An optical field induced circular birefringence due to collision-induced Zee-man coherence in Sm with He has been observed.The integrated intensity and linewidth of the signal have been measured as a linear function o...An optical field induced circular birefringence due to collision-induced Zee-man coherence in Sm with He has been observed.The integrated intensity and linewidth of the signal have been measured as a linear function of buffer gas pressure.The cross section for destruction of orientation in the ground state of Sm with He has been obtained.展开更多
Quality of Service (QoS) generally refers to measurable like latency and throughput, things that directly affect the user experience. Queuing (the most popular QoS tool) involves choosing the packets to be sent based ...Quality of Service (QoS) generally refers to measurable like latency and throughput, things that directly affect the user experience. Queuing (the most popular QoS tool) involves choosing the packets to be sent based on something other than arrival time. The Active queue management is important subject to manage this queue to increase the effectiveness of Transmission Control Protocol networks. Active queue management (AQM) is an effective means to enhance congestion control, and to achieve trade-off between link utilization and delay. The de facto standard, Random Early Detection (RED), and many of its variants employ queue length as a congestion indicator to trigger packet dropping. One of these enhancements of RED is FRED or Fair Random Early Detection attempts to deal with a fundamental aspect of RED in that it imposes the same loss rate on all flows, regardless of their bandwidths. FRED also uses per-flow active accounting, and tracks the state of active flows. FRED protects fragile flows by deterministically accepting flows from low bandwidth connections and fixes several shortcomings of RED by computing queue length during both arrival and departure of the packet. Unlike FRED, we propose a new scheme that used hazard rate estimated packet dropping function in FRED. We call this new scheme Enhancement Fair Random Early Detection. The key idea is that, with EFRED Scheme change packet dropping function, to get packet dropping less than RED and other AQM algorithms like ARED, REM, RED, etc. Simulations demonstrate that EFRED achieves a more stable throughput and performs better than current active queue management algorithms due to decrease the packets loss percentage and lowest in queuing delay, end to end delay and delay variation (JITTER).展开更多
EFR is a plasma-membrane resident receptor responsible for recognition of microbial elongation factorTu (EF-Tu) and thus triggering plant innate immunity to fend off phytopathogens. Functional EFR must be subject to...EFR is a plasma-membrane resident receptor responsible for recognition of microbial elongation factorTu (EF-Tu) and thus triggering plant innate immunity to fend off phytopathogens. Functional EFR must be subject to the endoplasmic reticulum quality control (ERQC) machinery for the correct folding and proper assembly in order to reach its final destination. Genetic studies have demonstrated that ERD2b, a counterpart of the yeast or mammalian HDEL receptor ERD2 for retaining proteins in the endoplasmic reticulum (ER) lumen, is required for EFR function in plants (Li et al., 2009). In this study, we characterized the Arabidopsis glucosidase Ⅱ β--subunit via the H DEL motif against the non-redundant protein database. Data mining also revealed that the glucosidase Ⅱ β--subunit gene has a highly similar expression pattern to ERD2b and the other known ERQC components involved in EFR biogenesis. Importantly, the T-DNA insertion lines of the glucosidase Ⅱ β-subunit gene showed that EFR-controlled responses were substantially reduced or completely blocked in these mutants. The responses include seedling growth inhibition, induction of marker genes, MAP kinase activation, and callose deposition, trigged by peptide elf18, a full mimic of E F-Tu. Taken together, ourdata indicate a requirement of the glucosidase Ⅱ β-subunitfor EFR function.展开更多
基金Supported by the National Science Foundation of China。
文摘An optical field induced circular birefringence due to collision-induced Zee-man coherence in Sm with He has been observed.The integrated intensity and linewidth of the signal have been measured as a linear function of buffer gas pressure.The cross section for destruction of orientation in the ground state of Sm with He has been obtained.
文摘Quality of Service (QoS) generally refers to measurable like latency and throughput, things that directly affect the user experience. Queuing (the most popular QoS tool) involves choosing the packets to be sent based on something other than arrival time. The Active queue management is important subject to manage this queue to increase the effectiveness of Transmission Control Protocol networks. Active queue management (AQM) is an effective means to enhance congestion control, and to achieve trade-off between link utilization and delay. The de facto standard, Random Early Detection (RED), and many of its variants employ queue length as a congestion indicator to trigger packet dropping. One of these enhancements of RED is FRED or Fair Random Early Detection attempts to deal with a fundamental aspect of RED in that it imposes the same loss rate on all flows, regardless of their bandwidths. FRED also uses per-flow active accounting, and tracks the state of active flows. FRED protects fragile flows by deterministically accepting flows from low bandwidth connections and fixes several shortcomings of RED by computing queue length during both arrival and departure of the packet. Unlike FRED, we propose a new scheme that used hazard rate estimated packet dropping function in FRED. We call this new scheme Enhancement Fair Random Early Detection. The key idea is that, with EFRED Scheme change packet dropping function, to get packet dropping less than RED and other AQM algorithms like ARED, REM, RED, etc. Simulations demonstrate that EFRED achieves a more stable throughput and performs better than current active queue management algorithms due to decrease the packets loss percentage and lowest in queuing delay, end to end delay and delay variation (JITTER).
文摘EFR is a plasma-membrane resident receptor responsible for recognition of microbial elongation factorTu (EF-Tu) and thus triggering plant innate immunity to fend off phytopathogens. Functional EFR must be subject to the endoplasmic reticulum quality control (ERQC) machinery for the correct folding and proper assembly in order to reach its final destination. Genetic studies have demonstrated that ERD2b, a counterpart of the yeast or mammalian HDEL receptor ERD2 for retaining proteins in the endoplasmic reticulum (ER) lumen, is required for EFR function in plants (Li et al., 2009). In this study, we characterized the Arabidopsis glucosidase Ⅱ β--subunit via the H DEL motif against the non-redundant protein database. Data mining also revealed that the glucosidase Ⅱ β--subunit gene has a highly similar expression pattern to ERD2b and the other known ERQC components involved in EFR biogenesis. Importantly, the T-DNA insertion lines of the glucosidase Ⅱ β-subunit gene showed that EFR-controlled responses were substantially reduced or completely blocked in these mutants. The responses include seedling growth inhibition, induction of marker genes, MAP kinase activation, and callose deposition, trigged by peptide elf18, a full mimic of E F-Tu. Taken together, ourdata indicate a requirement of the glucosidase Ⅱ β-subunitfor EFR function.