期刊文献+
共找到995篇文章
< 1 2 50 >
每页显示 20 50 100
On the evolutionary trail of MagRs 被引量:1
1
作者 Jing Zhang Yafei Chang +7 位作者 Peng Zhang Yanqi Zhang Mengke Wei Chenyang Han Shun Wang Hui-Meng Lu Tiantian Cai Can Xie 《Zoological Research》 SCIE CSCD 2024年第4期821-830,共10页
Magnetic sense,or termed magnetoreception,has evolved in a broad range of taxa within the animal kingdom to facilitate orientation and navigation.MagRs,highly conserved A-type iron-sulfur proteins,are widely distribut... Magnetic sense,or termed magnetoreception,has evolved in a broad range of taxa within the animal kingdom to facilitate orientation and navigation.MagRs,highly conserved A-type iron-sulfur proteins,are widely distributed across all phyla and play essential roles in both magnetoreception and iron-sulfur cluster biogenesis.However,the evolutionary origins and functional diversification of MagRs from their prokaryotic ancestor remain unclear.In this study,MagR sequences from 131 species,ranging from bacteria to humans,were selected for analysis,with 23 representative sequences covering species from prokaryotes to Mollusca,Arthropoda,Osteichthyes,Reptilia,Aves,and mammals chosen for protein expression and purification.Biochemical studies revealed a gradual increase in total iron content in MagRs during evolution.Three types of MagRs were identified,each with distinct iron and/or iron-sulfur cluster binding capacity and protein stability,indicating continuous expansion of the functional roles of MagRs during speciation and evolution.This evolutionary biochemical study provides valuable insights into how evolution shapes the physical and chemical properties of biological molecules such as MagRs and how these properties influence the evolutionary trajectories of MagRs. 展开更多
关键词 MAGNETORECEPTION Magnetoreceptor(MagR) Iron-sulfur cluster STABILITY evolutionary biochemistry
下载PDF
Historical biogeography and evolutionary diversification of Lilium(Liliaceae): New insights from plastome phylogenomics 被引量:1
2
作者 Nian Zhou Ke Miao +4 位作者 Changkun Liu Linbo Jia Jinjin Hu Yongjiang Huang Yunheng Ji 《Plant Diversity》 SCIE CAS CSCD 2024年第2期219-228,共10页
Here, we infer the historical biogeography and evolutionary diversification of the genus Lilium. For this purpose, we used the complete plastomes of 64 currently accepted species in the genus Lilium(14plastomes were n... Here, we infer the historical biogeography and evolutionary diversification of the genus Lilium. For this purpose, we used the complete plastomes of 64 currently accepted species in the genus Lilium(14plastomes were newly sequenced) to recover the phylogenetic backbone of the genus and a timecalibrated phylogenetic framework to estimate biogeographical history scenarios and evolutionary diversification rates of Lilium. Our results suggest that ancient climatic changes and geological tectonic activities jointly shaped the distribution range and drove evolutionary radiation of Lilium, including the Middle Miocene Climate Optimum(MMCO), the late Miocene global cooling, as well as the successive uplift of the Qinghai-Tibet Plateau(QTP) and the strengthening of the monsoon climate in East Asia during the late Miocene and the Pliocene. This case study suggests that the unique geological and climatic events in the Neogene of East Asia, in particular the uplift of QTP and the enhancement of monsoonal climate, may have played an essential role in formation of uneven distribution of plant diversity in the Northern Hemisphere. 展开更多
关键词 Asian monsoon Climatic changes Distribution range evolutionary complexity Radiative diversification Species diversity Qinghai-Tibet Plateau(QTP)
下载PDF
Evolutionary Neural Architecture Search and Its Applications in Healthcare 被引量:1
3
作者 Xin Liu Jie Li +3 位作者 Jianwei Zhao Bin Cao Rongge Yan Zhihan Lyu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期143-185,共43页
Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human ... Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications. 展开更多
关键词 Neural architecture search evolutionary computation large-scale multiobjective optimization distributed parallelism healthcare
下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
4
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
Central environmental protection inspection and carbon emission reduction: A tripartite evolutionary game model from the perspective of carbon neutrality
5
作者 Zhen-Hua Zhang Dan Ling +2 位作者 Qin-Xin Yang Yan-Chao Feng Jing Xiu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2139-2153,共15页
Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore ... Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy. 展开更多
关键词 Central environmental protection INSPECTION Local government Manufacturing enterprise Tripartite evolutionary game Carbon emission reduction
下载PDF
Evolutionary dynamics of tax-based strong altruistic reward andpunishment in a public goods game
6
作者 Zhi-Hao Yang Yan-Long Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期247-257,共11页
In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the g... In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the generation ofcostly penalties and rewards has been a complex problem in promoting the development of cooperation. In real society,specialized institutions exist to punish evil people or reward good people by collecting taxes. We propose a strong altruisticpunishment or reward strategy in the public goods game through this phenomenon. Through theoretical analysis and numericalcalculation, we can get that tax-based strong altruistic punishment (reward) has more evolutionary advantages thantraditional strong altruistic punishment (reward) in maintaining cooperation and tax-based strong altruistic reward leads toa higher level of cooperation than tax-based strong altruistic punishment. 展开更多
关键词 evolutionary game theory strong altruism PUNISHMENT REWARD
下载PDF
Optimizing Deep Learning for Computer-Aided Diagnosis of Lung Diseases: An Automated Method Combining Evolutionary Algorithm, Transfer Learning, and Model Compression
7
作者 Hassen Louati Ali Louati +1 位作者 Elham Kariri Slim Bechikh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2519-2547,共29页
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w... Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures. 展开更多
关键词 Computer-aided diagnosis deep learning evolutionary algorithms deep compression transfer learning
下载PDF
Evolutionary Multi/Many-Objective Optimisation via Bilevel Decomposition
8
作者 Shouyong Jiang Jinglei Guo +1 位作者 Yong Wang Shengxiang Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1973-1986,共14页
Decomposition of a complex multi-objective optimisation problem(MOP)to multiple simple subMOPs,known as M2M for short,is an effective approach to multi-objective optimisation.However,M2M facilitates little communicati... Decomposition of a complex multi-objective optimisation problem(MOP)to multiple simple subMOPs,known as M2M for short,is an effective approach to multi-objective optimisation.However,M2M facilitates little communication/collaboration between subMOPs,which limits its use in complex optimisation scenarios.This paper extends the M2M framework to develop a unified algorithm for both multi-objective and manyobjective optimisation.Through bilevel decomposition,an MOP is divided into multiple subMOPs at upper level,each of which is further divided into a number of single-objective subproblems at lower level.Neighbouring subMOPs are allowed to share some subproblems so that the knowledge gained from solving one subMOP can be transferred to another,and eventually to all the subMOPs.The bilevel decomposition is readily combined with some new mating selection and population update strategies,leading to a high-performance algorithm that competes effectively against a number of state-of-the-arts studied in this paper for both multiand many-objective optimisation.Parameter analysis and component analysis have been also carried out to further justify the proposed algorithm. 展开更多
关键词 Bilevel decomposition evolutionary algorithm many-objective optimisation multi-objective optimisation
下载PDF
Evolutionary Optimization Methods for High-Dimensional Expensive Problems:A Survey
9
作者 MengChu Zhou Meiji Cui +3 位作者 Dian Xu Shuwei Zhu Ziyan Zhao Abdullah Abusorrah 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第5期1092-1105,共14页
Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization problems.The past decade has also witnessed their fast progress to s... Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization problems.The past decade has also witnessed their fast progress to solve a class of challenging optimization problems called high-dimensional expensive problems(HEPs).The evaluation of their objective fitness requires expensive resource due to their use of time-consuming physical experiments or computer simulations.Moreover,it is hard to traverse the huge search space within reasonable resource as problem dimension increases.Traditional evolutionary algorithms(EAs)tend to fail to solve HEPs competently because they need to conduct many such expensive evaluations before achieving satisfactory results.To reduce such evaluations,many novel surrogate-assisted algorithms emerge to cope with HEPs in recent years.Yet there lacks a thorough review of the state of the art in this specific and important area.This paper provides a comprehensive survey of these evolutionary algorithms for HEPs.We start with a brief introduction to the research status and the basic concepts of HEPs.Then,we present surrogate-assisted evolutionary algorithms for HEPs from four main aspects.We also give comparative results of some representative algorithms and application examples.Finally,we indicate open challenges and several promising directions to advance the progress in evolutionary optimization algorithms for HEPs. 展开更多
关键词 COMPUTER OPTIMIZATION evolutionary
下载PDF
Integrating high-volume molecular and morphological data into the evolutionary studies of Allium
10
作者 Xing-Jin He 《Plant Diversity》 SCIE CAS CSCD 2024年第1期1-2,共2页
The genus Allium(Amaryllidaceae),which includes economically important plants such as onions,garlic,and leeks,is one of the most species-rich and diverse genera of monocotyledon plants in the Northern Hemisphere(Govae... The genus Allium(Amaryllidaceae),which includes economically important plants such as onions,garlic,and leeks,is one of the most species-rich and diverse genera of monocotyledon plants in the Northern Hemisphere(Govaerts et al.,2021),with approximately 1000 species.The evolution of Allium is characterized by ecological diversification,with most species preferring open. 展开更多
关键词 SPECIES evolutionary ALLIUM
下载PDF
Constraints Separation Based Evolutionary Multitasking for Constrained Multi-Objective Optimization Problems
11
作者 Kangjia Qiao Jing Liang +4 位作者 Kunjie Yu Xuanxuan Ban Caitong Yue Boyang Qu Ponnuthurai Nagaratnam Suganthan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1819-1835,共17页
Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they prop... Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods. 展开更多
关键词 Constrained multi-objective optimization(CMOPs) evolutionary multitasking knowledge transfer single constraint.
下载PDF
Evolutionary game dynamics of combining two different aspiration-driven update rules in structured populations
12
作者 杨智昊 杨彦龙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期182-191,共10页
In evolutionary games,most studies on finite populations have focused on a single updating mechanism.However,given the differences in individual cognition,individuals may change their strategies according to different... In evolutionary games,most studies on finite populations have focused on a single updating mechanism.However,given the differences in individual cognition,individuals may change their strategies according to different updating mechanisms.For this reason,we consider two different aspiration-driven updating mechanisms in structured populations:satisfied-stay unsatisfied shift(SSUS)and satisfied-cooperate unsatisfied defect(SCUD).To simulate the game player’s learning process,this paper improves the particle swarm optimization algorithm,which will be used to simulate the game player’s strategy selection,i.e.,population particle swarm optimization(PPSO)algorithms.We find that in the prisoner’s dilemma,the conditions that SSUS facilitates the evolution of cooperation do not enable cooperation to emerge.In contrast,SCUD conditions that promote the evolution of cooperation enable cooperation to emerge.In addition,the invasion of SCUD individuals helps promote cooperation among SSUS individuals.Simulated by the PPSO algorithm,the theoretical approximation results are found to be consistent with the trend of change in the simulation results. 展开更多
关键词 evolutionary game dynamics aspiration-driven update structured populations
下载PDF
Evolutionary Variational YOLOv8 Network for Fault Detection in Wind Turbines
13
作者 Hongjiang Wang Qingze Shen +3 位作者 Qin Dai Yingcai Gao Jing Gao Tian Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第7期625-642,共18页
Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have ... Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have been used to solve fault detection.However,the current design of CNNs for fault detection of wind turbine blades is highly dependent on domain knowledge and requires a large amount of trial and error.For this reason,an evolutionary YOLOv8 network has been developed to automatically find the network architecture for wind turbine blade-based fault detection.YOLOv8 is a CNN-backed object detection model.Specifically,to reduce the parameter count,we first design an improved FasterNet module based on the Partial Convolution(PConv)operator.Then,to enhance convergence performance,we improve the loss function based on the efficient complete intersection over the union.Based on this,a flexible variable-length encoding is proposed,and the corresponding reproduction operators are designed.Related experimental results confirmthat the proposed approach can achieve better fault detection results and improve by 2.6%in mean precision at 50(mAP50)compared to the existing methods.Additionally,compared to training with the YOLOv8n model,the YOLOBFE model reduces the training parameters by 933,937 and decreases the GFLOPS(Giga Floating Point Operations Per Second)by 1.1. 展开更多
关键词 Neural architecture search YOLOv8 evolutionary computation fault detection
下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
14
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
下载PDF
Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing
15
作者 Shasha Zhao Huanwen Yan +3 位作者 Qifeng Lin Xiangnan Feng He Chen Dengyin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1135-1156,共22页
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall... Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental. 展开更多
关键词 Cloud computing distributed processing evolutionary artificial bee colony algorithm hierarchical particle swarm optimization load balancing
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
16
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
下载PDF
Local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity
17
作者 YE Ting-ting WANG Guang-wu HUANG Gui-huo 《广州大学学报(自然科学版)》 CAS 2024年第4期77-90,共14页
In this paper,we prove the local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity in R^(2),R^(3).This model consists of an incompressible Navier-Stokes,a regularized system fo... In this paper,we prove the local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity in R^(2),R^(3).This model consists of an incompressible Navier-Stokes,a regularized system for the evolution of the deformation gradient and the Landau-Lifshitz-Gilbert system for the dynamics of the mag-netization.Our approach depends on approximating the system with a sequence of perturbed systems. 展开更多
关键词 the evolutionary model for magnetoviscoelasticity local solution UNIQUENESS perturbed systems
下载PDF
EVOLUTIONARY GAME OF DYNAMIC KNOWLEDGE EXCHANGING IN KNOWLEDGE INTERACTION 被引量:3
18
作者 马静 方志耕 袁玲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期304-310,共7页
Characteristics of knowledge exchanging behavior among individual agents in a knowledge dynamic interaction system are studied by using the game theory. An analytic model of evolutionary game of continuous dynamic kno... Characteristics of knowledge exchanging behavior among individual agents in a knowledge dynamic interaction system are studied by using the game theory. An analytic model of evolutionary game of continuous dynamic knowledge interaction behavior is founded based on the structure of the evolutionary game chain. Possible evolution trends of the model are discussed. Finally, evolutionary stable strategies (ESSs) of knowledge transactions among individual agents in the knowledge network are identified by simulation data. Stable charicteristics of ESS in a continuous knowledge exchanging team help employee to communicate and grasp the dynamic regulation of shared knowledge. 展开更多
关键词 knowledge management knowledge interaction evolutionary game evolutionary stable strategy
下载PDF
Nonlinear Relationship and Its Evolutionary Trace between Node Degree and Average Path Length of China Aviation Network Based on Complex Network
19
作者 Cheng Xiangjun Zhang Xiaoxuan Li Yangqi 《Journal of Traffic and Transportation Engineering》 2024年第1期11-22,共12页
In order to reveal the complex network characteristics and evolution principle of China aviation network,the relationship between the node degree and the average path length of China aviation network in 1988,1994,2001... In order to reveal the complex network characteristics and evolution principle of China aviation network,the relationship between the node degree and the average path length of China aviation network in 1988,1994,2001,2008 and 2015 was studied.According to the theory and method of complex network,the network system was constructed with the city where the airport was located as the network node and the airline as the edge of the network.On the basis of the statistical data,the node average path length of China aviation network in 1988,1994,2001,2008 and 2015 was calculated.Through regression analysis,it was found that the node degree had a logarithmic relationship with the average length of node path,and the two parameters of the logarithmic relationship had linear evolutionary trace.Key word:China aviation network,complex network,node degree,average length of node path,logarithmic relationship,evolutionary trace. 展开更多
关键词 China aviation network complex network node degree average length of node path logarithmic relationship evolutionary trace.
下载PDF
Nonlinear Relationship and Its Evolutionary Trace between Average Degree and Average Path Length of Edge Vertices of China Aviation Network Based on Complex Network
20
作者 Cheng Xiangjun Chen Xumei Guo Jianyuan 《Journal of Traffic and Transportation Engineering》 2024年第5期224-237,共14页
In order to reveal the complex network characteristics and evolution principle of China aviation network,the relationship between the average degree and the average path length of edge vertices of China aviation netwo... In order to reveal the complex network characteristics and evolution principle of China aviation network,the relationship between the average degree and the average path length of edge vertices of China aviation network in 1988,1994,2001,2008 and 2015 was studied.According to the theory and method of complex network,the network system was constructed with the city where the airport was located as the network node and the airline as the edge of the network.On the basis of the statistical data,the average degree and average path length of edge vertices of China aviation network in 1988,1994,2001,2008 and 2015 were calculated.Through regression analysis,it was found that the average degree had a logarithmic relationship with the average path length of edge vertices and the two parameters of the logarithmic relationship had linear evolutionary trace. 展开更多
关键词 China aviation network complex network average degree of edge vertices average path length of edge vertices logarithmic relationship evolutionary trace
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部