In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urb...In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urbanization.In this paper,a simple negative exponential function was presented to verify its applicability in 19 typical sloping urban areas in China.The function fits well for all case urban areas(R^(2)≥0.951,p<0.001).The parameters of this function clearly describe two fundamental attributes:initial value a and decline rate b.Between 2000 and 2020,a tends to increase,while b tends to decrease in all urban areas,confirming the hypothesis of mutual promotion between flatland densification and sloping land expansion.Multiple regression analysis indicates that the built-up land density and the ruggedness of background land can explain 70.7%of a,while the average slope ratio of built-up land to background land,the built-up land density and the built-up land area can explain 82.1%of b.This work provides a quantitative investigative tool for distribution of urban built-up land density along slope gradient,aiding in the study of the globally increasing phenomenon of sloping land urbanization from a new perspective.展开更多
The present article is devoted to nonlinear stochastic partial differential equations with double reflecting walls driven by possibly degenerate,multiplicative noise.We prove that the corresponding Markov semigroup po...The present article is devoted to nonlinear stochastic partial differential equations with double reflecting walls driven by possibly degenerate,multiplicative noise.We prove that the corresponding Markov semigroup possesses an exponentially attracting invariant measure through asymptotic coupling,in which Foias-Prodi estimation and the truncation technique are crucial for the realization of the Girsanov transform.展开更多
We provide a concise review of the exponentially convergent multiscale finite element method(ExpMsFEM)for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave pr...We provide a concise review of the exponentially convergent multiscale finite element method(ExpMsFEM)for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave propagation.The ExpMsFEM is built on the non-overlapped domain decomposition in the classical MsFEM while enriching the approximation space systematically to achieve a nearly exponential convergence rate regarding the number of basis functions.Unlike most generalizations of the MsFEM in the literature,the ExpMsFEM does not rely on any partition of unity functions.In general,it is necessary to use function representations dependent on the right-hand side to break the algebraic Kolmogorov n-width barrier to achieve exponential convergence.Indeed,there are online and offline parts in the function representation provided by the ExpMsFEM.The online part depends on the right-hand side locally and can be computed in parallel efficiently.The offline part contains basis functions that are used in the Galerkin method to assemble the stiffness matrix;they are all independent of the right-hand side,so the stiffness matrix can be used repeatedly in multi-query scenarios.展开更多
This contribution is dedicated to the celebration of Rémi Abgrall’s accomplishments in Applied Mathematics and Scientific Computing during the conference“Essentially Hyperbolic Problems:Unconventional Numerics,...This contribution is dedicated to the celebration of Rémi Abgrall’s accomplishments in Applied Mathematics and Scientific Computing during the conference“Essentially Hyperbolic Problems:Unconventional Numerics,and Applications”.With respect to classical Finite Elements Methods,Trefftz methods are unconventional methods because of the way the basis functions are generated.Trefftz discontinuous Galerkin(TDG)methods have recently shown potential for numerical approximation of transport equations[6,26]with vectorial exponential modes.This paper focuses on a proof of the approximation properties of these exponential solutions.We show that vectorial exponential functions can achieve high order convergence.The fundamental part of the proof consists in proving that a certain rectangular matrix has maximal rank.展开更多
A wide range of technological and industrial domains,including heating processors,electrical systems,mechanical systems,and others,are facing issues as a result of the recent developments in heat transmission.Nanoflui...A wide range of technological and industrial domains,including heating processors,electrical systems,mechanical systems,and others,are facing issues as a result of the recent developments in heat transmission.Nanofluids are a novel type of heat transfer fluid that has the potential to provide solutions that will improve energy transfer.The current study investigates the effect of a magnetic field on the two-dimensional flow of Williamson nanofluid over an exponentially inclined stretched sheet.This investigation takes into account the presence of multi-slip effects.We also consider the influence of viscous dissipation,thermal radiation,chemical reactions,and suction on the fluid’s velocity.We convert the nonlinear governing partial differential equations(PDEs)of the fluid flow problem into dimensionless ordinary differential equations(ODEs)through the utilization of similarity variables.We then use the homotopy analysis method(HAM)to numerically solve the resulting ordinary differential equations(ODEs).We demonstrate the effects of numerous elements on a variety of profiles through graphical and tabular representations.We observe a drop in the velocity profile whenever we increase either the magnetic number or the suction parameter.Higher values of the Williamson parameter lead to an increase in the thermal profile,while the momentum of the flow displays a trend in the opposite direction.The potential applications of this unique model include chemical and biomolecule detection,environmental cleansing,and the initiation of radiation-induced chemical processes like polymerization,sterilization,and chemical synthesis.展开更多
The exponential Randić index has important applications in the fields of biology and chemistry. The exponential Randić index of a graph G is defined as the sum of the weights e 1 d( u )d( v ) of all edges uv of G, whe...The exponential Randić index has important applications in the fields of biology and chemistry. The exponential Randić index of a graph G is defined as the sum of the weights e 1 d( u )d( v ) of all edges uv of G, where d( u ) denotes the degree of a vertex u in G. The paper mainly provides the upper and lower bounds of the exponential Randić index in quasi-tree graphs, and characterizes the extremal graphs when the bounds are achieved.展开更多
Extreme mortality bonds(EMBs),which can transfer the extreme mortality risks confronted by life insurance companies into the capital market,refer to the bonds whose nominal values or coupons are associated with mortal...Extreme mortality bonds(EMBs),which can transfer the extreme mortality risks confronted by life insurance companies into the capital market,refer to the bonds whose nominal values or coupons are associated with mortality index.This paper first provides the expected value of mortality index based on the double exponential jump diffusion(DEJD)model under the risk-neutral measure;then derives the pricing models of the EMBs with principal reimbursement non-cumulative and cumulative threshold respectively;finally simulates the bond prices and conducts a parameter sensitivity analysis.This paper finds that the jump and direction characteristics of mortality index have significant impacts on the accuracy of the EMB pricing.展开更多
In this paper, a new spline adaptive filter using a convex combination of exponential hyperbolic sinusoidal is presented. the algorithm convexly combines an exponential hyperbolic sinusoidal Hammerstein spline adaptiv...In this paper, a new spline adaptive filter using a convex combination of exponential hyperbolic sinusoidal is presented. the algorithm convexly combines an exponential hyperbolic sinusoidal Hammerstein spline adaptive filter and a Wiener-type spline adaptive filter to maintain the robustness in non-Gaussian noise environments when dealing with both the Hammerstein nonlinear system and the Wiener nonlinear system. The convergence analyses and simulation experiments are carried out on the proposed algorithm. The experimental results show the superiority of the proposed algorithm to other algorithms.展开更多
A new three-parameter beta power distribution is introduced and studied. We derive formal expressions for its moments, generating function and Cumulative density function. The maximum likelihood estimation of the mode...A new three-parameter beta power distribution is introduced and studied. We derive formal expressions for its moments, generating function and Cumulative density function. The maximum likelihood estimation of the model parameters was also conducted. In the end, the superiority of the new distribution over the exponentiated exponential was made by means of data set.展开更多
The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and th...The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.展开更多
In this paper, we consider the nonlinearly damped semi-linear wave equation associated with initial and Dirichlet boundary conditions. We prove the existence of a local weak solution and introduce a family of potentia...In this paper, we consider the nonlinearly damped semi-linear wave equation associated with initial and Dirichlet boundary conditions. We prove the existence of a local weak solution and introduce a family of potential wells and discuss the invariants and vacuum isolating behavior of solutions. Furthermore, we prove the global existence of solutions in both cases which are polynomial and exponential decay in the energy space respectively, and the asymptotic behavior of solutions for the cases of potential well family with 0 〈 E(0) 〈 d. At last we show that the energy will grow up as an exponential function as time goes to infinity, provided the initial data is large enough or E(0) 〈 0.展开更多
By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequ...By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.展开更多
Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
This study explores the effects of heat transfer on the Williamson fluid over a porous exponentially stretching surface. The boundary layer equations of the Williamson fluid model for two dimensional flow with heat tr...This study explores the effects of heat transfer on the Williamson fluid over a porous exponentially stretching surface. The boundary layer equations of the Williamson fluid model for two dimensional flow with heat transfer are presented. Two cases of heat transfer are considered, i.e., the prescribed exponential order surface temperature (PEST) case and the prescribed exponential order heat flux (PEHF) case. The highly nonlinear partial differential equations are simplified with suitable similar and non-similar variables, and finally are solved analytically with the help of the optimal homotopy analysis method (OHAM). The optimal convergence control parameters are obtained, and the physical fea- tures of the flow parameters are analyzed through graphs and tables. The skin friction and wall temperature gradient are calculated.展开更多
This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result i...This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the interconnection matrix T of the neural system satisfies that - T is an H matrix with nonnegative diagonal elements, then the neural system is absolutely exponentially stable(AEST). The Hopfield network, Cellular neural network and Bidirectional associative memory network are special cases of the network model considered in this paper. So this work gives some improvements to the previous ones.展开更多
In this paper, exponential type regression models are considered from geometric point of view. The stochastic expansions relating to the estimate are derived and are used to study several asymptotic inference problems...In this paper, exponential type regression models are considered from geometric point of view. The stochastic expansions relating to the estimate are derived and are used to study several asymptotic inference problems. The biases and the covariances relating to the estimate may be calculated based on the expansions. The information loss of the estimate and a limit theorem connected with the observed and expected Fisher informations are obtained in terms of the curvatures.展开更多
Objective and accurate classification model or method of cloud image is a prerequisite for accurate weather monitoring and forecast.Thus safety of aircraft taking off and landing and air flight can be guaranteed.Thres...Objective and accurate classification model or method of cloud image is a prerequisite for accurate weather monitoring and forecast.Thus safety of aircraft taking off and landing and air flight can be guaranteed.Thresholding is a kind of simple and effective method of cloud classification.It can realize automated ground-based cloud detection and cloudage observation.The existing segmentation methods based on fixed threshold and single threshold cannot achieve good segmentation effect.Thus it is difficult to obtain the accurate result of cloud detection and cloudage observation.In view of the above-mentioned problems,multi-thresholding methods of ground-based cloud based on exponential entropy/exponential gray entropy and uniform searching particle swarm optimization(UPSO)are proposed.Exponential entropy and exponential gray entropy make up for the defects of undefined value and zero value in Shannon entropy.In addition,exponential gray entropy reflects the relative uniformity of gray levels within the cloud cluster and background cluster.Cloud regions and background regions of different gray level ranges can be distinguished more precisely using the multi-thresholding strategy.In order to reduce computational complexity of original exhaustive algorithm for multi-threshold selection,the UPSO algorithm is adopted.It can find the optimal thresholds quickly and accurately.As a result,the real-time processing of segmentation of groundbased cloud image can be realized.The experimental results show that,in comparison with the existing groundbased cloud image segmentation methods and multi-thresholding method based on maximum Shannon entropy,the proposed methods can extract the boundary shape,textures and details feature of cloud more clearly.Therefore,the accuracies of cloudage detection and morphology classification for ground-based cloud are both improved.展开更多
Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approxi...Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approximating solution systems and usig a limiting argument to pass on stability of strong solutions to mild ones. Consequently, under these conditions the random attractors of given stochastic systems are reduced to zero with exponential decay. Lastly, two examples are investigated to illustrate the theory.展开更多
Based on the quadratic exponential method, this paper constructs two types of generators over finite field Fq, the digital quadratic exponential generator and quadratic exponential pseudorandom vector generator. We in...Based on the quadratic exponential method, this paper constructs two types of generators over finite field Fq, the digital quadratic exponential generator and quadratic exponential pseudorandom vector generator. We investigate the distribution of the sequence generated by the generators, and present results about their one dimensional discrepancy. The proofs are based on the estimate of certain character sum over Fq. Ift is the least period of the sequence and t≥q^1/2+2c, then the bound of the discrepancy is O(t^-1/4q^1/8+τ logq) for any ε 〉 0. It shows that the sequence is asymptotically uniformly distributed.展开更多
This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on th...This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.展开更多
基金supported by the project of the National Natural Science Foundation of China entitled“Distribution and change characteristics of construction land on slope gradient in mountainous cities of southern China”(No.41961039).
文摘In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urbanization.In this paper,a simple negative exponential function was presented to verify its applicability in 19 typical sloping urban areas in China.The function fits well for all case urban areas(R^(2)≥0.951,p<0.001).The parameters of this function clearly describe two fundamental attributes:initial value a and decline rate b.Between 2000 and 2020,a tends to increase,while b tends to decrease in all urban areas,confirming the hypothesis of mutual promotion between flatland densification and sloping land expansion.Multiple regression analysis indicates that the built-up land density and the ruggedness of background land can explain 70.7%of a,while the average slope ratio of built-up land to background land,the built-up land density and the built-up land area can explain 82.1%of b.This work provides a quantitative investigative tool for distribution of urban built-up land density along slope gradient,aiding in the study of the globally increasing phenomenon of sloping land urbanization from a new perspective.
基金supported by the National Natural Science Foundation of China(12071480)the Scientific Research Program Funds of NUDT(22-ZZCX-016)the Hunan Provincial Innovation Foundation for Postgraduate(CX20230003)。
文摘The present article is devoted to nonlinear stochastic partial differential equations with double reflecting walls driven by possibly degenerate,multiplicative noise.We prove that the corresponding Markov semigroup possesses an exponentially attracting invariant measure through asymptotic coupling,in which Foias-Prodi estimation and the truncation technique are crucial for the realization of the Girsanov transform.
基金part supported by the NSF Grants DMS-1912654 and DMS 2205590。
文摘We provide a concise review of the exponentially convergent multiscale finite element method(ExpMsFEM)for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave propagation.The ExpMsFEM is built on the non-overlapped domain decomposition in the classical MsFEM while enriching the approximation space systematically to achieve a nearly exponential convergence rate regarding the number of basis functions.Unlike most generalizations of the MsFEM in the literature,the ExpMsFEM does not rely on any partition of unity functions.In general,it is necessary to use function representations dependent on the right-hand side to break the algebraic Kolmogorov n-width barrier to achieve exponential convergence.Indeed,there are online and offline parts in the function representation provided by the ExpMsFEM.The online part depends on the right-hand side locally and can be computed in parallel efficiently.The offline part contains basis functions that are used in the Galerkin method to assemble the stiffness matrix;they are all independent of the right-hand side,so the stiffness matrix can be used repeatedly in multi-query scenarios.
文摘This contribution is dedicated to the celebration of Rémi Abgrall’s accomplishments in Applied Mathematics and Scientific Computing during the conference“Essentially Hyperbolic Problems:Unconventional Numerics,and Applications”.With respect to classical Finite Elements Methods,Trefftz methods are unconventional methods because of the way the basis functions are generated.Trefftz discontinuous Galerkin(TDG)methods have recently shown potential for numerical approximation of transport equations[6,26]with vectorial exponential modes.This paper focuses on a proof of the approximation properties of these exponential solutions.We show that vectorial exponential functions can achieve high order convergence.The fundamental part of the proof consists in proving that a certain rectangular matrix has maximal rank.
文摘A wide range of technological and industrial domains,including heating processors,electrical systems,mechanical systems,and others,are facing issues as a result of the recent developments in heat transmission.Nanofluids are a novel type of heat transfer fluid that has the potential to provide solutions that will improve energy transfer.The current study investigates the effect of a magnetic field on the two-dimensional flow of Williamson nanofluid over an exponentially inclined stretched sheet.This investigation takes into account the presence of multi-slip effects.We also consider the influence of viscous dissipation,thermal radiation,chemical reactions,and suction on the fluid’s velocity.We convert the nonlinear governing partial differential equations(PDEs)of the fluid flow problem into dimensionless ordinary differential equations(ODEs)through the utilization of similarity variables.We then use the homotopy analysis method(HAM)to numerically solve the resulting ordinary differential equations(ODEs).We demonstrate the effects of numerous elements on a variety of profiles through graphical and tabular representations.We observe a drop in the velocity profile whenever we increase either the magnetic number or the suction parameter.Higher values of the Williamson parameter lead to an increase in the thermal profile,while the momentum of the flow displays a trend in the opposite direction.The potential applications of this unique model include chemical and biomolecule detection,environmental cleansing,and the initiation of radiation-induced chemical processes like polymerization,sterilization,and chemical synthesis.
文摘The exponential Randić index has important applications in the fields of biology and chemistry. The exponential Randić index of a graph G is defined as the sum of the weights e 1 d( u )d( v ) of all edges uv of G, where d( u ) denotes the degree of a vertex u in G. The paper mainly provides the upper and lower bounds of the exponential Randić index in quasi-tree graphs, and characterizes the extremal graphs when the bounds are achieved.
文摘Extreme mortality bonds(EMBs),which can transfer the extreme mortality risks confronted by life insurance companies into the capital market,refer to the bonds whose nominal values or coupons are associated with mortality index.This paper first provides the expected value of mortality index based on the double exponential jump diffusion(DEJD)model under the risk-neutral measure;then derives the pricing models of the EMBs with principal reimbursement non-cumulative and cumulative threshold respectively;finally simulates the bond prices and conducts a parameter sensitivity analysis.This paper finds that the jump and direction characteristics of mortality index have significant impacts on the accuracy of the EMB pricing.
基金supported by the National Natural Science Foundation of China (Grant No. 62371242, Grant No. 61871230)。
文摘In this paper, a new spline adaptive filter using a convex combination of exponential hyperbolic sinusoidal is presented. the algorithm convexly combines an exponential hyperbolic sinusoidal Hammerstein spline adaptive filter and a Wiener-type spline adaptive filter to maintain the robustness in non-Gaussian noise environments when dealing with both the Hammerstein nonlinear system and the Wiener nonlinear system. The convergence analyses and simulation experiments are carried out on the proposed algorithm. The experimental results show the superiority of the proposed algorithm to other algorithms.
文摘A new three-parameter beta power distribution is introduced and studied. We derive formal expressions for its moments, generating function and Cumulative density function. The maximum likelihood estimation of the model parameters was also conducted. In the end, the superiority of the new distribution over the exponentiated exponential was made by means of data set.
基金The National Natural Science Foundation of China (No60574006)
文摘The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.
文摘In this paper, we consider the nonlinearly damped semi-linear wave equation associated with initial and Dirichlet boundary conditions. We prove the existence of a local weak solution and introduce a family of potential wells and discuss the invariants and vacuum isolating behavior of solutions. Furthermore, we prove the global existence of solutions in both cases which are polynomial and exponential decay in the energy space respectively, and the asymptotic behavior of solutions for the cases of potential well family with 0 〈 E(0) 〈 d. At last we show that the energy will grow up as an exponential function as time goes to infinity, provided the initial data is large enough or E(0) 〈 0.
文摘By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
基金supported by the Ph.D.Indigenous Scheme of the Higher Education Commission of Pakistan(No.112-21674-2PS1-576)
文摘This study explores the effects of heat transfer on the Williamson fluid over a porous exponentially stretching surface. The boundary layer equations of the Williamson fluid model for two dimensional flow with heat transfer are presented. Two cases of heat transfer are considered, i.e., the prescribed exponential order surface temperature (PEST) case and the prescribed exponential order heat flux (PEHF) case. The highly nonlinear partial differential equations are simplified with suitable similar and non-similar variables, and finally are solved analytically with the help of the optimal homotopy analysis method (OHAM). The optimal convergence control parameters are obtained, and the physical fea- tures of the flow parameters are analyzed through graphs and tables. The skin friction and wall temperature gradient are calculated.
文摘This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the interconnection matrix T of the neural system satisfies that - T is an H matrix with nonnegative diagonal elements, then the neural system is absolutely exponentially stable(AEST). The Hopfield network, Cellular neural network and Bidirectional associative memory network are special cases of the network model considered in this paper. So this work gives some improvements to the previous ones.
基金The project was supported by National Natural Science Foundation of China
文摘In this paper, exponential type regression models are considered from geometric point of view. The stochastic expansions relating to the estimate are derived and are used to study several asymptotic inference problems. The biases and the covariances relating to the estimate may be calculated based on the expansions. The information loss of the estimate and a limit theorem connected with the observed and expected Fisher informations are obtained in terms of the curvatures.
基金Supported by the National Natural Science Foundation of China(60872065)the Open Foundation of Key Laboratory of Meteorological Disaster of Ministry of Education at Nanjing University of Information Science & Technology(KLME1108)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Objective and accurate classification model or method of cloud image is a prerequisite for accurate weather monitoring and forecast.Thus safety of aircraft taking off and landing and air flight can be guaranteed.Thresholding is a kind of simple and effective method of cloud classification.It can realize automated ground-based cloud detection and cloudage observation.The existing segmentation methods based on fixed threshold and single threshold cannot achieve good segmentation effect.Thus it is difficult to obtain the accurate result of cloud detection and cloudage observation.In view of the above-mentioned problems,multi-thresholding methods of ground-based cloud based on exponential entropy/exponential gray entropy and uniform searching particle swarm optimization(UPSO)are proposed.Exponential entropy and exponential gray entropy make up for the defects of undefined value and zero value in Shannon entropy.In addition,exponential gray entropy reflects the relative uniformity of gray levels within the cloud cluster and background cluster.Cloud regions and background regions of different gray level ranges can be distinguished more precisely using the multi-thresholding strategy.In order to reduce computational complexity of original exhaustive algorithm for multi-threshold selection,the UPSO algorithm is adopted.It can find the optimal thresholds quickly and accurately.As a result,the real-time processing of segmentation of groundbased cloud image can be realized.The experimental results show that,in comparison with the existing groundbased cloud image segmentation methods and multi-thresholding method based on maximum Shannon entropy,the proposed methods can extract the boundary shape,textures and details feature of cloud more clearly.Therefore,the accuracies of cloudage detection and morphology classification for ground-based cloud are both improved.
文摘Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approximating solution systems and usig a limiting argument to pass on stability of strong solutions to mild ones. Consequently, under these conditions the random attractors of given stochastic systems are reduced to zero with exponential decay. Lastly, two examples are investigated to illustrate the theory.
基金Supported by the Special Fund of National Excellent Doctoral Dissertation (Grant 200060) and the National Natural Science Foundation of China (No.60373092).
文摘Based on the quadratic exponential method, this paper constructs two types of generators over finite field Fq, the digital quadratic exponential generator and quadratic exponential pseudorandom vector generator. We investigate the distribution of the sequence generated by the generators, and present results about their one dimensional discrepancy. The proofs are based on the estimate of certain character sum over Fq. Ift is the least period of the sequence and t≥q^1/2+2c, then the bound of the discrepancy is O(t^-1/4q^1/8+τ logq) for any ε 〉 0. It shows that the sequence is asymptotically uniformly distributed.
基金supported by the National Natural Science Foundation of China(7090104171171113)the Aeronautical Science Foundation of China(2014ZG52077)
文摘This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.