A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed.The substrate and the electrodes of the chip were made of glass and gold,respectively.The experimental results demonstr...A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed.The substrate and the electrodes of the chip were made of glass and gold,respectively.The experimental results demonstrated that the EIS-chip could distinguish different solutions (physiological saline,culture medium,living cell suspension etc.) by scanning from 10Hz to 45kHz.A 6-element circuit model was used for fitting the real part and the imaginary part admittance curves of the living cell suspension.An actual circuit was also built and tested to verify the 6-element circuit model proposed.The micro-EIS chip has several advantages including the use of small sample volumes,high resolution and ease of operation.It shows good application prospects in the areas of cellular electrophysioiogy,drug screening and bio-sensors etc.展开更多
Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to...Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to the iteration process. The statistical inverse problem method uses statistical inference to estimate unknown parameters. In this article, we develop a nonlinear weighted anisotropic total variation (NWATV) prior density function based on the recently proposed NWATV regularization method. We calculate the corresponding posterior density function, i.e., the solution of the EIT inverse problem in the statistical sense, via a modified Markov chain Monte Carlo (MCMC) sampling. We do numerical experiment to validate the proposed approach.展开更多
This paper presents an electrical impedance tomography(EIT)method using a partial-differential-equationconstrained optimization approach.The forward problem in the inversion framework is described by a complete electr...This paper presents an electrical impedance tomography(EIT)method using a partial-differential-equationconstrained optimization approach.The forward problem in the inversion framework is described by a complete electrodemodel(CEM),which seeks the electric potential within the domain and at surface electrodes considering the contact impedance between them.The finite element solution of the electric potential has been validated using a commercial code.The inverse medium problem for reconstructing the unknown electrical conductivity profile is formulated as an optimization problem constrained by the CEM.The method seeks the optimal solution of the domain’s electrical conductivity to minimize a Lagrangian functional consisting of a least-squares objective functional and a regularization term.Enforcing the stationarity of the Lagrangian leads to state,adjoint,and control problems,which constitute the Karush-Kuhn-Tucker(KKT)first-order optimality conditions.Subsequently,the electrical conductivity profile of the domain is iteratively updated by solving the KKT conditions in the reduced space of the control variable.Numerical results show that the relative error of the measured and calculated electric potentials after the inversion is less than 1%,demonstrating the successful reconstruction of heterogeneous electrical conductivity profiles using the proposed EIT method.This method thus represents an application framework for nondestructive evaluation of structures and geotechnical site characterization.展开更多
Medically, electrical impedance tomography (EIT) is a relatively inexpensive, safe, non-invasive and portable technique compared with computerized tomography (CT) and magnetic resonance imaging (MRI). In this pa...Medically, electrical impedance tomography (EIT) is a relatively inexpensive, safe, non-invasive and portable technique compared with computerized tomography (CT) and magnetic resonance imaging (MRI). In this paper, EIT_TJU_ II system is developed including both the data collection system and image reconstruction algo- rithm. The testing approach of the system performance, including spatial resolution and sensitivity, is described through brine tank experiments. The images of the thorax physical model verify that the system can reconstruct the interior resistivity distribution. Finally, the lung ventilation functional monitoring in vivo is realized by EIT, and the visualized images indicate that the configuration and performance of EIT_TJU_ II system are feasible and EIT is a promising technique in clinical monitoring application.展开更多
Lorentz force electrical impedance tomography (LFEIT) combines ultrasound stimulation and electromagnetic field detection with the goal of creating a high contrast and high resolution hybrid imaging modality. In thi...Lorentz force electrical impedance tomography (LFEIT) combines ultrasound stimulation and electromagnetic field detection with the goal of creating a high contrast and high resolution hybrid imaging modality. In this study, pulse compression working together with a linearly frequency modulated ultrasound pulse was investigated in LFEIT. Experiments were done on agar phantoms having the same level of electrical conductivity as soft biological tissues. The results showed that:(i) LFEIT using pulse compression could detect the location of the electrical conductivity variations precisely; (ii) LFEIT using pulse compression could get the same performance of detecting electrical conductivity variations as the traditional LFEIT using high voltage narrow pulse but reduce the peak stimulating power to the transducer by 25.5 dB; (iii) axial resolution of 1 mm could be obtained using modulation frequency bandwidth 2 MHz.展开更多
Novel advances in the field of brain imaging have enabled the unprecedented clinical application of various imaging modalities to facilitate disease diagnosis and treatment. Electrical impedance tomography(EIT) is a f...Novel advances in the field of brain imaging have enabled the unprecedented clinical application of various imaging modalities to facilitate disease diagnosis and treatment. Electrical impedance tomography(EIT) is a functional imaging technique that measures the transfer impedances between electrodes on the body surface to estimate the spatial distribution of electrical properties of tissues. EIT offers many advantages over other neuroimaging technologies,which has led to its potential clinical use. This qualitative review provides an overview of the basic principles,algorithms, and system composition of EIT. Recent advances in the field of EIT are discussed in the context of epilepsy,stroke, brain injuries and edema, and other brain diseases. Further, we summarize factors limiting the development of brain EIT and highlight prospects for the field. In epilepsy imaging, there have been advances in EIT imaging depth,from cortical to subcortical regions. In stroke research, a bedside EIT stroke monitoring system has been developed for clinical practice, and data support the role of EIT in multi-modal imaging for diagnosing stroke. Additionally, EIT has been applied to monitor the changes in brain water content associated with cerebral edema, enabling the early identification of brain edema and the evaluation of mannitol dehydration. However, anatomically realistic geometry,inhomogeneity, cranium completeness, anisotropy and skull type, etc., must be considered to improve the accuracy of EIT modeling. Thus, the further establishment of EIT as a mature and routine diagnostic technique will necessitate the accumulation of more supporting evidence.展开更多
We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electri...We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach. Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model. Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245±0.0068 and 8.9997%±0.0084%, for hemorrhagic stroke, and 0.6748±0.0197 and 8.8986%±0.0089%, for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans.展开更多
The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-s...The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.展开更多
Electrical impedance (El) and phase angle (PHI) parameters in AC impedance spectroscopy are important electrical parameters in the study of medical pathology. However, little is known about their application in va...Electrical impedance (El) and phase angle (PHI) parameters in AC impedance spectroscopy are important electrical parameters in the study of medical pathology. However, little is known about their application in variation and genetic relationship studies of forest trees. In order to test whether impedance parameters could be used in genetic relationship analysis among conifer species, E1 and PHI were measured in a seedling experiment test composed of Pinus tabuliformis, Pinus yunnanensis, and Pinus densata in a habitat of Pinus tabuliformis. The results showed that variations in both EI and PHI among species were sig- nificant in different electric frequencies, and the EI and PHI values measured in the two populations of P. densata were between the two parental species, P. yunnanensis and P. tabuliformis. These results show that these two impedance parameters could reflect the genetic relationship among pine species. This was the first time using the two AC impedance spectroscopy parameters to test the genetic relationship analysis between tree species, and would be a hopeful novelreference methodology for future studies in evolution and genetic variation of tree species.展开更多
This paper presents different views on electrode modelling, which include electrode electrochemistry models for modelling the effects of electrode-electrolyte interface, electric field electrode models for modelling e...This paper presents different views on electrode modelling, which include electrode electrochemistry models for modelling the effects of electrode-electrolyte interface, electric field electrode models for modelling electrode geometry, and electrode models for modelling the effects of electrode common mode voltage and double layer capacitance. Taking the full electrode models into consideration in electrical impedance tomography (EIT) will greatly help the optimised approach to a good solution and further understanding of the measurement principle.展开更多
In electrical impedance tomography (EIT), distribution of the internal resistivity or conductivity of an unknown object is esti- mated using measured boundary voltage data induced by different current patterns with ...In electrical impedance tomography (EIT), distribution of the internal resistivity or conductivity of an unknown object is esti- mated using measured boundary voltage data induced by different current patterns with various reconstruction algorithms. The reconstruction algorithms usually employ the Newton-Raphson iteration scheme to visualize the resistivity distribution inside the object. Accuracy of the imaging process depends not only on the algorithm used, but also on the scheme of finite element discretization. In this paper an adaptive mesh refinement is used in a modified reconstruction algorithm for the regularized Err. The method has a major impact on efficient solution of the forward problem as well as on achieving improved image resolution. Computer simulations indicate that the Newton-Raphson reconstruction algorithm for Err using adaptive mesh refinement performs better than the classical Newton-Raphson algorithm in terms of reconstructed image resolution.展开更多
A sinusoidal voltage wave generator is proposed based on the use of micro-processor digital signals with programmable duty-cycles, with application to real-time Electrical Cell-substrate Impedance Spectroscopy (ECIS) ...A sinusoidal voltage wave generator is proposed based on the use of micro-processor digital signals with programmable duty-cycles, with application to real-time Electrical Cell-substrate Impedance Spectroscopy (ECIS) assays in cell cultures. The working principle relies on the time convolution of the programmed microcontroller (μC) digital signals. The expected frequency is easily tuned on the bio-impedance spectroscopy range [100 Hz, 1 MHz] thanks to the μC clock frequency selection. This system has been simulated and tested on the 8 bits μC Arduino<sup>TM </sup>Uno with ATmega328 version. Results obtained prove that only three digital signals are required to fit the general specification in ECIS experiments, below 1% THD accuracy, and show the appropriateness of the system for the real-time monitoring of this type of biological experiments.展开更多
Image reconstruction in electrical impedance tomography(EIT) is a highly ill posed inverse problem. Regularization techniques must be used in order to solve the problem. In this paper, a new regularization method bas...Image reconstruction in electrical impedance tomography(EIT) is a highly ill posed inverse problem. Regularization techniques must be used in order to solve the problem. In this paper, a new regularization method based on the spatial filtering theory is proposed. The new regularized reconstruction for EIT is independent of the estimation of impedance distribution, so it can be implemented more easily than the maximum a posteriori(MAP) method. The regularization level in our proposed method varies spatially so as to be suited to the correlation character of the object's impedance distribution. We implemented our regularization method with two dimensional computer simulations. The experimental results indicate that the quality of the reconstructed impedance images with the descibed regularization method based on spatial filtering theory is better than that with Tikhonov method.展开更多
In electrical impedance tomography (EIT) an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. Several...In electrical impedance tomography (EIT) an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. Several difficulties have been identified in EIT, where the main problem is the low spatial resolution. This paper presents a fining mesh method based on finite element method (FEM), by fining the sensitive element, the most actual signal is obtained in certain electrode number. Newton-Raphson reconstruction algorithm improves the spatial solution of image. The advantages of this method are the improvement of spatial resolution and ease of implementation.展开更多
Electrical impedance tomography(EIT) is a new computer tomography technology, which reconstructs an impedance (resistivity, conductivity) distribution, or change of impedance, by making voltage and current measurement...Electrical impedance tomography(EIT) is a new computer tomography technology, which reconstructs an impedance (resistivity, conductivity) distribution, or change of impedance, by making voltage and current measurements on the object's periphery. Image reconstruction in EIT is an ill-posed, non-linear inverse problem. A method for finding the place of impedance change in EIT is proposed in this paper, in which a multilevel BP neural network (MBPNN) is used to express the non-linear relation between the impedance change inside the object and the voltage change measured on the surface of the object. Thus, the location of the impedance change can be decided by the measured voltage variation on the surface. The impedance change is then reconstructed using a linear approximate method. MBPNN can decide the impedance change location exactly without long training time. It alleviates some noise effects and can be expanded, ensuring high precision and space resolution of the reconstructed image that are not possible by using the back projection method.展开更多
Solution to impedance distribution in electrical impedance tomography (EIT) is an ill-posed nonlinear inverse problem. It is especially difficult to reconstruct an EIT image in the center area of a measured object. ...Solution to impedance distribution in electrical impedance tomography (EIT) is an ill-posed nonlinear inverse problem. It is especially difficult to reconstruct an EIT image in the center area of a measured object. Tikhonov regularization with some prior information is a sound regnlarization method for static electrical impedance tomography under the condition that some true impedance distribution information is known a priori. This paper presents a direct search method (DSM) as pretreatment of image reconstruction through which one not only can construct a regularization matrix which may locate in areas of impedance change, but also can obtain an initial impedance distribution more similar to the true impedance distribution, as well as better current modes which can better distinguish the initial distribution and the true distribution. Simulation results indicate that, by using DSM, resolution in the center area of the measured object can be improved significantly.展开更多
We consider the inverse problem of finding cavities within some object from electrostatic measurements on the boundary. By a cavity we understand any object with a different electrical conductivity from the background...We consider the inverse problem of finding cavities within some object from electrostatic measurements on the boundary. By a cavity we understand any object with a different electrical conductivity from the background material of the body. We give an algorithm for solving this inverse problem based on the output nonlinear least-square formulation and the regularized Newton-type iteration. In particular, we present a number of numerical results to highlight the potential and the limitations of this method.展开更多
The chest and abdomen impedance respirographs (IRG) , including the one dimensional IRG and the two dimensional IRG were designed and produced by applying the principle of bioelectrical impedance. Using IRG the non-sy...The chest and abdomen impedance respirographs (IRG) , including the one dimensional IRG and the two dimensional IRG were designed and produced by applying the principle of bioelectrical impedance. Using IRG the non-synchronized chest and abdomen respiratory motions occurring in diaphragmatic fatigue were measured. The results showed that all 203 normal controls showed synchronized style of chest and abdomen respiratory motions. In 189 COPD patients 117 (61.9%) showed non-synchronized respiratory motions which could be further divided into three types: type Ⅰ showed complete contra-directional respiratory movements of chest and abdomen respiration, with M>24 % and a angle>120°; type Ⅱ showed staggered peak of the chest and abdomen motion curves (13 %<M< 24 %),50°<αangle<120°;type Ⅲ showed double peaks of abdomen trace in the one dimensional IRG and '8'-shaped double circles on the two dimensional IRG,(M<13 %,50°<α angle<120°. When compared with trans-diaphragmatic pressure (Pdi) and diaphragm myoelectricity frequency spectrum, the rates of conformity were 81.8% and 90 %, respectively,suggesting that IRG could be reliably used for diagnosing diaphragmatic fatigue. This technique is simple, easy to use,cheap and pain-free.展开更多
One-year-old potted clone plants of four willow species (Salix matsudana alba, S. babylonica, S. psam- rnophila and S. cheilophila) were cultivated and irrigated with saline solutions of different concentrations, w...One-year-old potted clone plants of four willow species (Salix matsudana alba, S. babylonica, S. psam- rnophila and S. cheilophila) were cultivated and irrigated with saline solutions of different concentrations, while their elec- Lrical impedance spectroscopy (EIS) parameters and other physical parameters were monitored. The results indicate i) that under salt stress, height and basal diameter of all species are inhibited, and ii) that relative conductivity of cellular exudates increases while intracellular resistance (r~) and extracelluar resistance (r) drop. Both r, and r were positively correlated with height growth and basal diameter while they were significantly and negatively correlated with electric conductivity. The concentration of Na in the shoots of willows was negatively correlated with both r and re, whereas the concentration of K in the shoots was positively correlated with both r, and r. Hence, electrical impedance spectroscopy is a reliable tool for evaluating the capacity of willow species for tolerance to saline soils, with r as the most accurate pa- rameter.展开更多
A part of the Earth's surface has been formed by the action of running water during geomorphological development. The flow of water is one of the ways of how particles can be eroded, transported and accumulated. If e...A part of the Earth's surface has been formed by the action of running water during geomorphological development. The flow of water is one of the ways of how particles can be eroded, transported and accumulated. If endogenous processes do not work, the surface of the continents would lower to the level close to the ocean surface and the relief would have almost no ruggedness. Recently, there have been talks about the relative classification of deviation of the present state from the "original" or "natural" one caused by anthropogeneous effects. The activity of man can manifest itself by pollution, the excessive use of water, a change in the flow regime, and the like. Research into the morphology of the river bottom and the bottom of settling tanks or dam reservoirs is systematically carried out in selected streams and reservoirs by the long-term sampling of bottom sediments. The knowledge of the sediment layer is also important. The EIS method, which was used for measuring, is new for the aforementioned applications. Possibilities of EIS method with new apparatus using for this application were tested in laboratory and in situ. On the basis of interpretation of the electrical conductivity data, a grid of depth data was acquired. These data are characterized by anomalously high and low "spots" and show morphological changes in the studied area.展开更多
文摘A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed.The substrate and the electrodes of the chip were made of glass and gold,respectively.The experimental results demonstrated that the EIS-chip could distinguish different solutions (physiological saline,culture medium,living cell suspension etc.) by scanning from 10Hz to 45kHz.A 6-element circuit model was used for fitting the real part and the imaginary part admittance curves of the living cell suspension.An actual circuit was also built and tested to verify the 6-element circuit model proposed.The micro-EIS chip has several advantages including the use of small sample volumes,high resolution and ease of operation.It shows good application prospects in the areas of cellular electrophysioiogy,drug screening and bio-sensors etc.
文摘Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to the iteration process. The statistical inverse problem method uses statistical inference to estimate unknown parameters. In this article, we develop a nonlinear weighted anisotropic total variation (NWATV) prior density function based on the recently proposed NWATV regularization method. We calculate the corresponding posterior density function, i.e., the solution of the EIT inverse problem in the statistical sense, via a modified Markov chain Monte Carlo (MCMC) sampling. We do numerical experiment to validate the proposed approach.
基金funded by the National Research Foundation of Korea,the Grant from a Basic Science and Engineering Research Project(NRF-2017R1C1B200497515)and the Grant from Basic Laboratory Support Project(NRF-2020R1A4A101882611).
文摘This paper presents an electrical impedance tomography(EIT)method using a partial-differential-equationconstrained optimization approach.The forward problem in the inversion framework is described by a complete electrodemodel(CEM),which seeks the electric potential within the domain and at surface electrodes considering the contact impedance between them.The finite element solution of the electric potential has been validated using a commercial code.The inverse medium problem for reconstructing the unknown electrical conductivity profile is formulated as an optimization problem constrained by the CEM.The method seeks the optimal solution of the domain’s electrical conductivity to minimize a Lagrangian functional consisting of a least-squares objective functional and a regularization term.Enforcing the stationarity of the Lagrangian leads to state,adjoint,and control problems,which constitute the Karush-Kuhn-Tucker(KKT)first-order optimality conditions.Subsequently,the electrical conductivity profile of the domain is iteratively updated by solving the KKT conditions in the reduced space of the control variable.Numerical results show that the relative error of the measured and calculated electric potentials after the inversion is less than 1%,demonstrating the successful reconstruction of heterogeneous electrical conductivity profiles using the proposed EIT method.This method thus represents an application framework for nondestructive evaluation of structures and geotechnical site characterization.
基金Supported by National Natural Science Foundation of China (No.60820106002, No.60532020)Tianjin Natural Science Foundation (No.08JCYBJC03500).
文摘Medically, electrical impedance tomography (EIT) is a relatively inexpensive, safe, non-invasive and portable technique compared with computerized tomography (CT) and magnetic resonance imaging (MRI). In this paper, EIT_TJU_ II system is developed including both the data collection system and image reconstruction algo- rithm. The testing approach of the system performance, including spatial resolution and sensitivity, is described through brine tank experiments. The images of the thorax physical model verify that the system can reconstruct the interior resistivity distribution. Finally, the lung ventilation functional monitoring in vivo is realized by EIT, and the visualized images indicate that the configuration and performance of EIT_TJU_ II system are feasible and EIT is a promising technique in clinical monitoring application.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51137004 and 61427806)the Scientific Instrument and Equipment Development Project of Chinese Academy of Sciences(Grant No.YZ201507)the China Scholarship Council(Grant No.201604910849)
文摘Lorentz force electrical impedance tomography (LFEIT) combines ultrasound stimulation and electromagnetic field detection with the goal of creating a high contrast and high resolution hybrid imaging modality. In this study, pulse compression working together with a linearly frequency modulated ultrasound pulse was investigated in LFEIT. Experiments were done on agar phantoms having the same level of electrical conductivity as soft biological tissues. The results showed that:(i) LFEIT using pulse compression could detect the location of the electrical conductivity variations precisely; (ii) LFEIT using pulse compression could get the same performance of detecting electrical conductivity variations as the traditional LFEIT using high voltage narrow pulse but reduce the peak stimulating power to the transducer by 25.5 dB; (iii) axial resolution of 1 mm could be obtained using modulation frequency bandwidth 2 MHz.
基金supported by the National Natural Science Foundation of China (81773353)Jilin Scientific and Technological Development Program (20200404148YY, 20200601005JC, 20210101317JC)+2 种基金Jilin Province Special Projec t of Medical and Health Talents (JLSCZD2019-032)the Research Funding Program of Norman Bethune Biomedical Engineering Center (BQEGCZX2019025)National College Students Innovation and Entrepreneurship Training Program (CN)(202010183691)。
文摘Novel advances in the field of brain imaging have enabled the unprecedented clinical application of various imaging modalities to facilitate disease diagnosis and treatment. Electrical impedance tomography(EIT) is a functional imaging technique that measures the transfer impedances between electrodes on the body surface to estimate the spatial distribution of electrical properties of tissues. EIT offers many advantages over other neuroimaging technologies,which has led to its potential clinical use. This qualitative review provides an overview of the basic principles,algorithms, and system composition of EIT. Recent advances in the field of EIT are discussed in the context of epilepsy,stroke, brain injuries and edema, and other brain diseases. Further, we summarize factors limiting the development of brain EIT and highlight prospects for the field. In epilepsy imaging, there have been advances in EIT imaging depth,from cortical to subcortical regions. In stroke research, a bedside EIT stroke monitoring system has been developed for clinical practice, and data support the role of EIT in multi-modal imaging for diagnosing stroke. Additionally, EIT has been applied to monitor the changes in brain water content associated with cerebral edema, enabling the early identification of brain edema and the evaluation of mannitol dehydration. However, anatomically realistic geometry,inhomogeneity, cranium completeness, anisotropy and skull type, etc., must be considered to improve the accuracy of EIT modeling. Thus, the further establishment of EIT as a mature and routine diagnostic technique will necessitate the accumulation of more supporting evidence.
基金Project supported partly by the National Science Foundation (No.BES-0411898) and the National Institues of Health (No. R01EB00178) USA
文摘We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach. Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model. Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245±0.0068 and 8.9997%±0.0084%, for hemorrhagic stroke, and 0.6748±0.0197 and 8.8986%±0.0089%, for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans.
基金supported by the Center for Innovative Grouting Materials and Technology (CIGMAT) at the University of Houston, Texas, USA
文摘The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.
基金funded by the Natural Science Foundation of China(31070591)Special National Forestry Public Welfare Industry Research(201104022)the support of Agriculture and Animal Husbandry College of Tibet University
文摘Electrical impedance (El) and phase angle (PHI) parameters in AC impedance spectroscopy are important electrical parameters in the study of medical pathology. However, little is known about their application in variation and genetic relationship studies of forest trees. In order to test whether impedance parameters could be used in genetic relationship analysis among conifer species, E1 and PHI were measured in a seedling experiment test composed of Pinus tabuliformis, Pinus yunnanensis, and Pinus densata in a habitat of Pinus tabuliformis. The results showed that variations in both EI and PHI among species were sig- nificant in different electric frequencies, and the EI and PHI values measured in the two populations of P. densata were between the two parental species, P. yunnanensis and P. tabuliformis. These results show that these two impedance parameters could reflect the genetic relationship among pine species. This was the first time using the two AC impedance spectroscopy parameters to test the genetic relationship analysis between tree species, and would be a hopeful novelreference methodology for future studies in evolution and genetic variation of tree species.
文摘This paper presents different views on electrode modelling, which include electrode electrochemistry models for modelling the effects of electrode-electrolyte interface, electric field electrode models for modelling electrode geometry, and electrode models for modelling the effects of electrode common mode voltage and double layer capacitance. Taking the full electrode models into consideration in electrical impedance tomography (EIT) will greatly help the optimised approach to a good solution and further understanding of the measurement principle.
基金Project supported by National Natural Science Foundation of China(Grant No. 60075009)
文摘In electrical impedance tomography (EIT), distribution of the internal resistivity or conductivity of an unknown object is esti- mated using measured boundary voltage data induced by different current patterns with various reconstruction algorithms. The reconstruction algorithms usually employ the Newton-Raphson iteration scheme to visualize the resistivity distribution inside the object. Accuracy of the imaging process depends not only on the algorithm used, but also on the scheme of finite element discretization. In this paper an adaptive mesh refinement is used in a modified reconstruction algorithm for the regularized Err. The method has a major impact on efficient solution of the forward problem as well as on achieving improved image resolution. Computer simulations indicate that the Newton-Raphson reconstruction algorithm for Err using adaptive mesh refinement performs better than the classical Newton-Raphson algorithm in terms of reconstructed image resolution.
文摘A sinusoidal voltage wave generator is proposed based on the use of micro-processor digital signals with programmable duty-cycles, with application to real-time Electrical Cell-substrate Impedance Spectroscopy (ECIS) assays in cell cultures. The working principle relies on the time convolution of the programmed microcontroller (μC) digital signals. The expected frequency is easily tuned on the bio-impedance spectroscopy range [100 Hz, 1 MHz] thanks to the μC clock frequency selection. This system has been simulated and tested on the 8 bits μC Arduino<sup>TM </sup>Uno with ATmega328 version. Results obtained prove that only three digital signals are required to fit the general specification in ECIS experiments, below 1% THD accuracy, and show the appropriateness of the system for the real-time monitoring of this type of biological experiments.
文摘Image reconstruction in electrical impedance tomography(EIT) is a highly ill posed inverse problem. Regularization techniques must be used in order to solve the problem. In this paper, a new regularization method based on the spatial filtering theory is proposed. The new regularized reconstruction for EIT is independent of the estimation of impedance distribution, so it can be implemented more easily than the maximum a posteriori(MAP) method. The regularization level in our proposed method varies spatially so as to be suited to the correlation character of the object's impedance distribution. We implemented our regularization method with two dimensional computer simulations. The experimental results indicate that the quality of the reconstructed impedance images with the descibed regularization method based on spatial filtering theory is better than that with Tikhonov method.
文摘In electrical impedance tomography (EIT) an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. Several difficulties have been identified in EIT, where the main problem is the low spatial resolution. This paper presents a fining mesh method based on finite element method (FEM), by fining the sensitive element, the most actual signal is obtained in certain electrode number. Newton-Raphson reconstruction algorithm improves the spatial solution of image. The advantages of this method are the improvement of spatial resolution and ease of implementation.
基金National Natural Science Foundation of China (Grant No. 60075009)
文摘Electrical impedance tomography(EIT) is a new computer tomography technology, which reconstructs an impedance (resistivity, conductivity) distribution, or change of impedance, by making voltage and current measurements on the object's periphery. Image reconstruction in EIT is an ill-posed, non-linear inverse problem. A method for finding the place of impedance change in EIT is proposed in this paper, in which a multilevel BP neural network (MBPNN) is used to express the non-linear relation between the impedance change inside the object and the voltage change measured on the surface of the object. Thus, the location of the impedance change can be decided by the measured voltage variation on the surface. The impedance change is then reconstructed using a linear approximate method. MBPNN can decide the impedance change location exactly without long training time. It alleviates some noise effects and can be expanded, ensuring high precision and space resolution of the reconstructed image that are not possible by using the back projection method.
文摘Solution to impedance distribution in electrical impedance tomography (EIT) is an ill-posed nonlinear inverse problem. It is especially difficult to reconstruct an EIT image in the center area of a measured object. Tikhonov regularization with some prior information is a sound regnlarization method for static electrical impedance tomography under the condition that some true impedance distribution information is known a priori. This paper presents a direct search method (DSM) as pretreatment of image reconstruction through which one not only can construct a regularization matrix which may locate in areas of impedance change, but also can obtain an initial impedance distribution more similar to the true impedance distribution, as well as better current modes which can better distinguish the initial distribution and the true distribution. Simulation results indicate that, by using DSM, resolution in the center area of the measured object can be improved significantly.
文摘We consider the inverse problem of finding cavities within some object from electrostatic measurements on the boundary. By a cavity we understand any object with a different electrical conductivity from the background material of the body. We give an algorithm for solving this inverse problem based on the output nonlinear least-square formulation and the regularized Newton-type iteration. In particular, we present a number of numerical results to highlight the potential and the limitations of this method.
文摘The chest and abdomen impedance respirographs (IRG) , including the one dimensional IRG and the two dimensional IRG were designed and produced by applying the principle of bioelectrical impedance. Using IRG the non-synchronized chest and abdomen respiratory motions occurring in diaphragmatic fatigue were measured. The results showed that all 203 normal controls showed synchronized style of chest and abdomen respiratory motions. In 189 COPD patients 117 (61.9%) showed non-synchronized respiratory motions which could be further divided into three types: type Ⅰ showed complete contra-directional respiratory movements of chest and abdomen respiration, with M>24 % and a angle>120°; type Ⅱ showed staggered peak of the chest and abdomen motion curves (13 %<M< 24 %),50°<αangle<120°;type Ⅲ showed double peaks of abdomen trace in the one dimensional IRG and '8'-shaped double circles on the two dimensional IRG,(M<13 %,50°<α angle<120°. When compared with trans-diaphragmatic pressure (Pdi) and diaphragm myoelectricity frequency spectrum, the rates of conformity were 81.8% and 90 %, respectively,suggesting that IRG could be reliably used for diagnosing diaphragmatic fatigue. This technique is simple, easy to use,cheap and pain-free.
基金funded by the 948 Program of the State Forestry Administration of China (No. 2011-4-08)the Hebei Natural Science Foundation of China (No. C2011204107)
文摘One-year-old potted clone plants of four willow species (Salix matsudana alba, S. babylonica, S. psam- rnophila and S. cheilophila) were cultivated and irrigated with saline solutions of different concentrations, while their elec- Lrical impedance spectroscopy (EIS) parameters and other physical parameters were monitored. The results indicate i) that under salt stress, height and basal diameter of all species are inhibited, and ii) that relative conductivity of cellular exudates increases while intracellular resistance (r~) and extracelluar resistance (r) drop. Both r, and r were positively correlated with height growth and basal diameter while they were significantly and negatively correlated with electric conductivity. The concentration of Na in the shoots of willows was negatively correlated with both r and re, whereas the concentration of K in the shoots was positively correlated with both r, and r. Hence, electrical impedance spectroscopy is a reliable tool for evaluating the capacity of willow species for tolerance to saline soils, with r as the most accurate pa- rameter.
文摘A part of the Earth's surface has been formed by the action of running water during geomorphological development. The flow of water is one of the ways of how particles can be eroded, transported and accumulated. If endogenous processes do not work, the surface of the continents would lower to the level close to the ocean surface and the relief would have almost no ruggedness. Recently, there have been talks about the relative classification of deviation of the present state from the "original" or "natural" one caused by anthropogeneous effects. The activity of man can manifest itself by pollution, the excessive use of water, a change in the flow regime, and the like. Research into the morphology of the river bottom and the bottom of settling tanks or dam reservoirs is systematically carried out in selected streams and reservoirs by the long-term sampling of bottom sediments. The knowledge of the sediment layer is also important. The EIS method, which was used for measuring, is new for the aforementioned applications. Possibilities of EIS method with new apparatus using for this application were tested in laboratory and in situ. On the basis of interpretation of the electrical conductivity data, a grid of depth data was acquired. These data are characterized by anomalously high and low "spots" and show morphological changes in the studied area.