ESR dating has been widely used in seismic assessment. In this paper, we collected fault gouge samples systematically for ESR (Electron Spin Resonance) dating, and sediment samples of overlying strata, and offset stra...ESR dating has been widely used in seismic assessment. In this paper, we collected fault gouge samples systematically for ESR (Electron Spin Resonance) dating, and sediment samples of overlying strata, and offset strata for OSL (Optically Stimulated Luminescence) dating along Xiaoshan-Qiuchuan fault (XQF) trending NE-SW, Xiaofeng-Sanmen fault (XSF) trending NW-SE, and Changhua-Putuo fault (CPF) trending E-W. In the same fault outcrop, the ESR data of fault gouge is greater than the OSL data of the strata offset by fault. Therefore, the ESR data of fault gouge colleted in Hangzhou region do not represent the time of weak fault movement in Late Quaternary region, but represent the strong fault movements in Late Cenozoic. The episode of fault movement in Late Cenozoic could be speculated according to the ESR data: 1.000.58 Ma, there were strong fault movements along the XSF, XQF and CPF in Hangzhou region; 0.580.45 Ma, the fault movements of all faults became weaker and did not zero ESR signals significantly for ESR dating of fault movements; 0.450.20 Ma, there were strong fault movements along part of XQF; 0.10.01 Ma, there were fault movements along the XSF only, but the fault movements were not strong enough to reset the ESR signal; Since 0.01 Ma, the Hangzhou region tends to be stable. In addition, the XSF might be the division line of fault segmentation of XQF; there were strong fault movements along the southwest segment of XQF during 0.45 Ma to 0.20 Ma; while the fault movements along the northeast segment of XQF mainly occurred during 1.000.58 Ma.展开更多
In luminescence and ESR dating methods,total count rate from thick source alpha counting is commonly used fox estimating annual dose with assumption of equal activities for both uranium and thorium decay chains.This i...In luminescence and ESR dating methods,total count rate from thick source alpha counting is commonly used fox estimating annual dose with assumption of equal activities for both uranium and thorium decay chains.This is equal to a Th/U weight ratio of 3.2.The systematic error in total dose rate due to uncertainty of the ratio is calculated.It is found that the error is insignificant for uniformly distributed samples such as sediment,but can be significant for some extreme circumstances.展开更多
The north trending rifts in southern Tibet represent the E-W extension of the plateau and confirming the initial rifting age is key to the study of mechanics of these rifts. Pagri-Duoqing Co graben is located at south...The north trending rifts in southern Tibet represent the E-W extension of the plateau and confirming the initial rifting age is key to the study of mechanics of these rifts. Pagri-Duoqing Co graben is located at southern end of Yadong-Gulu rift, where the late Cenozoic sediments is predominately composed of fluvio-lacustrine and moraine. Based on the sedimentary composition and structures, the fluviolacustrine could be divided into three facies, namely, lacustrine, lacustrine fan delta and alluvial fan. The presence of paleo-currents and conglomerate components and the provenance of the strata around the graben indicate that it was Tethys Himalaya and High Himalaya. Electron spin resonance(ESR) dating and paleo-magnetic dating suggest that the age of the strata ranges from ca. 1.2 Ma to ca. 8 Ma. Optically stimulated luminescence(OSL) dating showed that moraine in the graben mainly developed from around181-109 ka(late Middle Pleistocene). Combining previous data about the Late Cenozoic strata in other basins, it is suggested that 8-15 Ma may be the initial rifting time. Together with sediment distribution and drainage system, the sedimentary evolution of Pagri could be divided into four stages. The graben rifted at around 15-8 Ma due to the eastern graben-boundary fault resulting in the appearance of a paleolake.Following by a geologically quiet period about 8-2.5 Ma, the paleolake expanded from east to west at around 8-6 Ma reaching its maximum at ca. 6 Ma. Then, the graben was broken at about 2.5 Ma. At last,the development of the glacier separated the graben into two parts that were Pagri and Duoqing Co since the later stages of the Middle Pleistocene. The evolution process suggested that the former three stages were related to the tectonic movement, which determined the basement of the graben, while the last stage may have been influenced by glacial activity caused by climate change.展开更多
The fossil skull of Homo erectus hexianens was excaved in Longtan Cave, Taodian Vil-lage. Hexian County. Anhui Province in 1980. It is an important event since the fossilskulls of Peking Man. Bejing and Lantian Man. S...The fossil skull of Homo erectus hexianens was excaved in Longtan Cave, Taodian Vil-lage. Hexian County. Anhui Province in 1980. It is an important event since the fossilskulls of Peking Man. Bejing and Lantian Man. Shaanxi Province were found. The skullof Homo erectus was first discovered in South China. The age of Hexian Man has展开更多
Southeastern Tibet is one of the most glaciated regions on the Tibetan Plateau both at present and during the Quaternary. Numerical dating of glacial deposits has allowed the establishment of a provisional chronology ...Southeastern Tibet is one of the most glaciated regions on the Tibetan Plateau both at present and during the Quaternary. Numerical dating of glacial deposits has allowed the establishment of a provisional chronology of Quaternary glacial fluctuations in this region, with the oldest glaciation(Guxiang Glaciation) occurring in marine oxygen isotope stage 6(MIS-6).During our recent field investigations, a morphostratigraphically older lateral moraine than that of the Guxiang Glaciation has been first identified, which is ~500–600 m above the Guxiang Glaciation moraine and discontinuously preserved on valley shoulders in the Bodui Zangbo River valley, eastern Nyainqêntanglha Range in southeastern Tibet. Considering the moraine is best preserved at Nitong Village, here we name the glacier advance which deposited the moraine as "Nitong Glaciation". Using electron spin resonance(ESR) technique, we dated the Nitong Glaciation moraine to 506.3±60.4 ka. Taking into account the age error and climatic conditions, we consider it most likely that the Nitong Glaciation occurred during MIS-12, although it might had happened sometime earlier.展开更多
Kongur Mountain is the largest center of modern glaciation on the Pamir Plateau.During the glacial-interglacial cycles of the Quaternary,Kongur Mountain was extensively and repeatedly glaciated,and the glacial landfor...Kongur Mountain is the largest center of modern glaciation on the Pamir Plateau.During the glacial-interglacial cycles of the Quaternary,Kongur Mountain was extensively and repeatedly glaciated,and the glacial landforms from multiple glaciations are well-preserved in valleys,in basins,and on the piedmonts.Dating samples have been collected according to the distribution and weathering of the glacial tills,the relationship among the glacial deposits,and the loess or soil developed on the moraines. Electron spin resonance(ESR) dating of the samples was done using the germanium(Ge) centers in the glacial quartz grains,which are sensitive to both sunlight and grinding.The ages of the glacial deposits can be divided into four clusters,i.e.,13.1±0.8-27.0±2.2,36.4±3.3-48.7±5.7,65.6±6.8-86.6±8.9,and 105.6±9.4-178.3±17.8 ka.Six glacial advances in this region have been confirmed,which are equivalent in age to the Little Ice Age(LIA) ,Neoglaciation,marine oxygen isotope stages(MIS) 2,mid-MIS3,MIS4,and MIS6.The largest local last glacial maximum(LGML) occurred during MIS4 rather than the global Last Glacial Maximum(LGMG) of MIS2,and a glacial advance that occurred during mid-MIS3 was also larger than the LGMG.Furthermore,deeply weathered tills below 3500 m a.s.l.on the western slope of Kongur Mountain,when compared with the ages of the oldest glaciation of the Muztag Ata region,likely occurred prior to the penultimate glacial cycle.The glacial landforms prior to the penultimate glacial cycle on the northern slope are not well-preserved due to erosion after deposition. Several glacial deposits are only speculated to be distributed at higher elevations on the southwest side of the Gaizi Checkpoint. The extensive hummocky moraines on the western slope were formed by multiple glacial advances,and the latest glacial advance corresponded to mid-MIS3.展开更多
The Gongga Mountain is the largest area of modern glaciation in the Hengduan Mountains and,with a summit elevation of 7556 m,is the highest mountain on the eastern margin of the Tibetan Plateau.During the Quaternary g...The Gongga Mountain is the largest area of modern glaciation in the Hengduan Mountains and,with a summit elevation of 7556 m,is the highest mountain on the eastern margin of the Tibetan Plateau.During the Quaternary glacial-interglacial cycles the Gongga Mountain was extensively and repeatedly glaciated,and glacial landforms and outwash deposits from multiple glaciations are well-preserved in valleys,in basins,and on piedmonts.To constrain the glacial chronology of the eastern slope of Gongga Mountain,sample sites were selected based on the distribution and weathering of glacial tills,relationships among glacial deposits,and soil development on moraines.Dating of the tills and glaciofluvial deposits was undertaken with electron spin resonance(ESR) and optically stimulated luminescence(OSL).The ages of the glacial deposits can be divided into four clusters:2.2±0.5,11.9±0.6,35.9±2.7-58.0±6.3 and 119.2±15.9-194.2±32.8 ka.Five glacial advances in this region have been identified,which are equivalent in age to the Little Ice Age(LIA),Neoglaciation,marine oxygen isotope stage(MIS) 2,mid-MIS3,and MIS6.The largest local last glacial maximum(LGML) occurred on Gongga Mountain during mid-MIS3,characterized by a cold-humid climate,rather than the global Last Glacial Maximum(LGMG) of MIS2.The Gongga,Nanmenguangou(NMGG) and Yajiageng Glaciations occurred during the late part of the last glacial cycle,the middle of the last glacial cycle and the penultimate glacial cycle,respectively.On the basis of geomorphological,sedimentological,and compositional characteristics,landforms of the Moxi Platform and terraces can be grouped by facies and geochronology.In combination with the dating results,this analysis indicates the basal part of the Moxi Platform between Xinxin and the Moxi Hotel is correlative with the till of the Nanguanmen Glaciation(mid-MIS3).This basal unit has occasional lenses of glaciofluvial sandy gravel and lacustrine sediments.The remainder of the Moxi Platform and the terraces beside the platform are glaciofluvial deposits occasionally mixed with debris flow deposits and range in age from MIS3 to Holocene.展开更多
基金Project of the Tenth Five-year Plan of Hangzhou Goverment and Earthquake Administration of Hangzhou (HZZFCG-2005-A4)
文摘ESR dating has been widely used in seismic assessment. In this paper, we collected fault gouge samples systematically for ESR (Electron Spin Resonance) dating, and sediment samples of overlying strata, and offset strata for OSL (Optically Stimulated Luminescence) dating along Xiaoshan-Qiuchuan fault (XQF) trending NE-SW, Xiaofeng-Sanmen fault (XSF) trending NW-SE, and Changhua-Putuo fault (CPF) trending E-W. In the same fault outcrop, the ESR data of fault gouge is greater than the OSL data of the strata offset by fault. Therefore, the ESR data of fault gouge colleted in Hangzhou region do not represent the time of weak fault movement in Late Quaternary region, but represent the strong fault movements in Late Cenozoic. The episode of fault movement in Late Cenozoic could be speculated according to the ESR data: 1.000.58 Ma, there were strong fault movements along the XSF, XQF and CPF in Hangzhou region; 0.580.45 Ma, the fault movements of all faults became weaker and did not zero ESR signals significantly for ESR dating of fault movements; 0.450.20 Ma, there were strong fault movements along part of XQF; 0.10.01 Ma, there were fault movements along the XSF only, but the fault movements were not strong enough to reset the ESR signal; Since 0.01 Ma, the Hangzhou region tends to be stable. In addition, the XSF might be the division line of fault segmentation of XQF; there were strong fault movements along the southwest segment of XQF during 0.45 Ma to 0.20 Ma; while the fault movements along the northeast segment of XQF mainly occurred during 1.000.58 Ma.
文摘In luminescence and ESR dating methods,total count rate from thick source alpha counting is commonly used fox estimating annual dose with assumption of equal activities for both uranium and thorium decay chains.This is equal to a Th/U weight ratio of 3.2.The systematic error in total dose rate due to uncertainty of the ratio is calculated.It is found that the error is insignificant for uniformly distributed samples such as sediment,but can be significant for some extreme circumstances.
基金supported by National Natural foundation of China (grants No. 41571013)China Geology Survey project (grants No. DD20160268)
文摘The north trending rifts in southern Tibet represent the E-W extension of the plateau and confirming the initial rifting age is key to the study of mechanics of these rifts. Pagri-Duoqing Co graben is located at southern end of Yadong-Gulu rift, where the late Cenozoic sediments is predominately composed of fluvio-lacustrine and moraine. Based on the sedimentary composition and structures, the fluviolacustrine could be divided into three facies, namely, lacustrine, lacustrine fan delta and alluvial fan. The presence of paleo-currents and conglomerate components and the provenance of the strata around the graben indicate that it was Tethys Himalaya and High Himalaya. Electron spin resonance(ESR) dating and paleo-magnetic dating suggest that the age of the strata ranges from ca. 1.2 Ma to ca. 8 Ma. Optically stimulated luminescence(OSL) dating showed that moraine in the graben mainly developed from around181-109 ka(late Middle Pleistocene). Combining previous data about the Late Cenozoic strata in other basins, it is suggested that 8-15 Ma may be the initial rifting time. Together with sediment distribution and drainage system, the sedimentary evolution of Pagri could be divided into four stages. The graben rifted at around 15-8 Ma due to the eastern graben-boundary fault resulting in the appearance of a paleolake.Following by a geologically quiet period about 8-2.5 Ma, the paleolake expanded from east to west at around 8-6 Ma reaching its maximum at ca. 6 Ma. Then, the graben was broken at about 2.5 Ma. At last,the development of the glacier separated the graben into two parts that were Pagri and Duoqing Co since the later stages of the Middle Pleistocene. The evolution process suggested that the former three stages were related to the tectonic movement, which determined the basement of the graben, while the last stage may have been influenced by glacial activity caused by climate change.
文摘The fossil skull of Homo erectus hexianens was excaved in Longtan Cave, Taodian Vil-lage. Hexian County. Anhui Province in 1980. It is an important event since the fossilskulls of Peking Man. Bejing and Lantian Man. Shaanxi Province were found. The skullof Homo erectus was first discovered in South China. The age of Hexian Man has
基金supported by the National Natural Science Foundation of China (Grant Nos. 41771065, 42071088, 41271077 and 41371080)。
文摘Southeastern Tibet is one of the most glaciated regions on the Tibetan Plateau both at present and during the Quaternary. Numerical dating of glacial deposits has allowed the establishment of a provisional chronology of Quaternary glacial fluctuations in this region, with the oldest glaciation(Guxiang Glaciation) occurring in marine oxygen isotope stage 6(MIS-6).During our recent field investigations, a morphostratigraphically older lateral moraine than that of the Guxiang Glaciation has been first identified, which is ~500–600 m above the Guxiang Glaciation moraine and discontinuously preserved on valley shoulders in the Bodui Zangbo River valley, eastern Nyainqêntanglha Range in southeastern Tibet. Considering the moraine is best preserved at Nitong Village, here we name the glacier advance which deposited the moraine as "Nitong Glaciation". Using electron spin resonance(ESR) technique, we dated the Nitong Glaciation moraine to 506.3±60.4 ka. Taking into account the age error and climatic conditions, we consider it most likely that the Nitong Glaciation occurred during MIS-12, although it might had happened sometime earlier.
基金supported by National Natural Science Foundation of China(Grant No.40771049)Knowledge Innovation Project of Chinese Academy of Sciences(Grant No.KZCX2-YW-GJ04)the Program of Ministry of Science and Technology of China(Grant No. 2006FY110200)
文摘Kongur Mountain is the largest center of modern glaciation on the Pamir Plateau.During the glacial-interglacial cycles of the Quaternary,Kongur Mountain was extensively and repeatedly glaciated,and the glacial landforms from multiple glaciations are well-preserved in valleys,in basins,and on the piedmonts.Dating samples have been collected according to the distribution and weathering of the glacial tills,the relationship among the glacial deposits,and the loess or soil developed on the moraines. Electron spin resonance(ESR) dating of the samples was done using the germanium(Ge) centers in the glacial quartz grains,which are sensitive to both sunlight and grinding.The ages of the glacial deposits can be divided into four clusters,i.e.,13.1±0.8-27.0±2.2,36.4±3.3-48.7±5.7,65.6±6.8-86.6±8.9,and 105.6±9.4-178.3±17.8 ka.Six glacial advances in this region have been confirmed,which are equivalent in age to the Little Ice Age(LIA) ,Neoglaciation,marine oxygen isotope stages(MIS) 2,mid-MIS3,MIS4,and MIS6.The largest local last glacial maximum(LGML) occurred during MIS4 rather than the global Last Glacial Maximum(LGMG) of MIS2,and a glacial advance that occurred during mid-MIS3 was also larger than the LGMG.Furthermore,deeply weathered tills below 3500 m a.s.l.on the western slope of Kongur Mountain,when compared with the ages of the oldest glaciation of the Muztag Ata region,likely occurred prior to the penultimate glacial cycle.The glacial landforms prior to the penultimate glacial cycle on the northern slope are not well-preserved due to erosion after deposition. Several glacial deposits are only speculated to be distributed at higher elevations on the southwest side of the Gaizi Checkpoint. The extensive hummocky moraines on the western slope were formed by multiple glacial advances,and the latest glacial advance corresponded to mid-MIS3.
基金supported by National Natural Science Foundation of China(Grant No.41171063)Fundamental Research Funds for the Central Universities(Grant No.LZUJBKY-2010-114)+1 种基金Foundation of State Key Laboratory of Cryospheric Sciences,Cold and Arid Regions Environment and Engineering Research Institute,Chinese Academy Sciences(Grant No.SKLCS2011-03)the Program of Ministry of Science and Technology of China(Grant No.2006FY110200)
文摘The Gongga Mountain is the largest area of modern glaciation in the Hengduan Mountains and,with a summit elevation of 7556 m,is the highest mountain on the eastern margin of the Tibetan Plateau.During the Quaternary glacial-interglacial cycles the Gongga Mountain was extensively and repeatedly glaciated,and glacial landforms and outwash deposits from multiple glaciations are well-preserved in valleys,in basins,and on piedmonts.To constrain the glacial chronology of the eastern slope of Gongga Mountain,sample sites were selected based on the distribution and weathering of glacial tills,relationships among glacial deposits,and soil development on moraines.Dating of the tills and glaciofluvial deposits was undertaken with electron spin resonance(ESR) and optically stimulated luminescence(OSL).The ages of the glacial deposits can be divided into four clusters:2.2±0.5,11.9±0.6,35.9±2.7-58.0±6.3 and 119.2±15.9-194.2±32.8 ka.Five glacial advances in this region have been identified,which are equivalent in age to the Little Ice Age(LIA),Neoglaciation,marine oxygen isotope stage(MIS) 2,mid-MIS3,and MIS6.The largest local last glacial maximum(LGML) occurred on Gongga Mountain during mid-MIS3,characterized by a cold-humid climate,rather than the global Last Glacial Maximum(LGMG) of MIS2.The Gongga,Nanmenguangou(NMGG) and Yajiageng Glaciations occurred during the late part of the last glacial cycle,the middle of the last glacial cycle and the penultimate glacial cycle,respectively.On the basis of geomorphological,sedimentological,and compositional characteristics,landforms of the Moxi Platform and terraces can be grouped by facies and geochronology.In combination with the dating results,this analysis indicates the basal part of the Moxi Platform between Xinxin and the Moxi Hotel is correlative with the till of the Nanguanmen Glaciation(mid-MIS3).This basal unit has occasional lenses of glaciofluvial sandy gravel and lacustrine sediments.The remainder of the Moxi Platform and the terraces beside the platform are glaciofluvial deposits occasionally mixed with debris flow deposits and range in age from MIS3 to Holocene.