre-intercalation(GP-Li)electrode exhibits a discharge capacity of 23.1 m Ah g^(-1) at a high current of 1300 m A g^(-1).This work provides a facile method to efficiently improve the interlayer utilization of graphite cathode at large currents. 展开更多
关键词 dual-ion batteries Anion intercalation KINETICS Pre-intercalation
下载PDF
A review of halide charge carriers for rocking-chair and dual-ion batteries 被引量:2
7
作者 Sean KSandstrom Xin Chen Xiulei Ji 《Carbon Energy》 CAS 2021年第4期627-653,共27页
This review discusses how halide ion species have been used as charge carriers in both anion rocking-chair and dual-ion battery(DIB)systems.The anion rocking-chair batteries based on fluoride and chloride have emerged... This review discusses how halide ion species have been used as charge carriers in both anion rocking-chair and dual-ion battery(DIB)systems.The anion rocking-chair batteries based on fluoride and chloride have emerged over the past decade and are garnering increased research interest due to their large theoretical energy density values and the natural abundance of halide-containing materials.Moreover,DIBs that use halide species as their anionic charge carrier are seen as one of the promising next-generation battery technologies due to their low cost and high working potentials.Although numerous polyatomic anions have been studied as charge carriers,the use of single halide ions(i.e.,F−and Cl−)and metal-based superhalides(e.g.,[MgCl_(3)]−)as anionic charge carriers in DIBs has been considerably less explored.Herein,we provide an overview of some of the key advances and recent progress that has been made with regard to halide ion charge carriers in electrochemical energy storage.We offer our perspectives on the current state of the field and provide a roadmap in hopes that it helps researchers toward making new advances in these promising and emerging areas. 展开更多
关键词 charge carrier dual-ion battery HALIDE rocking-chair battery superhalide
下载PDF
Counter-ion insertion of chloride in Mn3O4 as cathode for dual-ion batteries: A new mechanism of electrosynthesis for reversible anion storage 被引量:3
8
作者 Heng Jiang Xiulei Ji 《Carbon Energy》 CAS 2020年第3期437-442,共6页
Irreversible reductive insertion of Zn2+transforms Mn3O4 such that the resulting Zn0.2Mn3O4 exhibits highly reversible storage properties of chloride ions,thus rendering Zn0.2Mn3O4 an excellent cathode of aqueous dual... Irreversible reductive insertion of Zn2+transforms Mn3O4 such that the resulting Zn0.2Mn3O4 exhibits highly reversible storage properties of chloride ions,thus rendering Zn0.2Mn3O4 an excellent cathode of aqueous dual-ion batteries.With Zn2+trapped,Zn0.2Mn3O4 delivers the chloride-storage capacity over 200 mAh/g at an average potential of 1.6 V vs Zn2+/Zn by reversibly forming a new ionic compound equivalent to Zn0.2Mn3O4Cl1.7.Electrochemical quartz crystal microbalance results suggest chloride as the primary charge carrier in the reversible oxidative anion insertion.The Mn3O4 anion-hosting cathode couples with Zn metal anode in a full-cell dual-ion battery,demonstrating stable cycling in practical pouch cells with an energy density of 150 Wh/kg based on the mass of both electrodes. 展开更多
关键词 anion insertion counter-ion insertion dual-ion battery metal oxide cathode Zn batteries
下载PDF
Anion-hosting cathodes for current and late-stage dual-ion batteries 被引量:1
9
作者 Miao Zhang Wenyong Zhang +2 位作者 Fan Zhang Chun-Sing Lee Yongbing Tang 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第5期1485-1509,共25页
Anion-hosting cathodes capable of reversibly storing large-size anions play a leading role in dual-ion batteries(DIBs). The purpose of the present review is to summarize the most promising anion-hosting cathodes for c... Anion-hosting cathodes capable of reversibly storing large-size anions play a leading role in dual-ion batteries(DIBs). The purpose of the present review is to summarize the most promising anion-hosting cathodes for current and late-stage DIBs. This review first summarizes the developments in conventional graphite cathodes, especially the latest advances in the graphiterelated research. Next, organic cathodes for the anion storage are discussed, including aromatic amine polymers, heterocyclic polymers, bipolar compounds, and all-carbon-unsaturated compounds. Then, the review focuses on the conversion-type cathodes with high theoretical specific capacities. Finally, the future research directions of the cathodes of DIBs are proposed. 展开更多
关键词 dual-ion batteries organic cathodes graphite cathodes conversion-type cathodes
原文传递
Nb_(2)O_(5) nanocrystals decorated graphene composites as anode materials for high-performance dual-ion batteries
10
作者 Lei Wang Fei Huang +1 位作者 Guoyin Zhu Zhihui Dai 《Nano Research》 SCIE EI CSCD 2024年第3期1535-1541,共7页
Niobium oxide(Nb_(2)O_(5))is a promising material in photocatalytic,solar cell,electronic like electron field emitters,and especially lithium-ion batteries(LIBs)because of its adjustable morphologies,controllable crys... Niobium oxide(Nb_(2)O_(5))is a promising material in photocatalytic,solar cell,electronic like electron field emitters,and especially lithium-ion batteries(LIBs)because of its adjustable morphologies,controllable crystal type,stable structure,and environmental friendliness.However,its low electrical conductivity lowers the rate performance and limits the practical applications in LIBs.Herein,we present a one-step solid-state synthesis of orthogonal Nb_(2)O_(5) nanocrystals/graphene composites(Nb_(2)O_(5)/G)as high-performance anode materials in LIBs.Benefiting from the nanoscale crystalline structure Nb_(2)O_(5) and highly-conductive graphene substrate,the as-prepared Nb_(2)O_(5)/G exhibits excellent electrochemical performances.Impressively,a reversible structural phase transition between orthogonal Nb_(2)O_(5) and tetragonal Li1-xNbO_(2)(0<x<1)was verified by ex-situ transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS).After coupling with graphite cathode based on PF6-intercalation/deintercalation mechanisms,Nb_(2)O_(5)/G||graphite dual-ion batteries(DIBs)full cell delivers good electrochemical performance in terms of cyclic performance and rate capability.We believe this work can provide a clear route towards developing advanced transition metal oxide/graphene composite anode and a comprehension of its electrochemical reaction mechanism. 展开更多
关键词 niobium oxide GRAPHENE anode dual-ion batteries graphite intercalation
原文传递
Recent advances in organic cathodes for dual-ion batteries
11
作者 Wenli Hu Weisheng Zhang +3 位作者 Chenxing Zhang Chengqiu Li Shilin Mei Chang-Jiang Yao 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第12期4014-4036,共23页
Dual-ion batteries(DIBs),a novel energy storage technology wherein both anions and cations actively participate in the electrochemical redox process,hold great promise for further cost reduction in chemical energy sto... Dual-ion batteries(DIBs),a novel energy storage technology wherein both anions and cations actively participate in the electrochemical redox process,hold great promise for further cost reduction in chemical energy storage.Organic materials have garnered significant attention as cathode materials for DIBs due to high working voltage,exceptional rate capability,environmental friendliness,and unique designable structure.This review provides a detailed discussion of the energy storage mechanism and typical characteristics of organic cathode materials from various reaction active sites.This work also highlights the current limitations and proposes ideas for improvement.Finally,potential future directions for the advancement of DIBs are summarized. 展开更多
关键词 dual-ion batteries organic cathode energy storage high working voltage anion storage
原文传递
Polyaniline spaced MoS_(2)nanosheets with increased interlayer distances for constructing high-rate dual-ion batteries
12
作者 Xuhui Liu Xingdong Ma +6 位作者 Guoshun Liu Xiaobin Zhang Xiaoqi Tang Chao Li Xiaobei Zang Ning Cao Qingguo Shao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第15期220-230,共11页
Dual-ion batteries(DIBs)have attracted great attention due to their affordable prices,environmentalfriendliness,and high operating voltage.However,the conventional graphite anode in DIBs has draw-backs such as unsatis... Dual-ion batteries(DIBs)have attracted great attention due to their affordable prices,environmentalfriendliness,and high operating voltage.However,the conventional graphite anode in DIBs has draw-backs such as unsatisfactory capacity and worrying safety.MoS_(2)is considered to be a competitive anodematerial that exhibits large capacity due to its unique layered structure for cation insertion/extraction.Nevertheless,the sluggish reaction kinetics of MoS_(2)does not match the cathode side,which makes theconstructed full DIBs show poor rate ability.Here,a flower-like MoS_(2)/polyaniline composite electrode(MoS_(2)-PANI)where PANI was grown in situ between layers of MoS_(2)nanosheets was designed.In thisdesign,the inserted PANI can broaden the layer distance of MoS_(2)to facilitate cation diffusion and pre-vent the restacking of nanosheets.Furthermore,PANI is also expected to increase the conductivity andrelieve the volume changes during repeated charge/discharge cycles.Benefiting from that,the MoS_(2)-PANIelectrode delivered a reversible capacity of 561.91 mA h g^(-1) at 5 A g^(-1) in half-cell test.Moreover,whencoupled with a mildly expanded graphite(MEG)cathode,the obtained MEG//MoS_(2)-PANI DIB shows ex-cellent rate ability with a reversible discharge capacity of 86.62 mA h g^(-1) and a desirable energy densityof 308.83 W h kg-1 at 20 C.These results provide some inspiration for the design of high-rate DIBs. 展开更多
关键词 dual-ion Battery Anode materials MoS_(2) High rate performance
原文传递
A Review of Anode Materials for Dual‑Ion Batteries
13
作者 Hongzheng Wu Shenghao Luo +6 位作者 Hubing Wang Li Li Yaobing Fang Fan Zhang Xuenong Gao Zhengguo Zhang Wenhui Yuan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期618-674,共57页
Distinct from"rockingchair"lithium-ion batteries(LIBs),the unique anionic intercalation chemistry on the cathode side of dual-ion batteries(DIBs)endows them with intrinsic advantages of low cost,high voltage... Distinct from"rockingchair"lithium-ion batteries(LIBs),the unique anionic intercalation chemistry on the cathode side of dual-ion batteries(DIBs)endows them with intrinsic advantages of low cost,high voltage,and ecofriendly,which is attracting widespread attention,and is expected to achieve the next generation of large-scale energy storage applications.Although the electrochemical reactions on the anode side of DIBs are similar to that of LIBs,in fact,to match the rapid insertion kinetics of anions on the cathode side and consider the compatibility with electrolyte system which also serves as an active material,the anode materials play a very important role,and there is an urgent demand for rational structural design and performance optimization.A review and summarization of previous studies will facilitate the exploration and optimization of DIBs in the future.Here,we summarize the development process and working mechanism of DIBs and exhaustively categorize the latest research of DIBs anode materials and their applications in different battery systems.Moreover,the structural design,reaction mechanism and electrochemical performance of anode materials are briefly discussed.Finally,the fundamental challenges,potential strategies and perspectives are also put forward.It is hoped that this review could shed some light for researchers to explore more superior anode materials and advanced systems to further promote the development of DIBs. 展开更多
关键词 dual-ion batteries ANODE Carbonaceous materials Metallic materials Organic materials Optimization strategies
下载PDF
Reviewing electrochemical stability of ionic liquids-/deep eutectic solvents-based electrolytes in lithium-ion,lithium-metal and post-lithium-ion batteries for green and safe energy 被引量:2
14
作者 Yu Chen Shuzi Liu +4 位作者 Zixin Bi Zheng Li Fengyi Zhou Ruifen Shi Tiancheng Mu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期966-991,共26页
Sustainable energy is the key issue for the environment protection,human activity and economic development.Ionic liquids(ILs)and deep eutectic solvents(DESs)are dogmatically regarded as green and sustainable electroly... Sustainable energy is the key issue for the environment protection,human activity and economic development.Ionic liquids(ILs)and deep eutectic solvents(DESs)are dogmatically regarded as green and sustainable electrolytes in lithium-ion,lithium-metal(e.g.,lithium-sulphur,lithium-oxygen)and post-lithium-ion(e.g.,sodium-ion,magnesium-ion,and aluminum-ion)batteries.High electrochemical stability of ILs/DESs is one of the prerequisites for green,sustainable and safe energy;while easy electrochemical decomposition of ILs/DESs would be contradictory to the concept of green chemistry by adding the cost,releasing volatile/hazardous by-products and hindering the recyclability.However,(1)are ILs/DESs-based electrolytes really electrochemically stable when they are not used in batteries?(2)are ILs/DESs-based electrolytes really electrochemically stable in real batteries?(3)how to design ILs/DESs-based electrolytes with high electrochemical stability for batteries to achieve sustainability and green development?Up to now,there is no summary on this topic,to the best of our knowledge.Here,we review the effect of chemical structure and non-structural factors on the electrochemical stability of ILs/DESs in simulated conditions.More importantly,electrochemical stability of ILs/DESs in real lithium-ion,lithium-metal and post-lithium-ion batteries is concluded and compared.Finally,the strategies to improve the electrochemical stability of ILs/DESs in lithium-ion,lithium-metal and post-lithium-ion batteries are proposed.This review would provide a guide to design ILs/DESs with high electrochemical stability for lithium-ion,lithium-metal and postlithium-ion batteries to achieve sustainable and green energy. 展开更多
关键词 Green solvents Decomposition Sustainable chemistry Lithium-oxygen batteries Lithium-sulphur batteries Sodium-ion batteries
下载PDF
Mechanism of internal thermal runaway propagation in blade batteries 被引量:3
15
作者 Xuning Feng Fangshu Zhang +3 位作者 Wensheng Huang Yong Peng Chengshan Xu Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期184-194,I0005,共12页
Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propaga... Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design. 展开更多
关键词 Lithium-ion battery Blade battery Thermal runaway Internal thermal runaway propagation
下载PDF
Managing the surge:A comprehensive review of the entire disposal framework for retired lithium-ion batteries from electric vehicles 被引量:2
16
作者 Ruohan Guo Feng Wang +2 位作者 M.Akbar Rhamdhani Yiming Xu Weixiang Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期648-680,共33页
Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offe... Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and recycling.Firstly,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening efficiency.Secondly,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic issues.In the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery technologies.Particularly,we introduce several global leading recyclers to illustrate their industrial processes and technical intricacies.Furthermore,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal framework.We hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices. 展开更多
关键词 Lithium-ion battery Battery reproposing and recycling Miaieiials recovery technologies Techno-economic issues End-of-life management Disposal framework
下载PDF
Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst 被引量:1
17
作者 Haining Fan Xuan-Wen Gao +3 位作者 Hailong Xu Yichun Ding Shi-Xue Dou Wen-Bin Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期305-326,I0008,共23页
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec... Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy. 展开更多
关键词 Energy storage and conversion Metal battery Sulfur battery Air battery Catalytic effect Heterogeneous catalyst Homogeneous catalyst
下载PDF
Indolocarbazole-Based Small Molecule Cathode-Active Material Exhibiting Double Redox for High-Voltage Li-Organic Batteries 被引量:1
18
作者 Hyunji Park Hyojin Kye +5 位作者 Jong-Sung Lee Young-Chang Joo Dong Joo Min Bong-Gi Kim Soo Young Park Ji Eon Kwon 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期86-94,共9页
Most organic electrode materials(OEMs)for rechargeable batteries employ n-type redox centers,whose redox potentials are intrinsically limited<3.0 V versus Li^(+)/Li.However,p-type materials possessing high redox po... Most organic electrode materials(OEMs)for rechargeable batteries employ n-type redox centers,whose redox potentials are intrinsically limited<3.0 V versus Li^(+)/Li.However,p-type materials possessing high redox potentials experience low specific capacities because they are capable of only a single redox reaction within the stable electrochemical window of typical electrolytes.Herein,we report 5,11-diethyl-5,11-dihydroindolo[3,2-b]carbazole(DEICZ)as a novel p-type OEM,exhibiting stable plateaus at high discharge potentials of 3.44 and 4.09 V versus Li^(+)/Li.Notably,the second redox potential of DEICZ is within the stable electrochemical window.The mechanism of the double redox reaction is investigated using both theoretical calculations and experimental measurements,including density functional theory calculations,ex situ electron spin resonance,and X-ray photoelectron spectroscopy.Finally,hybridization with single-walled carbon nanotubes(SWCNT)improves the cycle stability and rate performance of DEICZ owing to theπ-πinteractions between the SWCNT and co-planar molecular structure of DEICZ,preventing the dissolution of active materials into the electrolyte.The DEICZ/SWCNT composite electrode maintains 70.4%of its initial specific capacity at 1-C rate and also exhibits high-rate capability,even performing well at 100-C rate.Furthermore,we demonstrate its potential for flexible batteries after applying 1000 bending stresses to the composite electrode. 展开更多
关键词 composite electrodes flexible batteries indolocarbazoles organic rechargeable batteries P-TYPE
下载PDF
Recent Advances in Aqueous Zn||MnO_(2)Batteries 被引量:1
19
作者 Chuan Li Rong Zhang +3 位作者 Huilin Cui Yanbo Wang Guojin Liang Chunyi Zhi 《Transactions of Tianjin University》 EI CAS 2024年第1期27-39,共13页
Recently,rechargeable aqueous zinc-based batteries using manganese oxide as the cathode(e.g.,MnO_(2))have gained attention due to their inherent safety,environmental friendliness,and low cost.Despite their potential,a... Recently,rechargeable aqueous zinc-based batteries using manganese oxide as the cathode(e.g.,MnO_(2))have gained attention due to their inherent safety,environmental friendliness,and low cost.Despite their potential,achieving high energy density in Zn||MnO_(2)batteries remains challenging,highlighting the need to understand the electrochemical reaction mechanisms underlying these batteries more deeply and optimize battery components,including electrodes and electrolytes.This review comprehensively summarizes the latest advancements for understanding the electrochemistry reaction mechanisms and designing electrodes and electrolytes for Zn||MnO_(2)batteries in mildly and strongly acidic environments.Furthermore,we highlight the key challenges hindering the extensive application of Zn||MnO_(2)batteries,including high-voltage requirements and areal capacity,and propose innovative solutions to overcome these challenges.We suggest that MnO_(2)/Mn^(2+)conversion in neutral electrolytes is a crucial aspect that needs to be addressed to achieve high-performance Zn||MnO_(2)batteries.These approaches could lead to breakthroughs in the future development of Zn||MnO_(2)batteries,off ering a more sustainable,costeff ective,and high-performance alternative to traditional batteries. 展开更多
关键词 Aqueous Zn||MnO_(2)batteries Zinc-ion batteries Zinc batteries MnO_(2)
下载PDF
Inherent thermal-responsive strategies for safe lithium batteries 被引量:2
20
作者 Jia-Xin Guo Chang Gao +9 位作者 He Liu Feng Jiang Zaichun Liu Tao Wang Yuan Ma Yiren Zhong Jiarui He Zhi Zhu Yuping Wu Xin-Bing Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期519-534,I0012,共17页
Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and ele... Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and electrodes as main components of lithium batteries strongly affect the occurrence of safety accidents.Responsive materials,which can respond to external stimuli or environmental change,have triggered extensive attentions recently,holding great promise in facilitating safe and smart batteries.This review thoroughly discusses recent advances regarding the construction of high-safety lithium batteries based on internal thermal-responsive strategies,together with the corresponding changes in electrochemical performance under external stimulus.Furthermore,the existing challenges and outlook for the design of safe batteries are presented,creating valuable insights and proposing directions for the practical implementation of safe lithium batteries. 展开更多
关键词 Lithium battery Thermal safety Thermal runaway Thermal-responsive
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部