Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for o...Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for organic-rich shale development is still undetermined.The authors,therefore,focus on the mechanism of accumulation of organic matter and the characterization of the sedimentary environment of the Wufeng-Longmaxi Shales to have a more complete understanding and new discovering of organic matter enrichment and favorable area in the marginal region around Sichuan Basin.Multiple methods were applied in this study,including thin section identification,scanning electron microscopy(SEM)observations and X-ray diffraction(XRD),and elemental analysis on outcrop samples.Five lithofacies have been defined according to the mineralogical and petrological analyses,including mudstone,bioclastic limestone,silty shale,dolomitic shale,and carbonaceous siliceous shale.The paleo-environments have been reconstructed and the organic enrichment mechanism has been identified as a reduced environment and high productivity.The Wufeng period is generally a suboxic environment and the early Longmaxi period is a reducing environment based on geochemical characterization.High dolomite content in the study area is accompanied by high TOC,which may potentially indicate the restricted anoxic environment formed by biological flourishing in shallower water.And for the area close to the Kangdian Uplift,the shale gas generation capability is comparatively favorable.The geochemical parameters implied that new favorable areas for shale gas exploration could be targeted,and more shale gas resources in the mountain-basin transitional zone might be identified in the future.展开更多
Wind energy is one of the most basic forms of renewable energy,which shows an increasing rate of development worldwide and also at the European level.However,this rapid deployment of wind farms makes the need for an i...Wind energy is one of the most basic forms of renewable energy,which shows an increasing rate of development worldwide and also at the European level.However,this rapid deployment of wind farms makes the need for an impact assessment of this type of projects on the natural and man-made environment imperative.The present paper aims to identify and assess the environmental impacts of wind farm projects in the Region of Central Greece.A modified Rapid Impact Assessment Matrix(RIAM)method is used for this purpose.The methodology includes the identification of the existing onshore wind farm projects in the study area,the appropriate modifications of the RIAM method to respond to the characteristics of the projects and the study area,the qualitative assessment of their potential impacts during construction and operational phases and the computation of the Environmental Performance Grade(EPG)of projects based on the pro-posed modified RIAM method.The results reveal that although there are some slight negative impacts on the natural environment of the study area,the examined wind farms contribute positively both to the atmosphere and to the socio-economic environment of the study.This study extends the potential for using RIAM as a tool in environmental impact assessment studies of renewable energy projects.展开更多
Background Physical entity interactions in mixed reality(MR)environments aim to harness human capabilities in manipulating physical objects,thereby enhancing virtual environment(VEs)functionality.In MR,a common strate...Background Physical entity interactions in mixed reality(MR)environments aim to harness human capabilities in manipulating physical objects,thereby enhancing virtual environment(VEs)functionality.In MR,a common strategy is to use virtual agents as substitutes for physical entities,balancing interaction efficiency with environmental immersion.However,the impact of virtual agent size and form on interaction performance remains unclear.Methods Two experiments were conducted to explore how virtual agent size and form affect interaction performance,immersion,and preference in MR environments.The first experiment assessed five virtual agent sizes(25%,50%,75%,100%,and 125%of physical size).The second experiment tested four types of frames(no frame,consistent frame,half frame,and surrounding frame)across all agent sizes.Participants,utilizing a head mounted display,performed tasks involving moving cups,typing words,and using a mouse.They completed questionnaires assessing aspects such as the virtual environment effects,interaction effects,collision concerns,and preferences.Results Results from the first experiment revealed that agents matching physical object size produced the best overall performance.The second experiment demonstrated that consistent framing notably enhances interaction accuracy and speed but reduces immersion.To balance efficiency and immersion,frameless agents matching physical object sizes were deemed optimal.Conclusions Virtual agents matching physical entity sizes enhance user experience and interaction performance.Conversely,familiar frames from 2D interfaces detrimentally affect interaction and immersion in virtual spaces.This study provides valuable insights for the future development of MR systems.展开更多
Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affect...Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters,perimeter intrusion and external environmental hazards.The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.Design/methodology/approach–In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments,the research status is elaborated,and the latest research progress and achievements of the team are introduced.This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological,perimeter and external environmental situation perception methods for high-speed rail operation.Findings–Based on the technical route of“situational awareness evaluation warning active control,”a technical system for monitoring the safety of high-speed train operation environments has been formed.Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters,perimeter intrusion and the external environment on high-speed rail safety.These works strongly support the improvement of China’s railway environmental safety guarantee technology.Originality/value–With the operation of CR450 high-speed trains with a speed of 400 kmper hour and the application of high-speed train autonomous driving technology in the future,new and higher requirements have been put forward for the safety of high-speed rail operation environments.The following five aspects of work are urgently needed:(1)Research the single factor disaster mechanism of wind,rain,snow,lightning,etc.for high-speed railways with a speed of 400 kms per hour,and based on this,study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment,revealing the coupling disastermechanism ofmultiple influencing factors;(2)Research covers multi-source data fusion methods and associated features such as disaster monitoring data,meteorological information,route characteristics and terrain and landforms,studying the spatio-temporal evolution laws of meteorological disasters,perimeter intrusions and external environmental hazards;(3)In terms of meteorological disaster situation awareness,research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines;(4)In terms of perimeter intrusion,research amulti-modal fusion perception method for typical scenarios of high-speed rail operation in all time,all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and(5)In terms of external environment,based on the existing general network framework for change detection,we will carry out research on change detection and algorithms in the surrounding environment of highspeed rail.展开更多
The haematopoietic stem cell transplantation(HSCT)ward serves as a temporary residence for patients following their surgical procedures,necessitating adherence to rigorous aseptic standards.However,the current atmosph...The haematopoietic stem cell transplantation(HSCT)ward serves as a temporary residence for patients following their surgical procedures,necessitating adherence to rigorous aseptic standards.However,the current atmosphere within these wards frequently contributes to feelings of depression among patients.Research indicates that a restorative environment has the potential to alleviate negative emotional states in individuals.This study utilized the HSCT ward of Peking University First Hospital as a case study to examine the decorative preferences.This investigation was conducted through a questionnaire that was informed by the patients’inherent preferences and insights derived from research on restorative environments.The results indicated that the incorporation of floral decorations,particularly those resembling sunflowers,in ward corridors,communal activity areas,and walls can significantly enhance patients’sense of hope.Additionally,it is essential to improve the environmental visual experience in the nurses’lounge and demonstration rooms for medical staff.展开更多
Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid populati...Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid population growth and economic expansion.Groundwater,a vital source of water in Asia,faces significant disparities in distribution and suffers from unsustainable exploitation practices.This study applies groundwater system theory and categorizes Asia into 11 primary groundwater systems and 36 secondary ones,based on intercontinental geological structures,climate,terrain,and hydrogeological characteristics.As of the end of 2010,Asia's assessed groundwater resources totalled 4.677×10^(9) m^(3)/a,with exploitable resources amounting to 3.274×10^(9) m^(3)/a.By considering the geological environmental impacts of groundwater development and the distinctive characteristics of terrain and landforms,six categories of effect zones with varying distribution patterns are identified.The current research on Asia's groundwater resources,environmental dynamics,and human impacts aims to provide a theoretical foundation for sustainable groundwater management and environmental conservation in the region.展开更多
To have a clean, safe, and functional environment is not only essential for the purpose of preservation, but also imperative for safeguarding the most fundamental of human rights. Resolution 45/94 of the United Nation...To have a clean, safe, and functional environment is not only essential for the purpose of preservation, but also imperative for safeguarding the most fundamental of human rights. Resolution 45/94 of the United Nations (UN) General Assembly also stresses and acknowledges that: “all individuals are entitled to live in an environment adequate for their health and wellbeing” (United Nations Digital Library System, 1991). Environmental and climate justice, which: “emerged in the context of the local environmental struggles of directly oppressed groups”, is a global movement dedicated to ensuring equal protection of people’s human rights (i.e., water, health, life, etc.) in the face of the climate crisis. Moreover, health, environment and human rights are part of the 2030 agenda (in particular, SDG 1, SDG 5, SDG 6, SDG 7, SDG 13, SDG 16, SDG 17). Individually, both environmental and climate justice are rooted in an intersectional outlook, by which they highlight the common threads between communities and the people’s inclusion, irrespective of race, class, or gender, in the pursuit of justice. On the other hand, they recognise and acknowledge the role and consequences of climate change in economic, social, and political dimensions;thus, drawing emphasis on the rights of people under the emerging inequities. In the case of Palestine, the Palestinian community is increasingly becoming vulnerable to these effects and the resulting inequalities of climate change. This vulnerability stems from: 1) The right to life;clean WASH;equitable work opportunities;access to resources;and free movement;are all examples of human rights that the Israeli colonial regime infringes upon;2) Infrastructure is essential for climate adaptation: 61% of the West Bank is ultimately barred from building infrastructure (B’Tselem, 2019) and Gaza Strip has major gaps in infrastructure due to intentional destruction by Israel;3) Palestinian deprivation of the sovereign right to natural resources by Israel;4) Apartheid system in water accessibility: Israeli water usage per person is over three times higher than that of Palestinians (their usage is under the WHO recommended minimum per day) (B’Tselem, 2023);and 5) Violent settler attacks. In 2022 alone, the Applied Research Institute-Jerusalem (ARIJ) recorded 1527 settler attacks that targeted land, properties, livestock, agriculture and even Palestinian civilians. The ongoing neglect of these concerns and the persistent colonization of Palestine by Israel unequivocally and unwaveringly affect the human rights of Palestinians. The power dynamics at play especially hamper the Palestinian ability to exercise and fulfill their inalienable human rights and to tackle the obstacles to justice in their environment.展开更多
Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and wa...Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.展开更多
This study aims to determine the environmental aspects and impacts of the phase relating to the operation of Manantali’s hydroelectric structures and facilities according to the requirements of the ISO 14001 version ...This study aims to determine the environmental aspects and impacts of the phase relating to the operation of Manantali’s hydroelectric structures and facilities according to the requirements of the ISO 14001 version 2015 standard. To do this, the mapping of the different work areas made it possible to identify all the activities within the framework of the farm. Based on the mapping, environmental measurements made including noise level, brightness, electric and magnetic fields, total particles, PM10, PM2.5, PM1 showed the work areas with the exposure limit values exceeded. The inventories of the waste produced show eighteen (18) types of waste, 67% of which are special industrial waste (SIW), 28% are ordinary industrial waste (OIW) and 5% are inert industrial waste (IIW). The identification and assessment of environmental aspects and impacts made it possible to determine sixteen (16) positive and negative significant environmental aspects (ESAs). The positive AES must be maintained, and for the negative ones, mitigation and mitigation measures must be put in place in order to manage them effectively. This will ultimately improve environmental management in the operation of hydroelectric structures and facilities.展开更多
Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in...Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.展开更多
With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how ...With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.展开更多
Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental ...Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental fa ctors are increasingly shown to impact Alzheimer’s disease development and progression.Microglia,the most important brain immune cells,play a central role in Alzheimer’s disease pathogenesis and are considered environmental and lifestyle"sensors."Factors like environmental pollution and modern lifestyles(e.g.,chronic stress,poor dietary habits,sleep,and circadian rhythm disorde rs)can cause neuroinflammato ry responses that lead to cognitive impairment via microglial functioning and phenotypic regulation.However,the specific mechanisms underlying interactions among these facto rs and microglia in Alzheimer’s disease are unclear.Herein,we:discuss the biological effects of air pollution,chronic stress,gut micro biota,sleep patterns,physical exercise,cigarette smoking,and caffeine consumption on microglia;consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer’s disease;and present the neuroprotective effects of a healthy lifestyle.Toward intervening and controlling these environmental risk fa ctors at an early Alzheimer’s disease stage,understanding the role of microglia in Alzheimer’s disease development,and to rgeting strategies to to rget microglia,co uld be essential to future Alzheimer’s disease treatments.展开更多
This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(V...This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.展开更多
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M...Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.展开更多
The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well...The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.展开更多
High velocity oxygen fuel(HVOF)spraying process is commonly used to produce superalloy coatings.Inconel 625 coating was prepared on Q235B low carbon steel by HVOF.A series of experiments were conducted to examine the ...High velocity oxygen fuel(HVOF)spraying process is commonly used to produce superalloy coatings.Inconel 625 coating was prepared on Q235B low carbon steel by HVOF.A series of experiments were conducted to examine the surface and corrosion resistance properties of Inconel 625 HVOF coating.In this paper,potentiodynamic polarization tests and electrochemical impedance spectroscopy(EIS)tests were carried out to evaluate the corrosion resistance of Inconel 625 coating under simulated marine environment.The experiment-al results showed that Inconel 625 coating revealed low porosity and desired coating thickness.Shift in the corrosion potential(E_(corr))to-wards the noble direction combined with much low corrosion current density(i_(corr))indicating a significant improvement of HVOF Inconel 625 coating compared with the substrate.展开更多
Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of ...Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of inertinite,changes in the coal-forming environment and control characteristics of wildfire.Research has shown that there are two forms of inertinite sources in the study area.Alongside typical fusinization,wildfire events also play a substantial role in inertinite formation.There are significant fluctuations in the coal-forming environment of samples at different depths.Coal samples were formed in dry forest swamp with low water levels and strong oxidation,which have a high inertinite content,and the samples formed in wet forest swamp and limnic showed low inertinite content.Conversely,the inertinite content of different origins does not fully correspond to the depositional environment characterized by dryness and oxidation.Nonpyrogenic inertinites were significantly influenced by climatic conditions,while pyrofusinite was not entirely controlled by climatic conditions but rather directly impacted by wildfire events.The high oxygen level was the main factor causing widespread wildfire events.Overall,the combination of wildfire activity and oxidation generates a high content of inertinite in the Middle Jurassic coal of the Ordos Basin.展开更多
A total of 45 alkylbenzenes were detected and identified in crude oils with different depositional environments and thermal maturities from the Tarim Basin,Beibuwan Basin,and Songliao Basin using comprehensive two-dim...A total of 45 alkylbenzenes were detected and identified in crude oils with different depositional environments and thermal maturities from the Tarim Basin,Beibuwan Basin,and Songliao Basin using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry(GC×GCTOFMS).By analyzing the distribution characteristics of C0-C5alkylbenzenes,it is found that the content of some alkylbenzenes varies greatly in crude oils.Based on the distribution characteristics of 1,2,4,5-tetramethylbenzene(Te MB)and 1,2,3,4-Te MB,the ratio of 1,2,4,5-Te MB to 1,2,3,4-Te MB is proposed to indicate the organic matter origin and depositional environment of ancient sediments.Oil samples originated mainly from lower hydrobiont,algae,bacteria and source rocks deposited under reducing/anoxic conditions have low 1,2,4,5-/1,2,3,4-Te MB values(less than 0.6),while oil samples originated mainly from terrestrial higher plants and source rocks deposited under oxic/sub-oxic conditions have higher 1,2,4,5-/1,2,3,4-Te MB values(greater than 1.0).The significant difference of 1,2,4,5-/1,2,3,4-Te MB values is controlled by 1,2,4,5-Te MB content.1,2,4,5-Te MB content in oils derived from source rocks deposited in oxidized sedimentary environment(greater than 1.0 mg/g whole oil)is higher than that in oils from source rocks deposited in reduced sedimentary environment(less than 1.0 mg/g whole oil).1,2,4,5-/1,2,3,4-Te MB ratio might not or slightly be affected by evaporative fractionation,biodegradation and thermal maturity.1,2,4,5-/1,2,3,4-Te MB ratio and 1,2,4,5-Te MB content can be used as supplementary parameter for the identification of sedimentary environment and organic matter input.It should be noted that compared to the identification of organic matter sources,the 1,2,4,5-/1,2,3,4-Te MB parameter is more effective in identifying sedimentary environments.展开更多
Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechan...Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.展开更多
A polymetallic layer is usually developed at the bottom of the early Cambrian black shale in Guizhou Province.The mineral that makes up the polymetallic layer is related to the sedimentary facies.To analyze the differ...A polymetallic layer is usually developed at the bottom of the early Cambrian black shale in Guizhou Province.The mineral that makes up the polymetallic layer is related to the sedimentary facies.To analyze the differentiation mechanism between polymetallic deposits(Ni-Mo and V),the Zhijin Gezhongwu profile located in the outer shelf and the Sansui Haishan V deposit located in the lower slope are selected to study the in situ sulfur isotopes and trace elements of pyrite.The results show that δ^(34)S values of pyrite vary widely from−7.8‰to 28‰in the Gezhongwu profile,while the δ^(34)S values are relatively uniform(from 27.8‰to 38.4‰)in the Haishan profile.The isotopic S composition is consistent with the transition that occurs in the sedimentary phase from the shelf to the deep sea on the transgressive Yangtze platform;this indicates that the δ^(34)SO_(4)^(2−)values in seawater must be differently distributed in depositional environments.The sulfur in the Ni-Mo layer is produced after the mixing of seawater and hydrothermal fluid,while the V layer mainly originates from seawater.Overall,the Ni-Mo and V deposits have been differentiated primarily on the basis of the combined effect of continental weathering and hydrothermal fluid.展开更多
基金jointly funded by the National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(PLC20210104)China Geological Survey(DD20221661)China National Science and Technology Major Project“Test and Application of Shale Gas Exploration and Evaluation Technology(2016ZX05034004)”。
文摘Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for organic-rich shale development is still undetermined.The authors,therefore,focus on the mechanism of accumulation of organic matter and the characterization of the sedimentary environment of the Wufeng-Longmaxi Shales to have a more complete understanding and new discovering of organic matter enrichment and favorable area in the marginal region around Sichuan Basin.Multiple methods were applied in this study,including thin section identification,scanning electron microscopy(SEM)observations and X-ray diffraction(XRD),and elemental analysis on outcrop samples.Five lithofacies have been defined according to the mineralogical and petrological analyses,including mudstone,bioclastic limestone,silty shale,dolomitic shale,and carbonaceous siliceous shale.The paleo-environments have been reconstructed and the organic enrichment mechanism has been identified as a reduced environment and high productivity.The Wufeng period is generally a suboxic environment and the early Longmaxi period is a reducing environment based on geochemical characterization.High dolomite content in the study area is accompanied by high TOC,which may potentially indicate the restricted anoxic environment formed by biological flourishing in shallower water.And for the area close to the Kangdian Uplift,the shale gas generation capability is comparatively favorable.The geochemical parameters implied that new favorable areas for shale gas exploration could be targeted,and more shale gas resources in the mountain-basin transitional zone might be identified in the future.
文摘Wind energy is one of the most basic forms of renewable energy,which shows an increasing rate of development worldwide and also at the European level.However,this rapid deployment of wind farms makes the need for an impact assessment of this type of projects on the natural and man-made environment imperative.The present paper aims to identify and assess the environmental impacts of wind farm projects in the Region of Central Greece.A modified Rapid Impact Assessment Matrix(RIAM)method is used for this purpose.The methodology includes the identification of the existing onshore wind farm projects in the study area,the appropriate modifications of the RIAM method to respond to the characteristics of the projects and the study area,the qualitative assessment of their potential impacts during construction and operational phases and the computation of the Environmental Performance Grade(EPG)of projects based on the pro-posed modified RIAM method.The results reveal that although there are some slight negative impacts on the natural environment of the study area,the examined wind farms contribute positively both to the atmosphere and to the socio-economic environment of the study.This study extends the potential for using RIAM as a tool in environmental impact assessment studies of renewable energy projects.
基金the Strategic research and consulting project of Chinese Academy of Engineering(2023-HY-14).
文摘Background Physical entity interactions in mixed reality(MR)environments aim to harness human capabilities in manipulating physical objects,thereby enhancing virtual environment(VEs)functionality.In MR,a common strategy is to use virtual agents as substitutes for physical entities,balancing interaction efficiency with environmental immersion.However,the impact of virtual agent size and form on interaction performance remains unclear.Methods Two experiments were conducted to explore how virtual agent size and form affect interaction performance,immersion,and preference in MR environments.The first experiment assessed five virtual agent sizes(25%,50%,75%,100%,and 125%of physical size).The second experiment tested four types of frames(no frame,consistent frame,half frame,and surrounding frame)across all agent sizes.Participants,utilizing a head mounted display,performed tasks involving moving cups,typing words,and using a mouse.They completed questionnaires assessing aspects such as the virtual environment effects,interaction effects,collision concerns,and preferences.Results Results from the first experiment revealed that agents matching physical object size produced the best overall performance.The second experiment demonstrated that consistent framing notably enhances interaction accuracy and speed but reduces immersion.To balance efficiency and immersion,frameless agents matching physical object sizes were deemed optimal.Conclusions Virtual agents matching physical entity sizes enhance user experience and interaction performance.Conversely,familiar frames from 2D interfaces detrimentally affect interaction and immersion in virtual spaces.This study provides valuable insights for the future development of MR systems.
基金National Natural Science Foundation of China High Speed Rail Joint Fund(U2268217)。
文摘Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters,perimeter intrusion and external environmental hazards.The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.Design/methodology/approach–In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments,the research status is elaborated,and the latest research progress and achievements of the team are introduced.This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological,perimeter and external environmental situation perception methods for high-speed rail operation.Findings–Based on the technical route of“situational awareness evaluation warning active control,”a technical system for monitoring the safety of high-speed train operation environments has been formed.Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters,perimeter intrusion and the external environment on high-speed rail safety.These works strongly support the improvement of China’s railway environmental safety guarantee technology.Originality/value–With the operation of CR450 high-speed trains with a speed of 400 kmper hour and the application of high-speed train autonomous driving technology in the future,new and higher requirements have been put forward for the safety of high-speed rail operation environments.The following five aspects of work are urgently needed:(1)Research the single factor disaster mechanism of wind,rain,snow,lightning,etc.for high-speed railways with a speed of 400 kms per hour,and based on this,study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment,revealing the coupling disastermechanism ofmultiple influencing factors;(2)Research covers multi-source data fusion methods and associated features such as disaster monitoring data,meteorological information,route characteristics and terrain and landforms,studying the spatio-temporal evolution laws of meteorological disasters,perimeter intrusions and external environmental hazards;(3)In terms of meteorological disaster situation awareness,research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines;(4)In terms of perimeter intrusion,research amulti-modal fusion perception method for typical scenarios of high-speed rail operation in all time,all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and(5)In terms of external environment,based on the existing general network framework for change detection,we will carry out research on change detection and algorithms in the surrounding environment of highspeed rail.
基金Sponsored by National Natural Science Foundation of China(52278045).
文摘The haematopoietic stem cell transplantation(HSCT)ward serves as a temporary residence for patients following their surgical procedures,necessitating adherence to rigorous aseptic standards.However,the current atmosphere within these wards frequently contributes to feelings of depression among patients.Research indicates that a restorative environment has the potential to alleviate negative emotional states in individuals.This study utilized the HSCT ward of Peking University First Hospital as a case study to examine the decorative preferences.This investigation was conducted through a questionnaire that was informed by the patients’inherent preferences and insights derived from research on restorative environments.The results indicated that the incorporation of floral decorations,particularly those resembling sunflowers,in ward corridors,communal activity areas,and walls can significantly enhance patients’sense of hope.Additionally,it is essential to improve the environmental visual experience in the nurses’lounge and demonstration rooms for medical staff.
文摘Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid population growth and economic expansion.Groundwater,a vital source of water in Asia,faces significant disparities in distribution and suffers from unsustainable exploitation practices.This study applies groundwater system theory and categorizes Asia into 11 primary groundwater systems and 36 secondary ones,based on intercontinental geological structures,climate,terrain,and hydrogeological characteristics.As of the end of 2010,Asia's assessed groundwater resources totalled 4.677×10^(9) m^(3)/a,with exploitable resources amounting to 3.274×10^(9) m^(3)/a.By considering the geological environmental impacts of groundwater development and the distinctive characteristics of terrain and landforms,six categories of effect zones with varying distribution patterns are identified.The current research on Asia's groundwater resources,environmental dynamics,and human impacts aims to provide a theoretical foundation for sustainable groundwater management and environmental conservation in the region.
文摘To have a clean, safe, and functional environment is not only essential for the purpose of preservation, but also imperative for safeguarding the most fundamental of human rights. Resolution 45/94 of the United Nations (UN) General Assembly also stresses and acknowledges that: “all individuals are entitled to live in an environment adequate for their health and wellbeing” (United Nations Digital Library System, 1991). Environmental and climate justice, which: “emerged in the context of the local environmental struggles of directly oppressed groups”, is a global movement dedicated to ensuring equal protection of people’s human rights (i.e., water, health, life, etc.) in the face of the climate crisis. Moreover, health, environment and human rights are part of the 2030 agenda (in particular, SDG 1, SDG 5, SDG 6, SDG 7, SDG 13, SDG 16, SDG 17). Individually, both environmental and climate justice are rooted in an intersectional outlook, by which they highlight the common threads between communities and the people’s inclusion, irrespective of race, class, or gender, in the pursuit of justice. On the other hand, they recognise and acknowledge the role and consequences of climate change in economic, social, and political dimensions;thus, drawing emphasis on the rights of people under the emerging inequities. In the case of Palestine, the Palestinian community is increasingly becoming vulnerable to these effects and the resulting inequalities of climate change. This vulnerability stems from: 1) The right to life;clean WASH;equitable work opportunities;access to resources;and free movement;are all examples of human rights that the Israeli colonial regime infringes upon;2) Infrastructure is essential for climate adaptation: 61% of the West Bank is ultimately barred from building infrastructure (B’Tselem, 2019) and Gaza Strip has major gaps in infrastructure due to intentional destruction by Israel;3) Palestinian deprivation of the sovereign right to natural resources by Israel;4) Apartheid system in water accessibility: Israeli water usage per person is over three times higher than that of Palestinians (their usage is under the WHO recommended minimum per day) (B’Tselem, 2023);and 5) Violent settler attacks. In 2022 alone, the Applied Research Institute-Jerusalem (ARIJ) recorded 1527 settler attacks that targeted land, properties, livestock, agriculture and even Palestinian civilians. The ongoing neglect of these concerns and the persistent colonization of Palestine by Israel unequivocally and unwaveringly affect the human rights of Palestinians. The power dynamics at play especially hamper the Palestinian ability to exercise and fulfill their inalienable human rights and to tackle the obstacles to justice in their environment.
文摘Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.
文摘This study aims to determine the environmental aspects and impacts of the phase relating to the operation of Manantali’s hydroelectric structures and facilities according to the requirements of the ISO 14001 version 2015 standard. To do this, the mapping of the different work areas made it possible to identify all the activities within the framework of the farm. Based on the mapping, environmental measurements made including noise level, brightness, electric and magnetic fields, total particles, PM10, PM2.5, PM1 showed the work areas with the exposure limit values exceeded. The inventories of the waste produced show eighteen (18) types of waste, 67% of which are special industrial waste (SIW), 28% are ordinary industrial waste (OIW) and 5% are inert industrial waste (IIW). The identification and assessment of environmental aspects and impacts made it possible to determine sixteen (16) positive and negative significant environmental aspects (ESAs). The positive AES must be maintained, and for the negative ones, mitigation and mitigation measures must be put in place in order to manage them effectively. This will ultimately improve environmental management in the operation of hydroelectric structures and facilities.
基金This study was supported by the National Natural Science Foundation of China(Grant No.31870613)Guizhou Province High-level Innovative Talents Training Plan Project(2016)5661.
文摘Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.
基金This work was supported by the Qinchuangyuan Project of Shaanxi Province,China(QCYRCXM-2022-145)the Major Project of the Key Research Base of Humanities and Social Sciences of the Ministry of Education,China(22JJD790052)+1 种基金the Chinese Universities Scientific Fund(Z1010422003)the National Natural Science Foundation of China(72373117).
文摘With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.
基金supported by the National Natural Science Foundation of China,Nos.82071190 and 82371438(to LC)Innovative Strong School Project of Guangdong Medical University,No.4SG21230G(to LC)Scientific Research Foundation of Guangdong Medical University,No.GDMUM2020017(to CL)。
文摘Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental fa ctors are increasingly shown to impact Alzheimer’s disease development and progression.Microglia,the most important brain immune cells,play a central role in Alzheimer’s disease pathogenesis and are considered environmental and lifestyle"sensors."Factors like environmental pollution and modern lifestyles(e.g.,chronic stress,poor dietary habits,sleep,and circadian rhythm disorde rs)can cause neuroinflammato ry responses that lead to cognitive impairment via microglial functioning and phenotypic regulation.However,the specific mechanisms underlying interactions among these facto rs and microglia in Alzheimer’s disease are unclear.Herein,we:discuss the biological effects of air pollution,chronic stress,gut micro biota,sleep patterns,physical exercise,cigarette smoking,and caffeine consumption on microglia;consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer’s disease;and present the neuroprotective effects of a healthy lifestyle.Toward intervening and controlling these environmental risk fa ctors at an early Alzheimer’s disease stage,understanding the role of microglia in Alzheimer’s disease development,and to rgeting strategies to to rget microglia,co uld be essential to future Alzheimer’s disease treatments.
基金supported by the research funds for Coupling Research on Industrial Upgrade and Environmental Management in the Bohai Rim-Technique,methodology,and Environmental Economic Policies(No.42076221).
文摘This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.
基金supported by the National Natural Science Foundation of China(No.21676065 and No.52373262)China Postdoctoral Science Foundation(2021MD703944,2022T150782).
文摘Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.
基金financial support from the National Key Research and Development Program of China(2019YFC0605502)the National Natural Science Foundation of China(42302156)+1 种基金the Major Projects of Petro China Science and Technology Fund(2021DJ0206)the Natural Science Foundation of China University of Petroleum(22CX06046A)。
文摘The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LTGC23E010001)the Youth Science and Technology Project of Zhejiang Provincial Administration for Market Regulation(No.QN2023427)Science and Techno-logy Project of State Administration for Market Regulation(No.2022MK054).
文摘High velocity oxygen fuel(HVOF)spraying process is commonly used to produce superalloy coatings.Inconel 625 coating was prepared on Q235B low carbon steel by HVOF.A series of experiments were conducted to examine the surface and corrosion resistance properties of Inconel 625 HVOF coating.In this paper,potentiodynamic polarization tests and electrochemical impedance spectroscopy(EIS)tests were carried out to evaluate the corrosion resistance of Inconel 625 coating under simulated marine environment.The experiment-al results showed that Inconel 625 coating revealed low porosity and desired coating thickness.Shift in the corrosion potential(E_(corr))to-wards the noble direction combined with much low corrosion current density(i_(corr))indicating a significant improvement of HVOF Inconel 625 coating compared with the substrate.
基金financially supported by the National Natural Science Foundation of China(Grant No.42272209)the Natural Science Basic Research Program of Shaanxi(Grant No.2021JLM-12)the CNPC Major Science and Technology Project(Grant No.2021DJ3805)。
文摘Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of inertinite,changes in the coal-forming environment and control characteristics of wildfire.Research has shown that there are two forms of inertinite sources in the study area.Alongside typical fusinization,wildfire events also play a substantial role in inertinite formation.There are significant fluctuations in the coal-forming environment of samples at different depths.Coal samples were formed in dry forest swamp with low water levels and strong oxidation,which have a high inertinite content,and the samples formed in wet forest swamp and limnic showed low inertinite content.Conversely,the inertinite content of different origins does not fully correspond to the depositional environment characterized by dryness and oxidation.Nonpyrogenic inertinites were significantly influenced by climatic conditions,while pyrofusinite was not entirely controlled by climatic conditions but rather directly impacted by wildfire events.The high oxygen level was the main factor causing widespread wildfire events.Overall,the combination of wildfire activity and oxidation generates a high content of inertinite in the Middle Jurassic coal of the Ordos Basin.
基金supported by Doctor’s Scientific Research Initiation Project of Yan’an University(YAU202213093)National Natural Science Foundation of China(Grant No.41503029)。
文摘A total of 45 alkylbenzenes were detected and identified in crude oils with different depositional environments and thermal maturities from the Tarim Basin,Beibuwan Basin,and Songliao Basin using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry(GC×GCTOFMS).By analyzing the distribution characteristics of C0-C5alkylbenzenes,it is found that the content of some alkylbenzenes varies greatly in crude oils.Based on the distribution characteristics of 1,2,4,5-tetramethylbenzene(Te MB)and 1,2,3,4-Te MB,the ratio of 1,2,4,5-Te MB to 1,2,3,4-Te MB is proposed to indicate the organic matter origin and depositional environment of ancient sediments.Oil samples originated mainly from lower hydrobiont,algae,bacteria and source rocks deposited under reducing/anoxic conditions have low 1,2,4,5-/1,2,3,4-Te MB values(less than 0.6),while oil samples originated mainly from terrestrial higher plants and source rocks deposited under oxic/sub-oxic conditions have higher 1,2,4,5-/1,2,3,4-Te MB values(greater than 1.0).The significant difference of 1,2,4,5-/1,2,3,4-Te MB values is controlled by 1,2,4,5-Te MB content.1,2,4,5-Te MB content in oils derived from source rocks deposited in oxidized sedimentary environment(greater than 1.0 mg/g whole oil)is higher than that in oils from source rocks deposited in reduced sedimentary environment(less than 1.0 mg/g whole oil).1,2,4,5-/1,2,3,4-Te MB ratio might not or slightly be affected by evaporative fractionation,biodegradation and thermal maturity.1,2,4,5-/1,2,3,4-Te MB ratio and 1,2,4,5-Te MB content can be used as supplementary parameter for the identification of sedimentary environment and organic matter input.It should be noted that compared to the identification of organic matter sources,the 1,2,4,5-/1,2,3,4-Te MB parameter is more effective in identifying sedimentary environments.
基金the National Natural Science Foundation of China(32071955)the Natural Science Foundation of Shaanxi Province,China(2018JQ3061).
文摘Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.
基金supported by the National Natural Science Foundation of China(Grant Nos.42272103,92062221,42063009,U1812402)the Guizhou Provincial Science and Technology Projects(Grant No.Qiankehejichu–ZK[2022]common 213)the Higher Education Scientific Research Projects of the Education Department of Guizhou Province(Grant No.Qianjiaoji[2022]157).
文摘A polymetallic layer is usually developed at the bottom of the early Cambrian black shale in Guizhou Province.The mineral that makes up the polymetallic layer is related to the sedimentary facies.To analyze the differentiation mechanism between polymetallic deposits(Ni-Mo and V),the Zhijin Gezhongwu profile located in the outer shelf and the Sansui Haishan V deposit located in the lower slope are selected to study the in situ sulfur isotopes and trace elements of pyrite.The results show that δ^(34)S values of pyrite vary widely from−7.8‰to 28‰in the Gezhongwu profile,while the δ^(34)S values are relatively uniform(from 27.8‰to 38.4‰)in the Haishan profile.The isotopic S composition is consistent with the transition that occurs in the sedimentary phase from the shelf to the deep sea on the transgressive Yangtze platform;this indicates that the δ^(34)SO_(4)^(2−)values in seawater must be differently distributed in depositional environments.The sulfur in the Ni-Mo layer is produced after the mixing of seawater and hydrothermal fluid,while the V layer mainly originates from seawater.Overall,the Ni-Mo and V deposits have been differentiated primarily on the basis of the combined effect of continental weathering and hydrothermal fluid.