Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is ...Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is critical for a microelectronic interconnection,will go through a phase transition at temperatures between 186 and 189℃.This research conducted an in-situ TEM study of a micro Cu/ENIG/Sn solder joint under isothermal aging test and proposed a model to illustrate the mechanism of the microstructural evolution.The results showed that part of the Sn solder reacted with Cu diffused from the electrode to formη´-Cu_(6)Sn_(5)during the ultrasonic bonding process,while the rest of Sn was left and enriched in a region in the solder joint.But the enriched Sn quickly diffused to both sides when the temperature reached 100℃,reacting with the ENIG coating and Cu to form(Ni_(x)Cu_(1-x))_(3)Sn_(4),AuSn_(4),and Cu_(6)Sn_(5)IMCs.After entering the heat preservation process,the diffusion of Cu from the electrode to the joint became more intense,resulting in the formation of Cu_(3)Sn.The scallop-type Cu_(6)Sn_(5)and the seahorse-type Cu_(3)Sn constituted a typical two-layered structure in the solder joint.Most importantly,the transition betweenηandη’was captured near the phase transition temperature for Cu_(6)Sn_(5)during both the heating and cooling process,which was accompanied by a volume shifting,and the transition process was further studied.This research is expected to serve as a reference for the service of micro Cu/ENIG/Sn solder joints in the electronic industry.展开更多
基金supported by the opening fund of National Key Research and Development Program of China(No.2020YFE0205300)Key Laboratory of Science and Technology on Silicon Devices,Chinese Academy of Sciences(No.KLSDTJJ2022-5)+1 种基金Chongqing Natural Science Foundation of China(No.cstc2021jcyj-msxmX1002)the Fundamental Research Funds for the Central Universities(No.AUGA5710051221).
文摘Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is critical for a microelectronic interconnection,will go through a phase transition at temperatures between 186 and 189℃.This research conducted an in-situ TEM study of a micro Cu/ENIG/Sn solder joint under isothermal aging test and proposed a model to illustrate the mechanism of the microstructural evolution.The results showed that part of the Sn solder reacted with Cu diffused from the electrode to formη´-Cu_(6)Sn_(5)during the ultrasonic bonding process,while the rest of Sn was left and enriched in a region in the solder joint.But the enriched Sn quickly diffused to both sides when the temperature reached 100℃,reacting with the ENIG coating and Cu to form(Ni_(x)Cu_(1-x))_(3)Sn_(4),AuSn_(4),and Cu_(6)Sn_(5)IMCs.After entering the heat preservation process,the diffusion of Cu from the electrode to the joint became more intense,resulting in the formation of Cu_(3)Sn.The scallop-type Cu_(6)Sn_(5)and the seahorse-type Cu_(3)Sn constituted a typical two-layered structure in the solder joint.Most importantly,the transition betweenηandη’was captured near the phase transition temperature for Cu_(6)Sn_(5)during both the heating and cooling process,which was accompanied by a volume shifting,and the transition process was further studied.This research is expected to serve as a reference for the service of micro Cu/ENIG/Sn solder joints in the electronic industry.