Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger wit...Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger with the random evacuation pattern than with the queued evacuation pattern. Therefore, the exit width calculated based on the minimum evacuation clear width for every 100 persons, which is on the assumption that the pedestrians pass through the exit in one queue or several queues, is conservative. The number of people crossing the exit simultaneously is greater in the random evacuation experiments than in the queued evacuation experiments, and the time interval between the front row and rear row of people is shortened in large-exit conditions when pedestrians evacuate randomly. The difference between the flow rate with a queued evacuation pattern and the flow rate with a random evacuation pattern is related to the surplus width of the exit, which is greater than the total width of all accommodated people streams. Two dimensionless quantities are defined to explore this relationship. It is found that the difference in flow rate between the two evacuation patterns is stable at a low level when the surplus width of the exit is no more than 45% of the width of a single pedestrian stream. There is a great difference between the flow rate with the queued evacuation pattern and the flow rate with the random evacuation pattern in a scenario with a larger surplus width of the exit. Meanwhile, the pedestrians crowd extraordinarily at the exit in these conditions as well, since the number of pedestrians who want to evacuate through exit simultaneously greatly exceeds the accommodated level. Therefore, the surplus width of exit should be limited especially in the narrow exit condition, and the relationship between the two dimensionless quantities mentioned above could provide the basis to some extent.展开更多
Accurate assessment of crowd evacuation inside the post-earthquake environment is critical from many perspectives,but this issue receives much less attention compared to the seismic losses of structural and non-struct...Accurate assessment of crowd evacuation inside the post-earthquake environment is critical from many perspectives,but this issue receives much less attention compared to the seismic losses of structural and non-structural components.This could be attributed to the fact that post-earthquake evacuation analysis is complex due to the interaction between human behavior and the actual built environment induced by different building contents.This study attempts to tackle this problem by investigating the impacts of different building contents on post-earthquake evacuation time by using an agent-based model that considers turning behavior.To this end,the agent-based model is first described,including:properties of the agent-based model with turning behavior,key aspects in its formulation considering different evacuation stages,and influence of different building contents(namely,debris from partition walls and ceiling systems,and various types of equipment)on the agent’s behavior.Subsequently,a school building is used as a benchmark problem to validate the model without earthquake,and the findings indicate that the agent-based model can match the real safety drill results reasonably well.After the validation,the school building is subsequently designed in accordance with modern seismic design codes,and the influence of debris and equipment on post-earthquake evacuation time is quantitatively studied using a suite of pulse-type ground motions as input.Based on this case study,recommendations are made for structural and architectural designers in an effort to reduce the potential evacuation time.Specifically,debris induced by partition walls or ceiling systems should be controlled as it has the greatest impact on the total evacuation time.展开更多
Obstacle removal in crowd evacuation is critical to safety and the evacuation system efficiency. Recently, manyresearchers proposed game theoreticmodels to avoid and remove obstacles for crowd evacuation. Game theoret...Obstacle removal in crowd evacuation is critical to safety and the evacuation system efficiency. Recently, manyresearchers proposed game theoreticmodels to avoid and remove obstacles for crowd evacuation. Game theoreticalmodels aim to study and analyze the strategic behaviors of individuals within a crowd and their interactionsduring the evacuation. Game theoretical models have some limitations in the context of crowd evacuation. Thesemodels consider a group of individuals as homogeneous objects with the same goals, involve complex mathematicalformulation, and cannot model real-world scenarios such as panic, environmental information, crowds that movedynamically, etc. The proposed work presents a game theoretic model integrating an agent-based model to removethe obstacles from exits. The proposed model considered the parameters named: (1) obstacle size, length, andwidth, (2) removal time, (3) evacuation time, (4) crowd density, (5) obstacle identification, and (6) route selection.The proposed work conducts various experiments considering different conditions, such as obstacle types, obstacleremoval, and several obstacles. Evaluation results show the proposed model’s effectiveness compared with existingliterature in reducing the overall evacuation time, cell selection, and obstacle removal. The study is potentially usefulfor public safety situations such as emergency evacuations during disasters and calamities.展开更多
With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the exis...With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.展开更多
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi...Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential.展开更多
By using evacuation simulation technology and taking North China University of Technology as an example,the barrier-free evacuation design scheme for groups with different needs in campus environment was deeply discus...By using evacuation simulation technology and taking North China University of Technology as an example,the barrier-free evacuation design scheme for groups with different needs in campus environment was deeply discussed.Based on the data of building layout,population composition,road system and distribution of shelters in the school,a detailed evacuation model was constructed in the Pathfinder emergency evacuation simulation system.By the simulation during the daytime and at night,the total evacuation time of the whole school,evacuation completion time of each building,selection of evacuation paths and shelter utilization were analyzed in detail.The simulation results show that the distribution of shelters on campus is uneven,and their capacity is limited.As a result,the evacuation paths of the disabled,the elderly and children need to be adjusted frequently,which affects the overall evacuation efficiency.In view of this,the optimization strategies of road renovation and entrances of shelters and buildings were put forward from the perspective of space planning.From the perspective of emergency management,it is suggested to improve the campus evacuation infrastructure and strengthen the evacuation drill for teachers and students.These results provide a solid theoretical support for enhancing the construction of campus barrier-free environment and improving the level of emergency management.展开更多
This paper adopts a New Historicism approach to examine the shaping of the history of the Dunkirk evacuation through an analysis of Winston Churchill’s historic speech We Shall Fight on the Beaches,Ian McEwan’s nove...This paper adopts a New Historicism approach to examine the shaping of the history of the Dunkirk evacuation through an analysis of Winston Churchill’s historic speech We Shall Fight on the Beaches,Ian McEwan’s novel Atonement,and Christopher Nolan’s film Dunkirk.The research reveals that by uncovering and representing the neglected stories of marginalized groups in Atonement and Dunkirk,new evidentiary threads both enrich and contest the History embodied in Churchill’s speech.Consequently,these alternative accounts both challenge and complement the prevailing historical discourse.展开更多
As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the trans...As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas.展开更多
This study introduces an innovative approach by integrating AnyLogic simulation into emergency evacuation strategies to enhance security protocols.The research focuses on leveraging advanced computational models to si...This study introduces an innovative approach by integrating AnyLogic simulation into emergency evacuation strategies to enhance security protocols.The research focuses on leveraging advanced computational models to simulate and optimize evacuation scenarios in various settings,including public venues,residential areas,and urban environments.By integrating real-world data and behavioral models,the simulation accurately represents human movements,decision-making processes,and traffic flow dynamics during evacuation scenarios.The study evaluates the effectiveness of various evacuation strategies,including route planning,crowd behavior,and emergency response coordination,using a scenario-driven approach within the AnyLogic simulation environment.Furthermore,this research contributes to the establishment of optimized emergency response protocols by systematically evaluating and refining evacuation plans.The research frameworks mentioned in the research imply the efficient use of the AnyLogic simulation model to be used in different sectors and fields to enhance the strategies for saving lives and implementing an efficient evacuation management system.展开更多
This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.Th...This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.The emotion spread model with the effect of group behavior,and the leader-follower model with the effect of emotion state are proposed.On this basis,exit choice strategies with the effect of emotion state and group behavior are proposed.Fusing emotion spread model,leader-follower model,and exit choice strategies into a cellular automata(CA)-based pedestrian simulation model,we simulate the evacuation process in a multi-exit case.Simulation results indicate that panic emotion and group behavior are two negative influence factors for pedestrian evacuation.Compared with panic emotion or group behavior only,pedestrian evacuation efficiency with the effects of both is lower.展开更多
Building exit as a bottleneck structure is the last and the most congested stage in building evacuation.It is well known that obstacles at the exit affect the evacuation process,but few researchers pay attention to th...Building exit as a bottleneck structure is the last and the most congested stage in building evacuation.It is well known that obstacles at the exit affect the evacuation process,but few researchers pay attention to the effect of stationary pedestrians(the elderly with slow speed,the injured,and the static evacuation guide)as obstacles at the exit on the evacuation process.This paper explores the influence of the presence of a stationary pedestrian as an obstacle at the exit on the evacuation from experiments and simulations.We use a software,Pathfinder,based on the agent-based model to study the effect of ratios of exit width(D)to distance(d)between the static pedestrian and the exit,the asymmetric structure by shifting the static pedestrian upward,and types of obstacles on evacuation.Results show that the evacuation time of scenes with a static pedestrian is longer than that of scenes with an obstacle due to the unexpected hindering effect of the static pedestrian.Different ratios of D/d have different effects on evacuation efficiency.Among the five D/d ratios in this paper,the evacuation efficiency is the largest when d is equal to 0.75D,and the existence of the static pedestrian has a positive impact on evacuation in this condition.The influence of the asymmetric structure of the static pedestrian on evacuation efficiency is affected by D/d.This study can provide a theoretical basis for crowd management and evacuation plan near the exit of complex buildings and facilities.展开更多
Panic is a common emotion when pedestrians are in danger during the actual evacuation, which can affect pedestrians a lot and may lead to fatalities as people are crushed or trampled. However, the systematic studies a...Panic is a common emotion when pedestrians are in danger during the actual evacuation, which can affect pedestrians a lot and may lead to fatalities as people are crushed or trampled. However, the systematic studies and quantitative analysis of evacuation panic, such as panic behaviors, panic evolution, and the stress responses of pedestrians with different personality traits to panic emotion are still rare. Here, combined with the theories of OCEAN(openness, conscientiousness,extroversion, agreeableness, neuroticism) model and SIS(susceptible, infected, susceptible) model, an extended cellular automata model is established by the floor field method in order to investigate the dynamics of panic emotion in the crowd and dynamics of pedestrians affected by emotion. In the model, pedestrians are divided into stable pedestrians and sensitive pedestrians according to their different personality traits in response to emotion, and their emotional state can be normal or panic. Besides, emotion contagion, emotion decay, and the influence of emotion on pedestrian movement decision-making are also considered. The simulation results show that evacuation efficiency will be reduced, for panic pedestrians may act maladaptive behaviors, thereby making the crowd more chaotic. The results further suggest that improving pedestrian psychological ability and raising the standard of management can effectively increase evacuation efficiency. And it is necessary to reduce the panic level of group as soon as possible at the beginning of evacuation. We hope this research could provide a new method to analyze crowd evacuation in panic situations.展开更多
Large commercial complexes are large in scale, complex in function, and located in densely populated areas that are prone to casualties due to unfavorable evacuation. To comprehend the safety evacuation of large comme...Large commercial complexes are large in scale, complex in function, and located in densely populated areas that are prone to casualties due to unfavorable evacuation. To comprehend the safety evacuation of large commercial complex buildings in China, investigate the safety evacuation problems encountered during the evacuation process and the evacuation optimization design strategy, the paper uses Pathfinder to build a simulation model based on literature research and study to simulate the evacuation of personnel in a large commercial complex in Dalian and explore its problems during the evacuation process. The results show that the type of personnel has an effect on the large commercial complex’s evacuation simulation results;the total number of evacuees is non-linearly correlated with the time change curve;some staircases take a long time to evacuate and have a low utilization rate. To improve evacuation efficiency, optimization suggestions for safety exits, evacuation stairs, and evacuation channels are made based on the results.展开更多
Objective: Determine the frequency of evacuations, specify the epidemiological and clinical characteristics of the evacuees, evaluate the data of the evacuation, the management and the maternal-fetal prognosis. Method...Objective: Determine the frequency of evacuations, specify the epidemiological and clinical characteristics of the evacuees, evaluate the data of the evacuation, the management and the maternal-fetal prognosis. Methods: Prospective and descriptive retrospective study concerning obstetrical evacuations received at the maternity ward of the Hospital of the Institute of Social Hygiene in Dakar between January 1 and December 31, 2020, i.e. a period of 12 months. Results: During the study period, we collected 1156 evacuees out of a total of 3507 patients treated in the Service, i.e. a frequency of 33%. The average age of the patients was 27.07 years with extremes of 14 and 46 years. Patients aged between 20 and 29 were the most represented (51.73%). The average parity was 1.6 with extremes of 0 and 10 pares. The nulliparous (46.37%) were the majority. The majority of evacuated patients (99.6%) resided in the Dakar region, including 58% in the suburbs and 42% in the city center. The patients received had performed an average of 3 prenatal consultations with extremes ranging from 0 to 9 CPN. They most often came from health centers (55.05%) or hospitals (29.09%). The reasons for evacuations were dominated by dystocia (21.54%) followed by premature rupture of membranes (17.21%) and premature deliveries (16.35%). On admission, only 176 patients (15.2%) had an evacuation sheet. Patients transited on average through two health structures (extremes ranging from 0 to 7 structures) before reaching the reception structure. The evacuation was most often done with a private vehicle on the patient’s own means (91.96%). The outcome of the evacuees was most often vaginal delivery or hospitalization (72.79%). The majority of patients (99.4%) had evolved favorably but we deplore one maternal death (0.09%) linked to a late puerperal infection. We recorded 74 perinatal deaths and 1041 live births, i.e. a stillbirth rate of 71.1‰ live births. The causes of death were dominated by prematurity (24.7%). Conclusion: Obstetrical evacuations are frequent in our practice but they should be better organized to improve the maternal-fetal prognosis.展开更多
Abstract: With a determinate danger zone and evacuation demand caused by an emergency, an optimization method for the evacuation zone with network reconfiguration based on dynamic simulation is proposed. The method c...Abstract: With a determinate danger zone and evacuation demand caused by an emergency, an optimization method for the evacuation zone with network reconfiguration based on dynamic simulation is proposed. The method contains three modules. First, the network in the evacuation zone is optimized by a model with the integrated strategy of lane reversal and intersection conflict elimination. Secondly, the dynamic evacuation simulation model based on the cell transmission model is applied to simulate the dynamic propagation process of evacuated vehicles in the network in the evacuation zone. The evacuation time for all evacuated vehicles leaving the danger zone is obtained and the setting of the current evacuation zone is fed back. Thirdly, the arrival distributions of evacuated vehicles at critical intersections of the evacuation zone are also obtained to estimate the delay at critical intersection to determine whether the intersection should be taken as the critical intersection in the next iteration. The evacuation zone is expanded gradually through iteration, and the reasonable evacuation zone and the optimal evacuation network is confirmed. Based on the survey of the parking lot and urban street network around Nanjing Olympic Sports Center, the models and the iterative algorithm were applied to obtain the optimal plan of the evacuation zone with network reconfiguration in an evacuation situation to verify the validity of the proposed method.展开更多
In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices...In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices were used, interaction of force among pedestrians or between pedestrians and constructions was considered, and static floor fields in a multi-level exit environment were simplified into cabin and exit static floor fields. Compared with the traditional cellular automata model, the multi-grid model enhanced the continuity of the passengers'track and the precision of the boundary qualifications. The functions of the dislocation distribution of passengers as well as partial overlap of tracks due to congestion were realized. Furthermore, taking the typical cabin environment as an example, the two models were used to analyze passenger evacuation under the same conditions. It was found that the laws of passenger evacuation simulated by the two models are similar, while the simulation's authenticity and accuracy are enhanced by the multi-grid model.展开更多
An improved dynamic parameter model is presented based on cellular automata.The dynamic parameters,including direction parameter,empty parameter,and cognition parameter,are formulated to simplify tactically the proces...An improved dynamic parameter model is presented based on cellular automata.The dynamic parameters,including direction parameter,empty parameter,and cognition parameter,are formulated to simplify tactically the process of making decisions for pedestrians.The improved model reflects the judgement of pedestrians on surrounding conditions and the action of choosing or decision.According to the two-dimensional cellular automaton Moore neighborhood we establish the pedestrian moving rule,and carry out corresponding simulations of pedestrian evacuation.The improved model considers the impact of pedestrian density near exits on the evacuation process.Simulated and experimental results demonstrate that the improvement makes sense due to the fact that except for the spatial distance to exits,people also choose an exit according to the pedestrian density around exits.The impact factors 伪,尾,and 纬 are introduced to describe transition payoff,and their optimal values are determined through simulation.Moreover,the effects of pedestrian distribution,pedestrian density,and the width of exits on the evacuation time are discussed.The optimal exit layout,i.e.,the optimal position and width,is offered.The comparison between the simulated results obtained with the improved model and that from a previous model and experiments indicates that the improved model can reproduce experimental results well.Thus,it has great significance for further study,and important instructional meaning for pedestrian evacuation so as to reduce the number of casualties.展开更多
The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to t...The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to the hydraulic information obtained from numerical simulation and selecting principles of evacuation emergency scheme, evacuation route analysis model is proposed, which consists of the road right model and random degree model. The road right model is used to calculate the consumption time in roads, and the random degree model is used to judge whether the roads are blocked. Then the shortest evacuation route is obtained based on Dijstra algorithm. Gongming Reservoir located in Shenzhen is taken as a case to study. The results show that industrial area I is flooded at 2 500 s, and after 5 500 s, most of industrial area II is submerged. The Hushan, Loucun Forest and Chaishan are not flooded around industrial area I and II. Based on the above analysis, the optimal evacuation scheme is determined.展开更多
A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the bas...A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the basis of minimum safety distances with parts of the drivers' abnormal behavior in a panic emergency situation. A thorough questionnaire survey is undertaken among drivers of different ages. Based on the results from the survey, a safety-distance car-following model is formulated by taking into account two new parameters: a differential distributing coefficient and a driver' s experiential decision coefficient, which are used to reflect variations of driving behaviors under an emergency evacuation situation when compared with regular conditions. The formulation and derivation of the new model, as well as its properties and applicability are discussed. A case study is presented to compare the car-following trajectories using observed data under regular peak-hour traffic conditions and theoretical EECM results. The results indicate the consistency of the analysis of assumptions on the EECM and observations.展开更多
The objective of this work is to investigate the influence of smoke movement during mine fires on miner evacuation behaviors. A three-dimensional computational fluid dynamics method was conducted to reconstruct the la...The objective of this work is to investigate the influence of smoke movement during mine fires on miner evacuation behaviors. A three-dimensional computational fluid dynamics method was conducted to reconstruct the lane- way conveyor belt fire scenes under two ventilating conditions. The parameters, including temperature-time histories, soot density, carbon monoxide and heat release rate, were simulated to characterize the mine fires at various ventilating speeds. A miner evacuation model affected by fire smoke movement was advanced to describe the miner evacuation behaviors, which can be divided into three stages. Based on the evacuation model coupled with the mine fire smoke movement, the available safety evacuation time for miners involved in coal mine fire located in different sites was estimated. Two evacuation patterns were advanced according to the ventilating speeds combined with the model of miner evacuation behaviors. The results show that the miners located between the inlet-air end and the air door in lane 1 should be evacuated to the inlet-air end and other miners involved in coal mine fire could choose the air door as the escaping destination, when the ventilation speed is greater than 3 m/s. Accordingly, the research can be used as references for the mine safety administration authorities to design the safety evacuation.展开更多
基金Project supported by the Special Funds for Basic Operating Expenses of the Centre University of China (Grant No.23ZYJS006)。
文摘Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger with the random evacuation pattern than with the queued evacuation pattern. Therefore, the exit width calculated based on the minimum evacuation clear width for every 100 persons, which is on the assumption that the pedestrians pass through the exit in one queue or several queues, is conservative. The number of people crossing the exit simultaneously is greater in the random evacuation experiments than in the queued evacuation experiments, and the time interval between the front row and rear row of people is shortened in large-exit conditions when pedestrians evacuate randomly. The difference between the flow rate with a queued evacuation pattern and the flow rate with a random evacuation pattern is related to the surplus width of the exit, which is greater than the total width of all accommodated people streams. Two dimensionless quantities are defined to explore this relationship. It is found that the difference in flow rate between the two evacuation patterns is stable at a low level when the surplus width of the exit is no more than 45% of the width of a single pedestrian stream. There is a great difference between the flow rate with the queued evacuation pattern and the flow rate with the random evacuation pattern in a scenario with a larger surplus width of the exit. Meanwhile, the pedestrians crowd extraordinarily at the exit in these conditions as well, since the number of pedestrians who want to evacuate through exit simultaneously greatly exceeds the accommodated level. Therefore, the surplus width of exit should be limited especially in the narrow exit condition, and the relationship between the two dimensionless quantities mentioned above could provide the basis to some extent.
文摘Accurate assessment of crowd evacuation inside the post-earthquake environment is critical from many perspectives,but this issue receives much less attention compared to the seismic losses of structural and non-structural components.This could be attributed to the fact that post-earthquake evacuation analysis is complex due to the interaction between human behavior and the actual built environment induced by different building contents.This study attempts to tackle this problem by investigating the impacts of different building contents on post-earthquake evacuation time by using an agent-based model that considers turning behavior.To this end,the agent-based model is first described,including:properties of the agent-based model with turning behavior,key aspects in its formulation considering different evacuation stages,and influence of different building contents(namely,debris from partition walls and ceiling systems,and various types of equipment)on the agent’s behavior.Subsequently,a school building is used as a benchmark problem to validate the model without earthquake,and the findings indicate that the agent-based model can match the real safety drill results reasonably well.After the validation,the school building is subsequently designed in accordance with modern seismic design codes,and the influence of debris and equipment on post-earthquake evacuation time is quantitatively studied using a suite of pulse-type ground motions as input.Based on this case study,recommendations are made for structural and architectural designers in an effort to reduce the potential evacuation time.Specifically,debris induced by partition walls or ceiling systems should be controlled as it has the greatest impact on the total evacuation time.
文摘Obstacle removal in crowd evacuation is critical to safety and the evacuation system efficiency. Recently, manyresearchers proposed game theoreticmodels to avoid and remove obstacles for crowd evacuation. Game theoreticalmodels aim to study and analyze the strategic behaviors of individuals within a crowd and their interactionsduring the evacuation. Game theoretical models have some limitations in the context of crowd evacuation. Thesemodels consider a group of individuals as homogeneous objects with the same goals, involve complex mathematicalformulation, and cannot model real-world scenarios such as panic, environmental information, crowds that movedynamically, etc. The proposed work presents a game theoretic model integrating an agent-based model to removethe obstacles from exits. The proposed model considered the parameters named: (1) obstacle size, length, andwidth, (2) removal time, (3) evacuation time, (4) crowd density, (5) obstacle identification, and (6) route selection.The proposed work conducts various experiments considering different conditions, such as obstacle types, obstacleremoval, and several obstacles. Evaluation results show the proposed model’s effectiveness compared with existingliterature in reducing the overall evacuation time, cell selection, and obstacle removal. The study is potentially usefulfor public safety situations such as emergency evacuations during disasters and calamities.
基金the grant fromthe Key Technologies Research and Development Program(Grant No.2021YFF0602005)the National Natural Science Foundation of China(No.51678135)the Fundamental Research Funds for the Central Universities(Nos.2242022k30031,2242022k30033).
文摘With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.
基金supported by National Natural Science Foundation of China(71904006)Henan Province Key R&D Special Project(231111322200)+1 种基金the Science and Technology Research Plan of Henan Province(232102320043,232102320232,232102320046)the Natural Science Foundation of Henan(232300420317,232300420314).
文摘Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential.
基金Sponsored by the Innovation and Entrepreneurship Training Project for College Students in Beijing(10805136024-XN139-100)Scientific Research Foundation of North China University of Technology(11005136024XN147-56).
文摘By using evacuation simulation technology and taking North China University of Technology as an example,the barrier-free evacuation design scheme for groups with different needs in campus environment was deeply discussed.Based on the data of building layout,population composition,road system and distribution of shelters in the school,a detailed evacuation model was constructed in the Pathfinder emergency evacuation simulation system.By the simulation during the daytime and at night,the total evacuation time of the whole school,evacuation completion time of each building,selection of evacuation paths and shelter utilization were analyzed in detail.The simulation results show that the distribution of shelters on campus is uneven,and their capacity is limited.As a result,the evacuation paths of the disabled,the elderly and children need to be adjusted frequently,which affects the overall evacuation efficiency.In view of this,the optimization strategies of road renovation and entrances of shelters and buildings were put forward from the perspective of space planning.From the perspective of emergency management,it is suggested to improve the campus evacuation infrastructure and strengthen the evacuation drill for teachers and students.These results provide a solid theoretical support for enhancing the construction of campus barrier-free environment and improving the level of emergency management.
文摘This paper adopts a New Historicism approach to examine the shaping of the history of the Dunkirk evacuation through an analysis of Winston Churchill’s historic speech We Shall Fight on the Beaches,Ian McEwan’s novel Atonement,and Christopher Nolan’s film Dunkirk.The research reveals that by uncovering and representing the neglected stories of marginalized groups in Atonement and Dunkirk,new evidentiary threads both enrich and contest the History embodied in Churchill’s speech.Consequently,these alternative accounts both challenge and complement the prevailing historical discourse.
文摘As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas.
基金The 2023 Langfang Science and Technology Support Plan Project:Design and Implementation of Earthquake Disaster Emergency Support Decision System in the Beijing-Tianjin-Hebei Region(Project number:2023013134)。
文摘This study introduces an innovative approach by integrating AnyLogic simulation into emergency evacuation strategies to enhance security protocols.The research focuses on leveraging advanced computational models to simulate and optimize evacuation scenarios in various settings,including public venues,residential areas,and urban environments.By integrating real-world data and behavioral models,the simulation accurately represents human movements,decision-making processes,and traffic flow dynamics during evacuation scenarios.The study evaluates the effectiveness of various evacuation strategies,including route planning,crowd behavior,and emergency response coordination,using a scenario-driven approach within the AnyLogic simulation environment.Furthermore,this research contributes to the establishment of optimized emergency response protocols by systematically evaluating and refining evacuation plans.The research frameworks mentioned in the research imply the efficient use of the AnyLogic simulation model to be used in different sectors and fields to enhance the strategies for saving lives and implementing an efficient evacuation management system.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFC0803903)the National Natural Science Foundation of China(Grant No.62003182)。
文摘This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.The emotion spread model with the effect of group behavior,and the leader-follower model with the effect of emotion state are proposed.On this basis,exit choice strategies with the effect of emotion state and group behavior are proposed.Fusing emotion spread model,leader-follower model,and exit choice strategies into a cellular automata(CA)-based pedestrian simulation model,we simulate the evacuation process in a multi-exit case.Simulation results indicate that panic emotion and group behavior are two negative influence factors for pedestrian evacuation.Compared with panic emotion or group behavior only,pedestrian evacuation efficiency with the effects of both is lower.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52104186,71904006,U1933105,and 72174189)the Fundamental Research Funds for the Central Universities (Grant Nos.DUT21JC01 and DUT2020TB03)the Fundamental Research Funds for the Central Universities (Grant No.WK2320000050)。
文摘Building exit as a bottleneck structure is the last and the most congested stage in building evacuation.It is well known that obstacles at the exit affect the evacuation process,but few researchers pay attention to the effect of stationary pedestrians(the elderly with slow speed,the injured,and the static evacuation guide)as obstacles at the exit on the evacuation process.This paper explores the influence of the presence of a stationary pedestrian as an obstacle at the exit on the evacuation from experiments and simulations.We use a software,Pathfinder,based on the agent-based model to study the effect of ratios of exit width(D)to distance(d)between the static pedestrian and the exit,the asymmetric structure by shifting the static pedestrian upward,and types of obstacles on evacuation.Results show that the evacuation time of scenes with a static pedestrian is longer than that of scenes with an obstacle due to the unexpected hindering effect of the static pedestrian.Different ratios of D/d have different effects on evacuation efficiency.Among the five D/d ratios in this paper,the evacuation efficiency is the largest when d is equal to 0.75D,and the existence of the static pedestrian has a positive impact on evacuation in this condition.The influence of the asymmetric structure of the static pedestrian on evacuation efficiency is affected by D/d.This study can provide a theoretical basis for crowd management and evacuation plan near the exit of complex buildings and facilities.
基金the National Natural Science Foundation of China (Grant Nos. 71790613 and 72091512)the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2020SK2004)。
文摘Panic is a common emotion when pedestrians are in danger during the actual evacuation, which can affect pedestrians a lot and may lead to fatalities as people are crushed or trampled. However, the systematic studies and quantitative analysis of evacuation panic, such as panic behaviors, panic evolution, and the stress responses of pedestrians with different personality traits to panic emotion are still rare. Here, combined with the theories of OCEAN(openness, conscientiousness,extroversion, agreeableness, neuroticism) model and SIS(susceptible, infected, susceptible) model, an extended cellular automata model is established by the floor field method in order to investigate the dynamics of panic emotion in the crowd and dynamics of pedestrians affected by emotion. In the model, pedestrians are divided into stable pedestrians and sensitive pedestrians according to their different personality traits in response to emotion, and their emotional state can be normal or panic. Besides, emotion contagion, emotion decay, and the influence of emotion on pedestrian movement decision-making are also considered. The simulation results show that evacuation efficiency will be reduced, for panic pedestrians may act maladaptive behaviors, thereby making the crowd more chaotic. The results further suggest that improving pedestrian psychological ability and raising the standard of management can effectively increase evacuation efficiency. And it is necessary to reduce the panic level of group as soon as possible at the beginning of evacuation. We hope this research could provide a new method to analyze crowd evacuation in panic situations.
文摘Large commercial complexes are large in scale, complex in function, and located in densely populated areas that are prone to casualties due to unfavorable evacuation. To comprehend the safety evacuation of large commercial complex buildings in China, investigate the safety evacuation problems encountered during the evacuation process and the evacuation optimization design strategy, the paper uses Pathfinder to build a simulation model based on literature research and study to simulate the evacuation of personnel in a large commercial complex in Dalian and explore its problems during the evacuation process. The results show that the type of personnel has an effect on the large commercial complex’s evacuation simulation results;the total number of evacuees is non-linearly correlated with the time change curve;some staircases take a long time to evacuate and have a low utilization rate. To improve evacuation efficiency, optimization suggestions for safety exits, evacuation stairs, and evacuation channels are made based on the results.
文摘Objective: Determine the frequency of evacuations, specify the epidemiological and clinical characteristics of the evacuees, evaluate the data of the evacuation, the management and the maternal-fetal prognosis. Methods: Prospective and descriptive retrospective study concerning obstetrical evacuations received at the maternity ward of the Hospital of the Institute of Social Hygiene in Dakar between January 1 and December 31, 2020, i.e. a period of 12 months. Results: During the study period, we collected 1156 evacuees out of a total of 3507 patients treated in the Service, i.e. a frequency of 33%. The average age of the patients was 27.07 years with extremes of 14 and 46 years. Patients aged between 20 and 29 were the most represented (51.73%). The average parity was 1.6 with extremes of 0 and 10 pares. The nulliparous (46.37%) were the majority. The majority of evacuated patients (99.6%) resided in the Dakar region, including 58% in the suburbs and 42% in the city center. The patients received had performed an average of 3 prenatal consultations with extremes ranging from 0 to 9 CPN. They most often came from health centers (55.05%) or hospitals (29.09%). The reasons for evacuations were dominated by dystocia (21.54%) followed by premature rupture of membranes (17.21%) and premature deliveries (16.35%). On admission, only 176 patients (15.2%) had an evacuation sheet. Patients transited on average through two health structures (extremes ranging from 0 to 7 structures) before reaching the reception structure. The evacuation was most often done with a private vehicle on the patient’s own means (91.96%). The outcome of the evacuees was most often vaginal delivery or hospitalization (72.79%). The majority of patients (99.4%) had evolved favorably but we deplore one maternal death (0.09%) linked to a late puerperal infection. We recorded 74 perinatal deaths and 1041 live births, i.e. a stillbirth rate of 71.1‰ live births. The causes of death were dominated by prematurity (24.7%). Conclusion: Obstetrical evacuations are frequent in our practice but they should be better organized to improve the maternal-fetal prognosis.
基金The National Natural Science Foundation of China(No.51408190)
文摘Abstract: With a determinate danger zone and evacuation demand caused by an emergency, an optimization method for the evacuation zone with network reconfiguration based on dynamic simulation is proposed. The method contains three modules. First, the network in the evacuation zone is optimized by a model with the integrated strategy of lane reversal and intersection conflict elimination. Secondly, the dynamic evacuation simulation model based on the cell transmission model is applied to simulate the dynamic propagation process of evacuated vehicles in the network in the evacuation zone. The evacuation time for all evacuated vehicles leaving the danger zone is obtained and the setting of the current evacuation zone is fed back. Thirdly, the arrival distributions of evacuated vehicles at critical intersections of the evacuation zone are also obtained to estimate the delay at critical intersection to determine whether the intersection should be taken as the critical intersection in the next iteration. The evacuation zone is expanded gradually through iteration, and the reasonable evacuation zone and the optimal evacuation network is confirmed. Based on the survey of the parking lot and urban street network around Nanjing Olympic Sports Center, the models and the iterative algorithm were applied to obtain the optimal plan of the evacuation zone with network reconfiguration in an evacuation situation to verify the validity of the proposed method.
基金Supported by the Ph.D Programs Foundation of Ministryof Education of China under Grant No.201023041108the Fundamental Research Funds for the Central Universities under Grant No.61004008
文摘In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices were used, interaction of force among pedestrians or between pedestrians and constructions was considered, and static floor fields in a multi-level exit environment were simplified into cabin and exit static floor fields. Compared with the traditional cellular automata model, the multi-grid model enhanced the continuity of the passengers'track and the precision of the boundary qualifications. The functions of the dislocation distribution of passengers as well as partial overlap of tracks due to congestion were realized. Furthermore, taking the typical cabin environment as an example, the two models were used to analyze passenger evacuation under the same conditions. It was found that the laws of passenger evacuation simulated by the two models are similar, while the simulation's authenticity and accuracy are enhanced by the multi-grid model.
基金Project is supported by the National Natural Science Foundation of China (Grant Nos. 71071013,71001004,71071012,and71131001)the Fundamental Research Funds for the Central Universities,China (Grant No. 2011YJS241)
文摘An improved dynamic parameter model is presented based on cellular automata.The dynamic parameters,including direction parameter,empty parameter,and cognition parameter,are formulated to simplify tactically the process of making decisions for pedestrians.The improved model reflects the judgement of pedestrians on surrounding conditions and the action of choosing or decision.According to the two-dimensional cellular automaton Moore neighborhood we establish the pedestrian moving rule,and carry out corresponding simulations of pedestrian evacuation.The improved model considers the impact of pedestrian density near exits on the evacuation process.Simulated and experimental results demonstrate that the improvement makes sense due to the fact that except for the spatial distance to exits,people also choose an exit according to the pedestrian density around exits.The impact factors 伪,尾,and 纬 are introduced to describe transition payoff,and their optimal values are determined through simulation.Moreover,the effects of pedestrian distribution,pedestrian density,and the width of exits on the evacuation time are discussed.The optimal exit layout,i.e.,the optimal position and width,is offered.The comparison between the simulated results obtained with the improved model and that from a previous model and experiments indicates that the improved model can reproduce experimental results well.Thus,it has great significance for further study,and important instructional meaning for pedestrian evacuation so as to reduce the number of casualties.
基金Supported by Natural Science Foundation of Tianjin (No.09JCYBJC08700)the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No.51021004)National Natural Science Foundation of China (No.90815019)
文摘The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to the hydraulic information obtained from numerical simulation and selecting principles of evacuation emergency scheme, evacuation route analysis model is proposed, which consists of the road right model and random degree model. The road right model is used to calculate the consumption time in roads, and the random degree model is used to judge whether the roads are blocked. Then the shortest evacuation route is obtained based on Dijstra algorithm. Gongming Reservoir located in Shenzhen is taken as a case to study. The results show that industrial area I is flooded at 2 500 s, and after 5 500 s, most of industrial area II is submerged. The Hushan, Loucun Forest and Chaishan are not flooded around industrial area I and II. Based on the above analysis, the optimal evacuation scheme is determined.
基金The National Key Technology R&D Program of China during the 10th Five-Year Plan Period(No.2005BA41B11)the National Natural Science Foundation of China(No.50578003)
文摘A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the basis of minimum safety distances with parts of the drivers' abnormal behavior in a panic emergency situation. A thorough questionnaire survey is undertaken among drivers of different ages. Based on the results from the survey, a safety-distance car-following model is formulated by taking into account two new parameters: a differential distributing coefficient and a driver' s experiential decision coefficient, which are used to reflect variations of driving behaviors under an emergency evacuation situation when compared with regular conditions. The formulation and derivation of the new model, as well as its properties and applicability are discussed. A case study is presented to compare the car-following trajectories using observed data under regular peak-hour traffic conditions and theoretical EECM results. The results indicate the consistency of the analysis of assumptions on the EECM and observations.
基金National Natural Science Foundation of China (51274205), the Doctoral Program Foundation of Ministry of Education the New Teacher Project (20070290022) and the Open Project of China University of Mining and Technology Resources and Mine Safety State Key Laboratory (S KLCRSM 10KFB 13).
文摘The objective of this work is to investigate the influence of smoke movement during mine fires on miner evacuation behaviors. A three-dimensional computational fluid dynamics method was conducted to reconstruct the lane- way conveyor belt fire scenes under two ventilating conditions. The parameters, including temperature-time histories, soot density, carbon monoxide and heat release rate, were simulated to characterize the mine fires at various ventilating speeds. A miner evacuation model affected by fire smoke movement was advanced to describe the miner evacuation behaviors, which can be divided into three stages. Based on the evacuation model coupled with the mine fire smoke movement, the available safety evacuation time for miners involved in coal mine fire located in different sites was estimated. Two evacuation patterns were advanced according to the ventilating speeds combined with the model of miner evacuation behaviors. The results show that the miners located between the inlet-air end and the air door in lane 1 should be evacuated to the inlet-air end and other miners involved in coal mine fire could choose the air door as the escaping destination, when the ventilation speed is greater than 3 m/s. Accordingly, the research can be used as references for the mine safety administration authorities to design the safety evacuation.