This study investigated the perceptions of English educators and supervisors in Jeddah Governorate regarding the process of teaching English to elementary students.A survey was conducted using a sample size of 94 educ...This study investigated the perceptions of English educators and supervisors in Jeddah Governorate regarding the process of teaching English to elementary students.A survey was conducted using a sample size of 94 educators and 10 supervisors.The data indicate that respondents considered English instruction at the elementary level essential for expanding kids’perspectives,improving academic performance,and promoting international involvement.The main advantages cited are the development of English language skills and the promotion of early education.Although not as easily noticeable,the disadvantages include potential negative impacts on an individual’s proficiency in Arabic and their sense of national identification.The highlighted challenges encompass insufficient teacher training,student reluctance towards English,limited resources,and school disparities.The proposed techniques focused on prioritizing English instructors’training,ensuring the use of appropriate content,utilizing technology,and promoting awareness of students and educators.The current research found different obstacles in teaching English at elementary stages.To overcome these obstacles,it will be essential to enhance teacher competencies,develop efficient teaching methods,get the backing of stakeholders,assign adequate resources,and carry out continuous evaluations.Further research can also contribute to a better understanding of how early English learning impacts on Arabic identity and proficiency.展开更多
Present studies in physics assume that elementary particles are the building blocks of all matter, and that they are zero-dimensional objects which do not occupy space. The new I-Theory predicts that elementary partic...Present studies in physics assume that elementary particles are the building blocks of all matter, and that they are zero-dimensional objects which do not occupy space. The new I-Theory predicts that elementary particles do indeed have a substructure, three dimensions, and occupy space, being composed of fundamental particles called I-particles. In this article we identify the substructural pattern of elementary particles and define the quanta of energy that form each elementary particle. We demonstrate that the substructure comprises two classes of quanta which we call “attraction quanta” and “repulsion quanta”. We create a model that defines the rest-mass energy of each elementary particle and can predict new particles. Lastly, in order to incorporate this knowledge into the contemporary models of science, a revised periodic table is proposed.展开更多
The uncertainty principle is a fundamental principle of quantum mechanics, but its exact mathematical expression cannot obtain correct results when used to solve theoretical problems such as the energy levels of hydro...The uncertainty principle is a fundamental principle of quantum mechanics, but its exact mathematical expression cannot obtain correct results when used to solve theoretical problems such as the energy levels of hydrogen atoms, one-dimensional deep potential wells, one-dimensional harmonic oscillators, and double-slit experiments. Even after approximate treatment, the results obtained are not completely consistent with those obtained by solving Schrödinger’s equation. This indicates that further research on the uncertainty principle is necessary. Therefore, using the de Broglie matter wave hypothesis, we quantize the action of an elementary particle in natural coordinates and obtain the quantization condition and a new deterministic relation. Using this quantization condition, we obtain the energy level formulas of an elementary particle in different conditions in a classical way that is completely consistent with the results obtained by solving Schrödinger’s equation. A new physical interpretation is given for the particle eigenfunction independence of probability for an elementary particle: an elementary particle is in a particle state at the space-time point where the action is quantized, and in a wave state in the rest of the space-time region. The space-time points of particle nature and the wave regions of particle motion constitute the continuous trajectory of particle motion. When an elementary particle is in a particle state, it is localized, whereas in the wave state region, it is nonlocalized.展开更多
Inheriting and promoting the excellent traditional Chinese culture should begin with the youth,as elementary school aesthetic education plays a crucial role in this process of cultural dissemination.At present,element...Inheriting and promoting the excellent traditional Chinese culture should begin with the youth,as elementary school aesthetic education plays a crucial role in this process of cultural dissemination.At present,elementary school aesthetic education mainly focuses on traditional fields such as art,music,dance,calligraphy,etc.,and there is still much room for innovation in communication carriers and paths.Based on this status quo,combining professional and regional advantages,this article proposes to take Qilu characteristic costume culture as a carrier to integrate the innovation of excellent traditional Chinese culture into elementary school aesthetic education.It aims to cultivate humanistic literacy and a sense of belonging in school-age children and establish cultural confidence.展开更多
In this note, we consider the interactions of elementary waves for the traffic flow model proposed by Aw and Rascle when the vacuum is not involved. The solutions are obtained constructively and globally when the init...In this note, we consider the interactions of elementary waves for the traffic flow model proposed by Aw and Rascle when the vacuum is not involved. The solutions are obtained constructively and globally when the initial data consist of three pieces of constant states. Furthermore, it can be found that the Riemann solutions are stable with respect to such small perturbations of the initial data in this particular situation by investigating the limits of the solutions as the perturbed parameter ε goes to zero.展开更多
Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to...Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to cracked expansive soils that are considered discontinuous media.In this study,direct shear tests of three different scales(30 cm^(2),900 cm^(2),1963 cm^(2))and crack image analysis were carried out on undisturbed soil samples subjected to drying-wetting cycles in-situ.The REV size of expansive soil was investigated using the crack intensity factor(CIF)and soil cohesion.The results show that soil cohesion decreased with increasing sample area,and the development of secondary cracks further exacerbated the size effect of sample on cohesion of the soil.As shrinkage cracks developed,the REV size of the soil gradually increased and plateaued after 3−5 cycles.Under the same drying-wetting cycle conditions,the REV size determined using soil cohesion(REV-C)is 1.75 to 2.97 times the REV size determined using CIF(REV-CIF).Under the influence of shrinkage cracks,the average CIF is positively correlated with the REV size determined using different maximum permissible errors,with the coefficient of correlation greater than 0.9.A method for determining the REV-C based on crack image analysis is proposed,and the REV-C of expansive soil in the study area under different exposure times is given.展开更多
Large active wing deformation is a significant way to generate high aerodynamic forces required in bat's flapping flight. Besides the twisting, elementary morphing models of a bat wing are proposed, including wing-be...Large active wing deformation is a significant way to generate high aerodynamic forces required in bat's flapping flight. Besides the twisting, elementary morphing models of a bat wing are proposed, including wing-bending in the spanwise direction,wing-cambering in the chordwise direction, and wing area-changing. A plate of aspect ratio 3 is used to model a bat wing, and a three-dimensional unsteady panel method is used to predict the aerodynamic forces. It is found that the cambering model has great positive influence on the lift, followed by the area-changing model and then the bending model. Further study indicates that the vortex control is a main mechanism to produce high aerodynamic forces. The mechanisms of aerodynamic force enhancement are asymmetry of the cambered wing and amplification effects of wing area-changing and wing bending. Lift and thrust are generated mainly during downstroke, and they are almost negligible during upstroke by the integrated morphing model-wing.展开更多
Elementary flux mode (EFM) analysis was used in the metabolic analysis of central carbon metabolism in Saccharomyces cerevisiae based on constructed cellular network. Calculated from the metabolic model, the ethanol...Elementary flux mode (EFM) analysis was used in the metabolic analysis of central carbon metabolism in Saccharomyces cerevisiae based on constructed cellular network. Calculated from the metabolic model, the ethanol-producing pathway No. 37 furthest converts the substrate into ethanol among the 78 elementary flux modes. The in silico metabolic phenotypes predicted based on this analysis fit well with the fermentation performance of the engineered strains, KAM3 and KAMll, which confirmed that EFM analysis is valid to direct the construction of Saccharomyces cerevisiae engineered strains, to increase the ethanol yield.展开更多
In this paper, the obtained experimental results concerning creation of bulk elementary excitations (BEEs) in isotopically pure liquid ^4He at low temperatures -60 mK are discussed. Positive rotons' (R^+-rotons)...In this paper, the obtained experimental results concerning creation of bulk elementary excitations (BEEs) in isotopically pure liquid ^4He at low temperatures -60 mK are discussed. Positive rotons' (R^+-rotons) creation by a pulsed heater was studied. Signals were recorded for the following quantum processes: quantum evaporation of ^4He-atoms from the free liquid-helium surface by the BEEs of the liquid helium-Ⅱ, and BEEs reflection from the free surface back into the bulk liquid. Typical signals are shown, and ratios of signal amplitudes are evaluated. For long heater pulses from 5 to 10 μs, appearance of the second atomic cloud consisting of evaporated ^4He-atoms was observed in addition to the first atomic cloud. It is thought that the first atomic cloud of the evaporated helium atoms consists of very fast ^4He-atoms with energies ~35 K evaporated by positive rotons with the special energies ~17 K (~2ER~2×8.6 K with ER representing the roton minimum energy) corresponding to the third non-dispersive Zakharenko wave. The second cloud of slower ^4He-atoms was created by surface elementary excitations (SEEs or ripplons) possessing the special energies ~7.15 K representing the binding energy. It was assumed that such SEEs can be created by phonons incoming to the liquid surface with special energies ~6.2 K corresponding to the first non-dispersive Zakharenko wave which can interact at the liquid surface with the same phonons already reflected from the surface for long heater pulses. Also, some pulsed-heater characteristics were studied in order to better understand the features of such heaters in low temperature experiments.展开更多
The radiation fields generated when a charged particle is incident on or moving away from a perfectly conducting plane are obtained. These fields are known in the literature as transition radiation. The field equation...The radiation fields generated when a charged particle is incident on or moving away from a perfectly conducting plane are obtained. These fields are known in the literature as transition radiation. The field equations derived thus are used to evaluate the energy, momentum and the action associated with the radiation. The results show that for a charged particle moving with speed ν, the longitudinal momentum associated with the transition radiation is approximately equal to ΔU/c for values of ?1- ν/c smaller than about 10-3 where ΔU is the total radiated energy dissipated during the interaction and cis the speed of light in free space. The action of the radiation, defined as the product of the total energy dissipated and the duration of the emission, increases as 1- ν/c decreases and, for an electron, it becomes equal to h/4π when ν = c - νm where νm is the speed pertinent to the lowest possible momentum associated with a particle confined inside the universe and?h is the Planck constant. Combining these results with Heisenberg’s uncertainty principle, an expression that predicts the value of the elementary charge is derived.展开更多
In this paper, we mainly study some properties of elementary n-Lie algebras, and prove some necessary and sufficient conditions for elementary n-Lie algebras. We also give the relations between elementary n-algebras a...In this paper, we mainly study some properties of elementary n-Lie algebras, and prove some necessary and sufficient conditions for elementary n-Lie algebras. We also give the relations between elementary n-algebras and E-algebras.展开更多
Using the tools of distinct excluded blocks, computational search and symbolic dynamics, the classification problem of all 256 elementary cellular automata is discussed from the point of view of time series generated ...Using the tools of distinct excluded blocks, computational search and symbolic dynamics, the classification problem of all 256 elementary cellular automata is discussed from the point of view of time series generated by them,and examples in each class are provided to explain the methods used.展开更多
In this paper, using the characteristic analysis method, we study the relativistic Euler equations of conservation laws in energy and momentum in special relativity. The interactions of elementary waves for the relati...In this paper, using the characteristic analysis method, we study the relativistic Euler equations of conservation laws in energy and momentum in special relativity. The interactions of elementary waves for the relativistic Euler equations are shown. The collision of two shocks, two centered rarefaction waves, a shock and a rarefaction wave yield corresponding ransmitted waves. The overtaking of two shocks appears a transmitted shock wave, together with a reflected centered rarefaction wave.展开更多
Falconer[1] used the relationship between upper convex density and upper spherical density to obtain elementary density bounds for s-sets at H S-almost all points of the sets. In this paper, following Falconer[1], we ...Falconer[1] used the relationship between upper convex density and upper spherical density to obtain elementary density bounds for s-sets at H S-almost all points of the sets. In this paper, following Falconer[1], we first provide a basic method to estimate the lower bounds of these two classes of set densities for the self-similar s-sets satisfying the open set condition (OSC), and then obtain elementary density bounds for such fractals at all of their points. In addition, we apply the main results to the famous classical fractals and get some new density bounds.展开更多
Smoking is a major health problem in many countries. It has been reported on the effects of education on youth with a reduced smoking rate and developed awareness of avoiding smoking verified as a result of educationa...Smoking is a major health problem in many countries. It has been reported on the effects of education on youth with a reduced smoking rate and developed awareness of avoiding smoking verified as a result of educational intervention. The aim of this study was to verify the relationship between sex, school age, and family smoking and the effectiveness of smoking prevention education program (SPEP) as factors that impact the effectiveness of SPEP in elementary school and junior high school students. The participants in this survey were 6676 students, who attended elementary and junior high schools in Tokushima Prefecture between 2011 and 2015, and attended the SPEP. As factors that influence the effectiveness of the SPEP, we examined school types, sex, smokers in the family. Participants were asked the following questions before and after the SPEP to measure awareness of and attitudes toward smoking: “intention not to smoke cigarettes as adults”, “intention to refuse cigarettes when offered”, “attitude of staying away from smokers”, and “desire that their family will not smoke”. The number of survey collected was 6676, with effective responses from 5974 (90%). Among the 5974, there were 2963 (50%) males and 3011 (50%) females, 5106 elementary school students (86%), and 868 junior high school students (15%). In the case of smoker mother, it was difficult to improve these children’s “intention not to smoke as adults”, “intention to refuse cigarettes when offered”, and smoker father, it was difficult to improve these children’s “attitude of staying away from smokers”, and “desire that their family will not smoke”. Especially, in the case of smoker parents, it was particularly difficult for the SPEP to be effective in improving awareness of and attitudes toward smoking among elementary and junior high school students.展开更多
The author presents a new approach which is used to solve an important Diophantine problem. An elementary argument is used to furnish another fully transparent proof of Fermat’s Last Theorem. This was first stated by...The author presents a new approach which is used to solve an important Diophantine problem. An elementary argument is used to furnish another fully transparent proof of Fermat’s Last Theorem. This was first stated by Pierre de Fermat in the seventeenth century. It is widely regarded that no elementary proof of this theorem exists. The author provides evidence to dispel this belief.展开更多
Teachers voluntarily devote a lot of time to their vocational activates. This can lead to workaholism and may result in stress and job burnout. The main objective of the current study is to examine the relationship of...Teachers voluntarily devote a lot of time to their vocational activates. This can lead to workaholism and may result in stress and job burnout. The main objective of the current study is to examine the relationship of workaholism with stress and job burnout of elementary school teachers in Zahedan. This is a descriptive-correlational study. The sample includes 350 elementary school teachers in Zahedan whom are selected through applying stratified random sampling method and are examined using questionnaires on workaholism, occupational stress, and job burnout. To analyze the obtained data, correlation coefficient and simultaneous multiple regression analysis are applied using SPSS21. Teachers’ mean scores on workaholism, stress and job burnout are higher than the considered theoretical mean. Workaholism and its components (feeling of being driven to work, work involvement, and work enjoyment) are significantly and positively related to job burnout and occupational stress (p ). The results of simultaneous multiple regression analysis indicate that components of workaholism can predict teachers’ occupational stress and job burnout (p ). Considering the results, holding training courses for teachers to become familiar with the phenomena of workaholism, stress, and job burnout, individual and organizational outcomes, methods of dealing with them and managing them effectively is highly recommended.展开更多
This article presents the hypothesis that the vacuum is endowed with a quantum structure;the vacuum particles would be Friedmann-Planck micro-universes. For this, the article introduces a quantization of a closed Frie...This article presents the hypothesis that the vacuum is endowed with a quantum structure;the vacuum particles would be Friedmann-Planck micro-universes. For this, the article introduces a quantization of a closed Friedmann universe, then a quantization of the photon spheres filling this universe. This approach gives a numerical value consistent with cosmological measurements for the current dark energy density of our Universe. Next, the article takes the content of a model published in Physics Essays in 2013 [<a href="#ref1" target="_blank">1</a>], assuming that elementary particles are Schwarzschild photon spheres;these could be derived from the Friedmann photon spheres composing the vacuum particles. It is further recalled that the model presents a unified structure of elementary particles and allows us to calculate the value of the elementary electric charge as well as the mass of the elementary particles.展开更多
In the article "The Gravitational Force Quantum and its Value" [1 ], the author defined a gravitational force of the atomic unit ("the Gravitational Force Quantum") as a gravitational force which exerts one atom...In the article "The Gravitational Force Quantum and its Value" [1 ], the author defined a gravitational force of the atomic unit ("the Gravitational Force Quantum") as a gravitational force which exerts one atomic unit of the Earth's mass on l kilogram of a mass on the Earth's surface, and he calculated its value as: GFQEarth = 1.4958 × 10.54 N. In the present contribution, he extended the Gravitational Force Quantum concept to further Objects of the Solar Planetary System and for the Pluto. He calculated values of the GFQo on the analogous basis, i.e. of the mass and the standard acceleration of the gravity of individual objects and of the atomic unit of the mass. He received GFQo values for the Mercury 102.1427 × 1055N, the Venus 16,60012 × 10-55N, the Earth 14.97839 × l0-55 N, the Mars 52.91869 × 10-55N, the Jupiter 0.124391×1055 N, the Saturn 0.17929 ×1055N, the Uranus 0.945178 ×1055N, the Neptune 1.002845 × 10-55N, for the Pluto 458.9124 × 10-55N, and for the Sun 0.001257 × 10-55N, respectively. He multiplied the GFQo values by second power of the radii of the individual objects (O), receiving values denoted as the "Elementary Gravitational Charge" (Go). The Elementary Gravitational Charge represents a gravitational force of one atomic unit of mass in the (radius) distance of 1 meter. They were found of the same value: GMe= Gv = GE= GMa= Gj= Gs = Gp= GSun= 6.079675463 × 10-41N. The values were the same as the calculated one on the basis of the "classical" Newton's formula: FG = И × M × m / R2, for the gravitational force between the atomic unit mass and a mass of 1 kg at a distance of 1 meter, which value was calculated as G = 6.079675463 ×1041 N. The quantity of the Elementary Gravitational Charge can be supposed to be analogous to the Elementary (Electric) Charge (e =1.6021766208(98) × 10-19 C) quantity.展开更多
Emergencies of epistaxis in students caused by environmental pollution have rarely been reported to date. This study aimed to explore the cause of an emergency of epistaxis in elementary students by using a field epid...Emergencies of epistaxis in students caused by environmental pollution have rarely been reported to date. This study aimed to explore the cause of an emergency of epistaxis in elementary students by using a field epidemiological investigation. Twenty-two epistaxis cases from a single school with differences in gender, age, and classroom,were diagnosed within a period of 7 days. The air concentration of chromic acid mist (Cr6~) in the electroplating factory area, new campus, and residential area exceeded the limit of uncontrolled emissions. The emission of HCL and HzSO4was also observed. Formaldehyde levels in the classrooms exceeded the limits of indoor air quality. Abnormal nasal mucosa was significantly more frequent in the case group (93.3%) and control group 1 (of the same school) (66.7%) than in control group 2 (from a mountainous area with no industrial zone) (34.8%; P 〈 0.05 and P 〈 0.01, respectively). On the basis of the pre-existing local nasal mucosal lesions, excessive chromic acid mist in the school's surrounding areas and formaldehyde in the classrooms were considered to have acutely irritated the nasal mucosa, causing epistaxis. Several lessons regarding factory site selection, eradication of chemical emissions, and indoor air quality in newly decorated classrooms, should be learned from this emergency.展开更多
文摘This study investigated the perceptions of English educators and supervisors in Jeddah Governorate regarding the process of teaching English to elementary students.A survey was conducted using a sample size of 94 educators and 10 supervisors.The data indicate that respondents considered English instruction at the elementary level essential for expanding kids’perspectives,improving academic performance,and promoting international involvement.The main advantages cited are the development of English language skills and the promotion of early education.Although not as easily noticeable,the disadvantages include potential negative impacts on an individual’s proficiency in Arabic and their sense of national identification.The highlighted challenges encompass insufficient teacher training,student reluctance towards English,limited resources,and school disparities.The proposed techniques focused on prioritizing English instructors’training,ensuring the use of appropriate content,utilizing technology,and promoting awareness of students and educators.The current research found different obstacles in teaching English at elementary stages.To overcome these obstacles,it will be essential to enhance teacher competencies,develop efficient teaching methods,get the backing of stakeholders,assign adequate resources,and carry out continuous evaluations.Further research can also contribute to a better understanding of how early English learning impacts on Arabic identity and proficiency.
文摘Present studies in physics assume that elementary particles are the building blocks of all matter, and that they are zero-dimensional objects which do not occupy space. The new I-Theory predicts that elementary particles do indeed have a substructure, three dimensions, and occupy space, being composed of fundamental particles called I-particles. In this article we identify the substructural pattern of elementary particles and define the quanta of energy that form each elementary particle. We demonstrate that the substructure comprises two classes of quanta which we call “attraction quanta” and “repulsion quanta”. We create a model that defines the rest-mass energy of each elementary particle and can predict new particles. Lastly, in order to incorporate this knowledge into the contemporary models of science, a revised periodic table is proposed.
文摘The uncertainty principle is a fundamental principle of quantum mechanics, but its exact mathematical expression cannot obtain correct results when used to solve theoretical problems such as the energy levels of hydrogen atoms, one-dimensional deep potential wells, one-dimensional harmonic oscillators, and double-slit experiments. Even after approximate treatment, the results obtained are not completely consistent with those obtained by solving Schrödinger’s equation. This indicates that further research on the uncertainty principle is necessary. Therefore, using the de Broglie matter wave hypothesis, we quantize the action of an elementary particle in natural coordinates and obtain the quantization condition and a new deterministic relation. Using this quantization condition, we obtain the energy level formulas of an elementary particle in different conditions in a classical way that is completely consistent with the results obtained by solving Schrödinger’s equation. A new physical interpretation is given for the particle eigenfunction independence of probability for an elementary particle: an elementary particle is in a particle state at the space-time point where the action is quantized, and in a wave state in the rest of the space-time region. The space-time points of particle nature and the wave regions of particle motion constitute the continuous trajectory of particle motion. When an elementary particle is in a particle state, it is localized, whereas in the wave state region, it is nonlocalized.
基金2022 Teacher Education Research of Taishan College“Research on the Integration Path of Traditional Culture and Elementary School Aesthetic Education Based on Qilu Traditional Characteristic Costumes”(JY-01-202224)。
文摘Inheriting and promoting the excellent traditional Chinese culture should begin with the youth,as elementary school aesthetic education plays a crucial role in this process of cultural dissemination.At present,elementary school aesthetic education mainly focuses on traditional fields such as art,music,dance,calligraphy,etc.,and there is still much room for innovation in communication carriers and paths.Based on this status quo,combining professional and regional advantages,this article proposes to take Qilu characteristic costume culture as a carrier to integrate the innovation of excellent traditional Chinese culture into elementary school aesthetic education.It aims to cultivate humanistic literacy and a sense of belonging in school-age children and establish cultural confidence.
基金Sponsored by National Natural Science Foundation of China (10901077)China Postdoctoral Science Foundation (201003504+1 种基金 20090451089)Shandong Provincial Doctoral Foundation (BS2010SF006)
文摘In this note, we consider the interactions of elementary waves for the traffic flow model proposed by Aw and Rascle when the vacuum is not involved. The solutions are obtained constructively and globally when the initial data consist of three pieces of constant states. Furthermore, it can be found that the Riemann solutions are stable with respect to such small perturbations of the initial data in this particular situation by investigating the limits of the solutions as the perturbed parameter ε goes to zero.
基金Project(41472240)supported by the National Natural Science Foundation of ChinaProjects(2015B25514,2015B17214)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to cracked expansive soils that are considered discontinuous media.In this study,direct shear tests of three different scales(30 cm^(2),900 cm^(2),1963 cm^(2))and crack image analysis were carried out on undisturbed soil samples subjected to drying-wetting cycles in-situ.The REV size of expansive soil was investigated using the crack intensity factor(CIF)and soil cohesion.The results show that soil cohesion decreased with increasing sample area,and the development of secondary cracks further exacerbated the size effect of sample on cohesion of the soil.As shrinkage cracks developed,the REV size of the soil gradually increased and plateaued after 3−5 cycles.Under the same drying-wetting cycle conditions,the REV size determined using soil cohesion(REV-C)is 1.75 to 2.97 times the REV size determined using CIF(REV-CIF).Under the influence of shrinkage cracks,the average CIF is positively correlated with the REV size determined using different maximum permissible errors,with the coefficient of correlation greater than 0.9.A method for determining the REV-C based on crack image analysis is proposed,and the REV-C of expansive soil in the study area under different exposure times is given.
基金Project supported by the National Natural Science Foundation of China(No.10602061)
文摘Large active wing deformation is a significant way to generate high aerodynamic forces required in bat's flapping flight. Besides the twisting, elementary morphing models of a bat wing are proposed, including wing-bending in the spanwise direction,wing-cambering in the chordwise direction, and wing area-changing. A plate of aspect ratio 3 is used to model a bat wing, and a three-dimensional unsteady panel method is used to predict the aerodynamic forces. It is found that the cambering model has great positive influence on the lift, followed by the area-changing model and then the bending model. Further study indicates that the vortex control is a main mechanism to produce high aerodynamic forces. The mechanisms of aerodynamic force enhancement are asymmetry of the cambered wing and amplification effects of wing area-changing and wing bending. Lift and thrust are generated mainly during downstroke, and they are almost negligible during upstroke by the integrated morphing model-wing.
基金Supported by the National Natural Science Foundation of China (No.2002AA647040)
文摘Elementary flux mode (EFM) analysis was used in the metabolic analysis of central carbon metabolism in Saccharomyces cerevisiae based on constructed cellular network. Calculated from the metabolic model, the ethanol-producing pathway No. 37 furthest converts the substrate into ethanol among the 78 elementary flux modes. The in silico metabolic phenotypes predicted based on this analysis fit well with the fermentation performance of the engineered strains, KAM3 and KAMll, which confirmed that EFM analysis is valid to direct the construction of Saccharomyces cerevisiae engineered strains, to increase the ethanol yield.
文摘In this paper, the obtained experimental results concerning creation of bulk elementary excitations (BEEs) in isotopically pure liquid ^4He at low temperatures -60 mK are discussed. Positive rotons' (R^+-rotons) creation by a pulsed heater was studied. Signals were recorded for the following quantum processes: quantum evaporation of ^4He-atoms from the free liquid-helium surface by the BEEs of the liquid helium-Ⅱ, and BEEs reflection from the free surface back into the bulk liquid. Typical signals are shown, and ratios of signal amplitudes are evaluated. For long heater pulses from 5 to 10 μs, appearance of the second atomic cloud consisting of evaporated ^4He-atoms was observed in addition to the first atomic cloud. It is thought that the first atomic cloud of the evaporated helium atoms consists of very fast ^4He-atoms with energies ~35 K evaporated by positive rotons with the special energies ~17 K (~2ER~2×8.6 K with ER representing the roton minimum energy) corresponding to the third non-dispersive Zakharenko wave. The second cloud of slower ^4He-atoms was created by surface elementary excitations (SEEs or ripplons) possessing the special energies ~7.15 K representing the binding energy. It was assumed that such SEEs can be created by phonons incoming to the liquid surface with special energies ~6.2 K corresponding to the first non-dispersive Zakharenko wave which can interact at the liquid surface with the same phonons already reflected from the surface for long heater pulses. Also, some pulsed-heater characteristics were studied in order to better understand the features of such heaters in low temperature experiments.
文摘The radiation fields generated when a charged particle is incident on or moving away from a perfectly conducting plane are obtained. These fields are known in the literature as transition radiation. The field equations derived thus are used to evaluate the energy, momentum and the action associated with the radiation. The results show that for a charged particle moving with speed ν, the longitudinal momentum associated with the transition radiation is approximately equal to ΔU/c for values of ?1- ν/c smaller than about 10-3 where ΔU is the total radiated energy dissipated during the interaction and cis the speed of light in free space. The action of the radiation, defined as the product of the total energy dissipated and the duration of the emission, increases as 1- ν/c decreases and, for an electron, it becomes equal to h/4π when ν = c - νm where νm is the speed pertinent to the lowest possible momentum associated with a particle confined inside the universe and?h is the Planck constant. Combining these results with Heisenberg’s uncertainty principle, an expression that predicts the value of the elementary charge is derived.
基金The NSF(A2007000138,2005000088)of Hebei Provincethe NSF(y2004034)of Hebei University
文摘In this paper, we mainly study some properties of elementary n-Lie algebras, and prove some necessary and sufficient conditions for elementary n-Lie algebras. We also give the relations between elementary n-algebras and E-algebras.
文摘Using the tools of distinct excluded blocks, computational search and symbolic dynamics, the classification problem of all 256 elementary cellular automata is discussed from the point of view of time series generated by them,and examples in each class are provided to explain the methods used.
基金Project supported by the National Natural Science Foundation of China (Grant No.10671120)
文摘In this paper, using the characteristic analysis method, we study the relativistic Euler equations of conservation laws in energy and momentum in special relativity. The interactions of elementary waves for the relativistic Euler equations are shown. The collision of two shocks, two centered rarefaction waves, a shock and a rarefaction wave yield corresponding ransmitted waves. The overtaking of two shocks appears a transmitted shock wave, together with a reflected centered rarefaction wave.
基金part by the Foundations of the Jiangxi Natural Science Committee(No:0611005),China.
文摘Falconer[1] used the relationship between upper convex density and upper spherical density to obtain elementary density bounds for s-sets at H S-almost all points of the sets. In this paper, following Falconer[1], we first provide a basic method to estimate the lower bounds of these two classes of set densities for the self-similar s-sets satisfying the open set condition (OSC), and then obtain elementary density bounds for such fractals at all of their points. In addition, we apply the main results to the famous classical fractals and get some new density bounds.
文摘Smoking is a major health problem in many countries. It has been reported on the effects of education on youth with a reduced smoking rate and developed awareness of avoiding smoking verified as a result of educational intervention. The aim of this study was to verify the relationship between sex, school age, and family smoking and the effectiveness of smoking prevention education program (SPEP) as factors that impact the effectiveness of SPEP in elementary school and junior high school students. The participants in this survey were 6676 students, who attended elementary and junior high schools in Tokushima Prefecture between 2011 and 2015, and attended the SPEP. As factors that influence the effectiveness of the SPEP, we examined school types, sex, smokers in the family. Participants were asked the following questions before and after the SPEP to measure awareness of and attitudes toward smoking: “intention not to smoke cigarettes as adults”, “intention to refuse cigarettes when offered”, “attitude of staying away from smokers”, and “desire that their family will not smoke”. The number of survey collected was 6676, with effective responses from 5974 (90%). Among the 5974, there were 2963 (50%) males and 3011 (50%) females, 5106 elementary school students (86%), and 868 junior high school students (15%). In the case of smoker mother, it was difficult to improve these children’s “intention not to smoke as adults”, “intention to refuse cigarettes when offered”, and smoker father, it was difficult to improve these children’s “attitude of staying away from smokers”, and “desire that their family will not smoke”. Especially, in the case of smoker parents, it was particularly difficult for the SPEP to be effective in improving awareness of and attitudes toward smoking among elementary and junior high school students.
文摘The author presents a new approach which is used to solve an important Diophantine problem. An elementary argument is used to furnish another fully transparent proof of Fermat’s Last Theorem. This was first stated by Pierre de Fermat in the seventeenth century. It is widely regarded that no elementary proof of this theorem exists. The author provides evidence to dispel this belief.
文摘Teachers voluntarily devote a lot of time to their vocational activates. This can lead to workaholism and may result in stress and job burnout. The main objective of the current study is to examine the relationship of workaholism with stress and job burnout of elementary school teachers in Zahedan. This is a descriptive-correlational study. The sample includes 350 elementary school teachers in Zahedan whom are selected through applying stratified random sampling method and are examined using questionnaires on workaholism, occupational stress, and job burnout. To analyze the obtained data, correlation coefficient and simultaneous multiple regression analysis are applied using SPSS21. Teachers’ mean scores on workaholism, stress and job burnout are higher than the considered theoretical mean. Workaholism and its components (feeling of being driven to work, work involvement, and work enjoyment) are significantly and positively related to job burnout and occupational stress (p ). The results of simultaneous multiple regression analysis indicate that components of workaholism can predict teachers’ occupational stress and job burnout (p ). Considering the results, holding training courses for teachers to become familiar with the phenomena of workaholism, stress, and job burnout, individual and organizational outcomes, methods of dealing with them and managing them effectively is highly recommended.
文摘This article presents the hypothesis that the vacuum is endowed with a quantum structure;the vacuum particles would be Friedmann-Planck micro-universes. For this, the article introduces a quantization of a closed Friedmann universe, then a quantization of the photon spheres filling this universe. This approach gives a numerical value consistent with cosmological measurements for the current dark energy density of our Universe. Next, the article takes the content of a model published in Physics Essays in 2013 [<a href="#ref1" target="_blank">1</a>], assuming that elementary particles are Schwarzschild photon spheres;these could be derived from the Friedmann photon spheres composing the vacuum particles. It is further recalled that the model presents a unified structure of elementary particles and allows us to calculate the value of the elementary electric charge as well as the mass of the elementary particles.
文摘In the article "The Gravitational Force Quantum and its Value" [1 ], the author defined a gravitational force of the atomic unit ("the Gravitational Force Quantum") as a gravitational force which exerts one atomic unit of the Earth's mass on l kilogram of a mass on the Earth's surface, and he calculated its value as: GFQEarth = 1.4958 × 10.54 N. In the present contribution, he extended the Gravitational Force Quantum concept to further Objects of the Solar Planetary System and for the Pluto. He calculated values of the GFQo on the analogous basis, i.e. of the mass and the standard acceleration of the gravity of individual objects and of the atomic unit of the mass. He received GFQo values for the Mercury 102.1427 × 1055N, the Venus 16,60012 × 10-55N, the Earth 14.97839 × l0-55 N, the Mars 52.91869 × 10-55N, the Jupiter 0.124391×1055 N, the Saturn 0.17929 ×1055N, the Uranus 0.945178 ×1055N, the Neptune 1.002845 × 10-55N, for the Pluto 458.9124 × 10-55N, and for the Sun 0.001257 × 10-55N, respectively. He multiplied the GFQo values by second power of the radii of the individual objects (O), receiving values denoted as the "Elementary Gravitational Charge" (Go). The Elementary Gravitational Charge represents a gravitational force of one atomic unit of mass in the (radius) distance of 1 meter. They were found of the same value: GMe= Gv = GE= GMa= Gj= Gs = Gp= GSun= 6.079675463 × 10-41N. The values were the same as the calculated one on the basis of the "classical" Newton's formula: FG = И × M × m / R2, for the gravitational force between the atomic unit mass and a mass of 1 kg at a distance of 1 meter, which value was calculated as G = 6.079675463 ×1041 N. The quantity of the Elementary Gravitational Charge can be supposed to be analogous to the Elementary (Electric) Charge (e =1.6021766208(98) × 10-19 C) quantity.
基金sponsored by Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health Talentsin part supported by the Natural Science Foundation of China(81472961)the Co-constructed Projects by the National Health and Family Planning Commission of China,and the Health Bureau of Zhejiang Province(No.WSK2014-2-004)
文摘Emergencies of epistaxis in students caused by environmental pollution have rarely been reported to date. This study aimed to explore the cause of an emergency of epistaxis in elementary students by using a field epidemiological investigation. Twenty-two epistaxis cases from a single school with differences in gender, age, and classroom,were diagnosed within a period of 7 days. The air concentration of chromic acid mist (Cr6~) in the electroplating factory area, new campus, and residential area exceeded the limit of uncontrolled emissions. The emission of HCL and HzSO4was also observed. Formaldehyde levels in the classrooms exceeded the limits of indoor air quality. Abnormal nasal mucosa was significantly more frequent in the case group (93.3%) and control group 1 (of the same school) (66.7%) than in control group 2 (from a mountainous area with no industrial zone) (34.8%; P 〈 0.05 and P 〈 0.01, respectively). On the basis of the pre-existing local nasal mucosal lesions, excessive chromic acid mist in the school's surrounding areas and formaldehyde in the classrooms were considered to have acutely irritated the nasal mucosa, causing epistaxis. Several lessons regarding factory site selection, eradication of chemical emissions, and indoor air quality in newly decorated classrooms, should be learned from this emergency.