Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Tw...Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Two patterns of surface EMG signals are respectively acquired from the right forearm flexor of 30 healthy volunteers during right forearm supination (FS) or forearm pronation (FP). After the high frequency noise is filtered from surface EMG signal by a low-pass filter, fractal di-mension is calculated from the filtered surface EMG signal. The results showed that the fractal dimensions of filtered FS surface EMG signals and those of filtered FP surface EMG signals distribute in two different regions, so the fractal dimensions can rep-resent different patterns of surface EMG signals.展开更多
Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper,...Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper, the general characteristics of surface EMG signal patterns were firstly characterized by spectral energy change. 13 healthy subjects were instructed to execute forearm supination (FS) and forearm pronation (FP) with their right foreanns when their forearm muscles were "fatigue" or "relaxed". All surface EMG signals were recorded from their right forearm flexor during their right forearm actions. Two sets of surface EMG signals were segmented from every surface EMG signal appropriately at preparing stage and acting stage. Relative wavelet packet energy (symbolized by pnp and pna respectively at preparing stage and acting stage, n denotes the nth frequency band) of surface EMG signal firstly was calculated and then, the difference (Pn = Pna-Pnp) were gained. The results showed that Pn from some frequency bands can effectively characterize the general characteristics of surface EMG signal patterns. Compared with Pn in other frequency bands, P4, the spectral energy change from 93.75 to 125 Hz, was more appropriately regarded as the features.展开更多
An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often...An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu- rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals.展开更多
Aim: The main purpose of this article is to detect any risk of preterm deliveries at an early gestation period using uterine electromyography signals. Detecting such uterine signals can yield a promising approach to d...Aim: The main purpose of this article is to detect any risk of preterm deliveries at an early gestation period using uterine electromyography signals. Detecting such uterine signals can yield a promising approach to determine and take actions to prevent this potential risk. Methods: The best position for the detection of different uterine signals is the median vertical axis of the abdomen. These signals differ from each other by their frequency content. Initially, simulation is done for the real detected EMG signals: preterm deliveries (PD) EMGs and deliveries at term (DT) EMGs. This is performed by applying autoregressive model (AR) of specific order to estimate AR coefficients of these real EMG signals. Finally, after calculation of the AR parameters of the two types of deliveries, we generate two types of simulated uterine contractions by using White Gaussian Noise (WGN). Frequency parameter extraction and classification are first applied on simulated signals to test the limits and performance of the used methods. The last remaining step is the classification of the contractions using supervised classification method. Results: Results show that uterine contractions may be classified using the Artificial Neural Networks (ANNs). The Simple Perceptron ANN is applied on the signals for their supervised classification into independent groups: preterm deliveries (PD) and deliveries at term (TD) according to their frequency content.展开更多
To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear...To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced.展开更多
The EMG signal is a present field of research which is a driving force in sources of rehabilitating robots. The FFT with Kaiser Window was used in this paper to analyze the spectral characteristics of the EMG signal a...The EMG signal is a present field of research which is a driving force in sources of rehabilitating robots. The FFT with Kaiser Window was used in this paper to analyze the spectral characteristics of the EMG signal according to the characteristic of time changing and nonlinearity for the EMG signal and good results have been obtained. The singular value expressing the property of every EMG signal at each channel was taken out. It offered important data for the actual control of rehabilitating robots.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 60171006)the National Basic Research Program (973) of China (No. 2005CB724303)
文摘Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Two patterns of surface EMG signals are respectively acquired from the right forearm flexor of 30 healthy volunteers during right forearm supination (FS) or forearm pronation (FP). After the high frequency noise is filtered from surface EMG signal by a low-pass filter, fractal di-mension is calculated from the filtered surface EMG signal. The results showed that the fractal dimensions of filtered FS surface EMG signals and those of filtered FP surface EMG signals distribute in two different regions, so the fractal dimensions can rep-resent different patterns of surface EMG signals.
基金China 973 Project,Grant number:2005CB724303Yunnan Education Department Project,Grant number:03Y3081
文摘Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper, the general characteristics of surface EMG signal patterns were firstly characterized by spectral energy change. 13 healthy subjects were instructed to execute forearm supination (FS) and forearm pronation (FP) with their right foreanns when their forearm muscles were "fatigue" or "relaxed". All surface EMG signals were recorded from their right forearm flexor during their right forearm actions. Two sets of surface EMG signals were segmented from every surface EMG signal appropriately at preparing stage and acting stage. Relative wavelet packet energy (symbolized by pnp and pna respectively at preparing stage and acting stage, n denotes the nth frequency band) of surface EMG signal firstly was calculated and then, the difference (Pn = Pna-Pnp) were gained. The results showed that Pn from some frequency bands can effectively characterize the general characteristics of surface EMG signal patterns. Compared with Pn in other frequency bands, P4, the spectral energy change from 93.75 to 125 Hz, was more appropriately regarded as the features.
基金Project supported by the National Natural Science Foundation of China (No. 60171006) and the National Basic Research Program (973) of China (No. 2005CB724303)
文摘An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu- rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals.
文摘Aim: The main purpose of this article is to detect any risk of preterm deliveries at an early gestation period using uterine electromyography signals. Detecting such uterine signals can yield a promising approach to determine and take actions to prevent this potential risk. Methods: The best position for the detection of different uterine signals is the median vertical axis of the abdomen. These signals differ from each other by their frequency content. Initially, simulation is done for the real detected EMG signals: preterm deliveries (PD) EMGs and deliveries at term (DT) EMGs. This is performed by applying autoregressive model (AR) of specific order to estimate AR coefficients of these real EMG signals. Finally, after calculation of the AR parameters of the two types of deliveries, we generate two types of simulated uterine contractions by using White Gaussian Noise (WGN). Frequency parameter extraction and classification are first applied on simulated signals to test the limits and performance of the used methods. The last remaining step is the classification of the contractions using supervised classification method. Results: Results show that uterine contractions may be classified using the Artificial Neural Networks (ANNs). The Simple Perceptron ANN is applied on the signals for their supervised classification into independent groups: preterm deliveries (PD) and deliveries at term (TD) according to their frequency content.
基金support by the Aerospace Research Project of China under Grant No.020202。
文摘To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced.
文摘The EMG signal is a present field of research which is a driving force in sources of rehabilitating robots. The FFT with Kaiser Window was used in this paper to analyze the spectral characteristics of the EMG signal according to the characteristic of time changing and nonlinearity for the EMG signal and good results have been obtained. The singular value expressing the property of every EMG signal at each channel was taken out. It offered important data for the actual control of rehabilitating robots.