Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reactio...Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reaction(HOR).Herein,we describe the synthesis of a Pt single electrocatalyst inside single-walled carbon nanotubes(SWCNTs)via a redox reaction.Characterizations via electron microscopy,X-ray photoelectron microscopy,and X-ray absorption spectroscopy show the single-atom nature of the Pt.The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique,which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst.The single-atom samples showed higher HOR activity than state-of-the-art 30%Pt/C while almost no oxygen reduction reaction activity in the proton exchange membrane fuel cell operating range.The selective activity toward HOR arose as the main fingerprint of the catalyst confinement in the SWCNTs.展开更多
Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Ov...Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Over the past decade,well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms.However,active sites,key intermediate species,precise structure-activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods.In this Review,we sum-marize the extensive efforts on model catalysts since the 2000s,particularly in the past decade,to overcome the influences of material and structure limitations in metal-free carbon catalysis.Using both nanomolecule model and bulk model,the real contribution of each alien species,defect and edge configuration to a series of fundamentally important reactions,such as thermocatalytic reactions,electrocatalytic reactions,were systematically studied.Combined with in situ techniques,isotope labeling and size control,the detailed reaction mechanisms,the precise 2D structure-activity relationships and the rate-determining steps were revealed at a molecular level.Furthermore,the outlook of model carbon catalysis has also been proposed in this work.展开更多
Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a chal...Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a challenge.In this work,a post-modification strategy is proposed to precisely fabricate DACs for oxygen reduction electrocatalysis.Concretely,a secondary metal precursor is introduced to the primary single-atom sites to introduce direct metal-metal interaction,which ensures the formation of desired atom pair structure during the subsequent pyrolysis process and allows for successful construction of DACs.The as-prepared FeCo-NC DAC exhibits superior oxygen reduction electrocatalytic activity with a half-wave potential of 0,91 V vs.reversible hydrogen electrode.Zn-air batteries equipped with the FeCo-NC DAC demonstrate higher peak power density than those with the Pt/C benchmark.More importantly,this post-modification strategy is demonstrated universal to achieve a variety of dual-atom sites.This work presents an effective synthesis methodology for precise construction of catalytic materials and propels their applications in energy-related devices.展开更多
Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis...Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.展开更多
Single atom sites are widely applied in various electrocatalytic fields due to high atom utilization, mass activity, and selectivity. They are limited in catalyzing multi-electron reactions due to their intrinsic mono...Single atom sites are widely applied in various electrocatalytic fields due to high atom utilization, mass activity, and selectivity. They are limited in catalyzing multi-electron reactions due to their intrinsic mono-metal center feature. Dual atom sites (DASs) as promising candidate have received enormous attentions because adjacent active sites can accelerate their catalytic performance via synergistic effect. Herein, the fundamental understandings and intrinsic mechanism underlying DASs and corresponding electrocatalytic applications are systemically summarized. Different synergy dual sites are presented to disclose the structure-performance relationship with engineering the well-defined DASs on the basis of theoretical principle. An overview of the electrocatalytic applications is showed, including oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, carbon dioxide reduction reaction, and nitrogen reduction reaction. Finally, a conclusion and future prospective are provided to reveal the current challenges for rational designing, synthesizing, and modulating the advanced DASs toward electrocatalytic reactions.展开更多
The combination of electrochemical measurements with spectroscopic characterizations provides valuable insights into reaction mechanisms.Nuclear magnetic resonance(NMR)spectroscopy,as a powerful technique due to its a...The combination of electrochemical measurements with spectroscopic characterizations provides valuable insights into reaction mechanisms.Nuclear magnetic resonance(NMR)spectroscopy,as a powerful technique due to its atomic specificity and versatility in studying gas,liquid,and solid,allows the study of electrolyte solution,catalyst and catalyst-adsorbate interfaces.When applied in operando,NMR can offer molecular-level insights into various electrochemical processes.Operando NMR has been applied extensively in battery research,but relatively underexplored for electrocatalysis in the past two decades.In this mini review,we first introduce the operando electrochemical NMR setups,categorized by different probe designs.Then we review the applications of operando NMR for monitoring the electrolyte solution and the catalyst-adsorbate interface.Considering the high environmental impact of electrochemical conversion of CO_(2)into value-added products,we zoom in to the use of operando NMR in studying electrochemical CO_(2)reduction.Finally,we provide our perspective on further developing and applying operando NMR methods for understanding the complex reaction network of Cu-catalyzed electrochemical CO_(2)reduction.展开更多
Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Here...Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Herein,to address the deficiencies associated with the commonly used dealloying methods,for example,electrochemical and sulfuric acid/nitric acid treatment,we report an acetic acid-assisted mild strategy to dealloy Cu atoms from the outer surface layers of CuPd alloy nanoparticles to achieve high-efficiency electrocatalysis for oxygen reduction and ethanol oxidation in an alkaline electrolyte.The leaching of Cu atoms by acetic acid exerts an additional compressive strain effect on the surface layers and exposes more active Pd atoms,which is beneficial for boosting the catalytic performance of a dealloyed catalyst for the oxygen reduction reaction(ORR)and the ethanol oxidation reaction(EOR).In particular,for ORR,the CuPd nanoparticles with a Pd/Cu molar ratio of 2:1 after acetic dealloying show a half-wave potential of 0.912 V(vs.RHE)and a mass activity of 0.213 AmgPd^(-1) at 0.9 V,respectively,while for EOR,the same dealloyed sample has a mass activity and a specific activity of 8.4 Amg^(-1) and 8.23 mA cm^(-2),respectively,much better than their dealloyed counterparts at other temperatures and commercial Pd/C as well as a Pt/C catalyst.展开更多
With the rapid development of society and economy, the excessive consumption of fossil energy has led to the global energy and environment crisis. In order to explore the sustainable development of new energy, researc...With the rapid development of society and economy, the excessive consumption of fossil energy has led to the global energy and environment crisis. In order to explore the sustainable development of new energy, research based on electrocatalysis has attracted extensive attention in the academic circle. The main challenge in this field is to develop nano-catalysts with excellent electrocatalytic activity and selectivity for target products. The state of the active site in catalyst plays a decisive role in the activity and selectivity of the reaction. In order to design efficient and excellent catalysts, it is an effective means to adjust the electronic structure of catalysts. Electronic effects are also called ligand effects. By alloying with rare earth(RE) elements, electrons can be redistributed between RE elements and transition metal elements, achieving accurate design of the electronic structure of the active site in the alloy. Because of the unique electronic structure of RE, it has been paid attention in the field of catalysis. The outermost shell structure of RE elements is basically the same as that of the lower shell, except that the number of electrons in the 4f orbital is different, but the energy level is similar, so their properties are very similar. When RE elements form compounds, both the f electrons in the outermost shell and the d electrons in the lower outer shell can participate in bonding. In addition, part of the 4f electrons in the third outer shell can also participate in bonding.In order to improve the performance of metal catalysts, alloying provides an effective method to design advanced functional materials. RE alloys can integrate the unique electronic structure and catalytic behavior of RE elements into metal materials, which not only provides an opportunity to adjust the electronic structure and catalytic activity of the active component, but also enhances the structural stability of the alloy and is expected to significantly improve the catalytic performance of the catalyst. From the perspective of electronic and catalytic activity, RE elements have unique electronic configuration and lanthanide shrinkage effect. Alloying with RE elements will make the alloy have more abundant electronic structure, activity, and spatial arrangement, effectively adjusting the reaction kinetics of the electrochemical process of the catalyst. In this paper, the composition,structure, synthesis of RE alloys and their applications in the field of electrocatalysis are summarized, including the hydrogen evolution reaction, the oxygen evolution reaction, the oxygen reduction reaction, the methanol oxidation reaction, the ethanol oxidation reaction, and other catalytic reactions. At the same time, the present challenges of RE alloy electrocatalytic materials are summarized and their future development direction is pointed out. In the field of electrocatalysis, the cost of catalyst is too high and the stability is not strong. Therefore, the testing process should be related to the actual application, and the test method should be standardized, so as to carry forward the field of electrocatalysis.展开更多
Defect-engineered carbon materials have been emerged as promising electrocatalysts for oxygen reduction reaction(ORR)in metal-air batteries.Developing a facile strategy for the preparation of highly active nanocarbon ...Defect-engineered carbon materials have been emerged as promising electrocatalysts for oxygen reduction reaction(ORR)in metal-air batteries.Developing a facile strategy for the preparation of highly active nanocarbon electrocatalysts remains challenging.Herein,a low-cost and simple route is developed to synthesize defective graphene by pyrolyzing the mixture of glucose and carbon nitride.Molecular dynamics simulations reveal that the graphene formation is ascribed to two-dimensional layered feature of carbon nitride,and high compatibility of carbon nitride/glucose systems.Structural measurements suggest that the graphene possesses rich edge and topological defects.The graphene catalyst exhibits higher power density than commercial Pt/C catalyst in a primary Zn-air battery.Combining experimental results and theoretical thermodynamic analysis,it is identified that graphitic nitrogen-modified topological defects at carbon framework edges are responsible for the decent ORR performance.The strategy presented in this work can be can be scaled up readily to fabricate defective carbon materials.展开更多
Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their ...Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their poor conductivity represents the main obstruction to their practical application.Here,we reported a novel synthesis strategy for synergistically endowing a triphenylamine-based COFs with improved electrical conductivity and excellent catalytic activity for oxygen reduction,via the in-situ redox deposition and confined growth of palladium nanoparticles inside the porous structure of COFs using reductive triphenylamine frameworks as reducing agent;meanwhile,the triphenylamine unit was oxidized to radical cation structure and affords radical cation COFs with conductivity as high as3.2*10^(-1) S m^(-1).Such a uniform confine palladium nanoparticle on highly conductive COFs makes it an efficient electrocatalyst for four-electron oxygen reduction reaction(4e-ORR),showing excellent activities and fast kinetics with a remarkable half-wave potential(E_(1/2))of 0.865 V and an ultralow Tafel slope of 39.7 mV dec^(-1) in alkaline media even in the absence of extra commercial conductive fillers.The generality of this strategy was proved by preparing the different metal and metal alloy nanoparticles supported on COFs(Au@COF,Pt@COF,AuPd@COF,AgPd@COF,and PtPd@COF)using reductive triphenylamine frameworks as reducing agent.This work not only provides a facile strategy for the fabrication of highly conductive COF supported ORR electrocatalysts,but also sheds new light on the practical application of Zn-air battery.展开更多
Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However...Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However,both reactions are very slow in kinetics,and thus catalysts are required[3,4].展开更多
Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnS...Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnSe_(2)(WS)heterojunction significantly activates OER catalysis of CoFe-layered double hydroxide(CF)/carbon nanotubes(CNTs).Specifically,the catalyst achieves an overpotential of 224 mV at 10 mA cm^(-2)and a small Tafel slope of 47 mV dec^(-1),superior to RuO_(2)and most previously reported transition metal-based OER catalysts.The p-n WS heterojunction shows strong light absorption to produce photogenerated carriers.The photogenerated holes are trapped by CF to suppresses the charge recombination and facilitate charge transfer,which accelerates OER kinetics and boost the activity for the OER.This work highlights the possibility of using heterojunctions to activate OER catalysis and advances the design of energy-efficient catalysts for water oxidation systems using solar energy.展开更多
The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted t...The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments.展开更多
Developing high-efficiency multifunctional nanomaterials is promising for wide p H hydrogen evolution reaction(HER) and energy storage but still challenging. Herein, a novel in-situ doping-induced lattice strain strat...Developing high-efficiency multifunctional nanomaterials is promising for wide p H hydrogen evolution reaction(HER) and energy storage but still challenging. Herein, a novel in-situ doping-induced lattice strain strategy of NiCoP/S nanocrystals(NCs) was proposed through using seed crystal conversion approach with NiCo_(2)S_(4) spinel as precursor. The small amount of S atoms in NiCoP/S NCs perturbed the local electronic structure, leading to the atomic position shift of the nearest neighbor in the protocell and the nanoscale lattice strain, which optimized the H* adsorption free energy and activated H_(2)O molecules, resulting the dramatically elevated HER performance within a wide p H range. Especially, the NiCoP/S NCs displayed better HER electrocatalytic activity than comical 20% Pt/C at high current density in 1 M KOH and natural seawater: it only needed 266 m V vs. reversible hydrogen electrode(RHE) and660 m V vs. RHE to arrive the current density of 350 m A cm^(-2) in 1 M KOH and natural seawater, indicating the application prospect for industrial high current. Besides, NiCoP/S NCs also displayed excellent supercapacitor performance: it showed high specific capacity of 2229.9 F g^(-1) at 1 A g^(-1) and energy density of87.49 Wh kg^(-1), when assembled into an all-solid-state flexible device, exceeding performance of most transition metal phosphides. This work provides new insights into the regulation in electronic structure and lattice strain for electrocatalytic and energy storage applications.展开更多
Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inve...Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inverse mode of solid oxide fuel cells(SOFCs)and therefore inherit most of the advantages of SOFC materials and energy conversion processes.However,the external bias that drives the electrochemical process will strongly change the chemical environments in both in the cathode and anode,therefore necessitating careful reconsideration of key materials and electrocatalysis processes.More importantly,SOECs provide a unique advantage of electrothermal catalysis,especially in converting stable low-carbon alkanes such as methane to ethylene with high selectivity.Here,we review the state-of-the-art of SOEC research progress in electrothermal catalysis and key materials and provide a future perspective.展开更多
Nanocarbons are of progressively increasing importance in energy electrocatalysis, including oxygen reduction, oxygen evolution, hydrogen evolution, COreduction, etc. Precious-metal-free or metal-free nanocarbon-based...Nanocarbons are of progressively increasing importance in energy electrocatalysis, including oxygen reduction, oxygen evolution, hydrogen evolution, COreduction, etc. Precious-metal-free or metal-free nanocarbon-based electrocatalysts have been revealed to potentially have effective activity and remarkable durability, which is promising to replace precious metals in some important energy technologies,such as fuel cells, metal–air batteries, and water splitting. In this review, rather than overviewing recent progress completely, we aim to give an in-depth digestion of present achievements, focusing on the different roles of nanocarbons and material design principles. The multifunctionalities of nanocarbon substrates(accelerating the electron and mass transport, regulating the incorporation of active components,manipulating electron structures, generating confinement effects, assembly into 3 D free-standing electrodes) and the intrinsic activity of nanocarbon catalysts(multi-heteroatom doping, hierarchical structure,topological defects) are discussed systematically, with perspectives on the further research in this rising research field. This review is inspiring for more insights and methodical research in mechanism understanding, material design, and device optimization, leading to a targeted and high-efficiency development of energy electrocatalysis.展开更多
Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface ar...Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface area,high electrical conductivity,and rich surface functional groups.By virtue of their rapid electron transfer and large surface area,CQDs also emerge as promising functional materials for the applications in energy-conversion sectors through electrocatalysis.Besides,the rich functional groups on the surface of CQDs offer abundant anchoring sites and active sites for the engineering of multicomponent and high-performance composite materials.More importantly,the heteroatom in the CQDs could effectively tailor the charge distribution to promote the electron transfer via internal interactions,which is crucial to the enhancement of electrocatalytic performance.Herein,an overview about recent progress in preparing CQDs-based composites and employing them as promising electrode materials to promote the catalytic activity and stability for electrocatalysis is provided.The introduced CQDs could enhance the conductivity,modify the morphology and crystal phase,optimize the electronic structure,and provide more active centers and defect sites of composites.After establishing a deep understanding of the relationship between CQDs and electrocatalytic performances,the issues and challenges for the development of CQDs-based composites are discussed.展开更多
Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century.Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic per...Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century.Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials.This has led to significant interest in the exploitation of 2D nanomaterials for catalysis.There have been a variety of excellent reviews on 2D nanomaterials for catalysis,but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant.Here,we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials.Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted,which point out the differences and similarities of series issues for photocatalysis and electrocatalysis.In addition,2D nanocatalysts and their catalytic applications are discussed.Finally,opportunities,challenges and development directions for 2D nanocatalysts are described.The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.展开更多
Since the two seminal papers were published independently in 2004, high-entropy-alloys(HEAs) have been applied to structural and functional materials due to the enhanced mechanical properties, thermal stability, and e...Since the two seminal papers were published independently in 2004, high-entropy-alloys(HEAs) have been applied to structural and functional materials due to the enhanced mechanical properties, thermal stability, and electrical conductivity. In recent years, HEA nanoparticles(HEA-NPs) were paid much attention to in the field of catalysis for the promoted catalytic activity. Furthermore, the various ratios among the metal components and tunable bulk and surface structures enable HEAs have big room to enhance the catalytic performance. Especially, noble-metal-based HEAs displayed significantly improved performance in electrocatalysis, where the ‘core effects’ were employed to explain the superior catalytic activity. However, it is insufficient to understand the essential mechanism or further guide the design of electrocatalysts. Structure–property relationship should be disclosed for the catalysis on HEA-NPs to accelerate the process of seeking high effective and efficient electrocatalysts. Therefore, we summarized the recent advances of noble-metal-based HEA-NPs applied to electrocatalysis, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, methanol oxidation reaction, ethanol oxidation reaction, formic acid oxidation reaction, hydrogen oxidation reaction, carbon dioxide reduction reaction and nitrogen reduction reaction. For each electrocatalytic reaction, the reaction mechanism and catalyst structure were presented, and then the structure–property relationship was elaborated. The review begins with the development, concept, four ‘core effect’ and synthesis methods of HEAs. Next,the electrocatalytic reactions on noble-metal-based HEA-NPs are summarized and discussed independently. Lastly, the main views and difficulties pertaining to structure–property relationship for HEAs are discussed.展开更多
The design of sulfur hosts with high conductivity,large specific surface area,strong adsorption and electrocatalytic ability is crucial to advance high performance lithium-sulfur batteries.Herein,a novel ultrathin san...The design of sulfur hosts with high conductivity,large specific surface area,strong adsorption and electrocatalytic ability is crucial to advance high performance lithium-sulfur batteries.Herein,a novel ultrathin sandwich-type Ni-doped MoS_(2)/reduced graphene oxide(denote as Ni-doped MoS_(2)/rGO) hybrid is developed as a sulfur host through a simple one-step hydrothermal route.The two-dimensional layered structure Ni-doped MoS_(2)/rGO hybrid with heterostructure and heteroatom architecture defects not only plays a key role in adsorption of lithium polysulfide but also catalyzes on redox kinetics of sulfur and polysulfide species.Meanwhile,it can contribute to the large specific surface area for Li_(2) S/S_8 deposition,fast Li-ion and electron transportation,thus enhancing the electrocatalytic properties,as confirmed firstly by cyclic voltammetry(CV) results.Due to the adsorption-catalytic synergistic effect,the Ni-doped MoS_(2)/rGO cathode exhibits high specific capacity(1343.6 mA h g^(-1) at 0.2 C,921.6 mA h g^(-1) at 1 C),high coulombic efficiency and an outstanding cycle stability(with the low attenuation rate of 0.077% per cycle over 140 cycles at 0.5 C and 0.11% per cycle over 400 cycles at 1 C,respectively).This work proposes some inspiration for exploring the construction of advanced lithium-sulfur batteries through the rational design defects of atomic structure and electronic states of MoS_(2) as sulfur host.展开更多
基金support from Horizon 2020 program within the ITN FlowcampDZ acknowledges funding from the Wohl Foundation for research for the promotion of UK-Israel research cooperationDZ acknowledges funding from Israel Ministry of Energy(grant#220-11-047).
文摘Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reaction(HOR).Herein,we describe the synthesis of a Pt single electrocatalyst inside single-walled carbon nanotubes(SWCNTs)via a redox reaction.Characterizations via electron microscopy,X-ray photoelectron microscopy,and X-ray absorption spectroscopy show the single-atom nature of the Pt.The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique,which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst.The single-atom samples showed higher HOR activity than state-of-the-art 30%Pt/C while almost no oxygen reduction reaction activity in the proton exchange membrane fuel cell operating range.The selective activity toward HOR arose as the main fingerprint of the catalyst confinement in the SWCNTs.
基金We are grateful for financial support from the“Hundred Talents Program”of the Chinese Academy of Sciences and the“Young Talents Training Program”of the Shanghai Branch of the Chinese Academy of Sciences.We acknowledge the financial support from the National Science Youth Foundation of China(22202205)Xiamen City Natural Science Foundation of China(3502Z20227256)Fujian Provincial Natural Science Foundation of China(2022J01502).
文摘Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Over the past decade,well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms.However,active sites,key intermediate species,precise structure-activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods.In this Review,we sum-marize the extensive efforts on model catalysts since the 2000s,particularly in the past decade,to overcome the influences of material and structure limitations in metal-free carbon catalysis.Using both nanomolecule model and bulk model,the real contribution of each alien species,defect and edge configuration to a series of fundamentally important reactions,such as thermocatalytic reactions,electrocatalytic reactions,were systematically studied.Combined with in situ techniques,isotope labeling and size control,the detailed reaction mechanisms,the precise 2D structure-activity relationships and the rate-determining steps were revealed at a molecular level.Furthermore,the outlook of model carbon catalysis has also been proposed in this work.
基金This work was supported by the National Natural Science Foundation of China(22279008 and 22109082)the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Tsinghua University Initiative Scientific Research Program。
文摘Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a challenge.In this work,a post-modification strategy is proposed to precisely fabricate DACs for oxygen reduction electrocatalysis.Concretely,a secondary metal precursor is introduced to the primary single-atom sites to introduce direct metal-metal interaction,which ensures the formation of desired atom pair structure during the subsequent pyrolysis process and allows for successful construction of DACs.The as-prepared FeCo-NC DAC exhibits superior oxygen reduction electrocatalytic activity with a half-wave potential of 0,91 V vs.reversible hydrogen electrode.Zn-air batteries equipped with the FeCo-NC DAC demonstrate higher peak power density than those with the Pt/C benchmark.More importantly,this post-modification strategy is demonstrated universal to achieve a variety of dual-atom sites.This work presents an effective synthesis methodology for precise construction of catalytic materials and propels their applications in energy-related devices.
基金supported by the National Natural Science Foundation of China(22278030,22090032,22090030,22288102,22242019)the Fundamental Research Funds for the Central Universities(buctrc202119,2312018RC07)+1 种基金Major Program of Qingyuan Innovation Laboratory(Grant No.001220005)the Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology。
文摘Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.
基金supported by the National Natural Science Foundation of China(No.22305101)the Natural Science Foundation of Jiangsu Province(No.BK20231032)+2 种基金Special Fund Project of Jiangsu Province for Scientific and Technological Innovation in Carbon Peaking and Carbon Neutrality(No.BK20220023)the Fundamental Research Funds for the Central Universities(No.JUSRP123020)Startup Funding at Jiangnan University(No.1045219032220100).
文摘Single atom sites are widely applied in various electrocatalytic fields due to high atom utilization, mass activity, and selectivity. They are limited in catalyzing multi-electron reactions due to their intrinsic mono-metal center feature. Dual atom sites (DASs) as promising candidate have received enormous attentions because adjacent active sites can accelerate their catalytic performance via synergistic effect. Herein, the fundamental understandings and intrinsic mechanism underlying DASs and corresponding electrocatalytic applications are systemically summarized. Different synergy dual sites are presented to disclose the structure-performance relationship with engineering the well-defined DASs on the basis of theoretical principle. An overview of the electrocatalytic applications is showed, including oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, carbon dioxide reduction reaction, and nitrogen reduction reaction. Finally, a conclusion and future prospective are provided to reveal the current challenges for rational designing, synthesizing, and modulating the advanced DASs toward electrocatalytic reactions.
基金support from Radboud University Start-up and NWO Open Competition ENW-M grant (OCENW.M.21.308)support from China Scholarship Council
文摘The combination of electrochemical measurements with spectroscopic characterizations provides valuable insights into reaction mechanisms.Nuclear magnetic resonance(NMR)spectroscopy,as a powerful technique due to its atomic specificity and versatility in studying gas,liquid,and solid,allows the study of electrolyte solution,catalyst and catalyst-adsorbate interfaces.When applied in operando,NMR can offer molecular-level insights into various electrochemical processes.Operando NMR has been applied extensively in battery research,but relatively underexplored for electrocatalysis in the past two decades.In this mini review,we first introduce the operando electrochemical NMR setups,categorized by different probe designs.Then we review the applications of operando NMR for monitoring the electrolyte solution and the catalyst-adsorbate interface.Considering the high environmental impact of electrochemical conversion of CO_(2)into value-added products,we zoom in to the use of operando NMR in studying electrochemical CO_(2)reduction.Finally,we provide our perspective on further developing and applying operando NMR methods for understanding the complex reaction network of Cu-catalyzed electrochemical CO_(2)reduction.
基金the financial support provided by the National Natural Science Foundation of China(22075290,21972068,52164028)the Beijing Natural Science Foundation(Z200012)+3 种基金the State Key Laboratory of Multiphase Complex Systemsthe Institute of Process Engineeringthe Chinese Academy of Sciences(MPCS-2021-A-05)the Nanjing IPE Institute of Green Manufacturing Industry(E0010725).
文摘Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Herein,to address the deficiencies associated with the commonly used dealloying methods,for example,electrochemical and sulfuric acid/nitric acid treatment,we report an acetic acid-assisted mild strategy to dealloy Cu atoms from the outer surface layers of CuPd alloy nanoparticles to achieve high-efficiency electrocatalysis for oxygen reduction and ethanol oxidation in an alkaline electrolyte.The leaching of Cu atoms by acetic acid exerts an additional compressive strain effect on the surface layers and exposes more active Pd atoms,which is beneficial for boosting the catalytic performance of a dealloyed catalyst for the oxygen reduction reaction(ORR)and the ethanol oxidation reaction(EOR).In particular,for ORR,the CuPd nanoparticles with a Pd/Cu molar ratio of 2:1 after acetic dealloying show a half-wave potential of 0.912 V(vs.RHE)and a mass activity of 0.213 AmgPd^(-1) at 0.9 V,respectively,while for EOR,the same dealloyed sample has a mass activity and a specific activity of 8.4 Amg^(-1) and 8.23 mA cm^(-2),respectively,much better than their dealloyed counterparts at other temperatures and commercial Pd/C as well as a Pt/C catalyst.
基金financial support from the National Key R&D Program of China (2022YFB3506200)the National Nature Science Foundation of China (22122113)。
文摘With the rapid development of society and economy, the excessive consumption of fossil energy has led to the global energy and environment crisis. In order to explore the sustainable development of new energy, research based on electrocatalysis has attracted extensive attention in the academic circle. The main challenge in this field is to develop nano-catalysts with excellent electrocatalytic activity and selectivity for target products. The state of the active site in catalyst plays a decisive role in the activity and selectivity of the reaction. In order to design efficient and excellent catalysts, it is an effective means to adjust the electronic structure of catalysts. Electronic effects are also called ligand effects. By alloying with rare earth(RE) elements, electrons can be redistributed between RE elements and transition metal elements, achieving accurate design of the electronic structure of the active site in the alloy. Because of the unique electronic structure of RE, it has been paid attention in the field of catalysis. The outermost shell structure of RE elements is basically the same as that of the lower shell, except that the number of electrons in the 4f orbital is different, but the energy level is similar, so their properties are very similar. When RE elements form compounds, both the f electrons in the outermost shell and the d electrons in the lower outer shell can participate in bonding. In addition, part of the 4f electrons in the third outer shell can also participate in bonding.In order to improve the performance of metal catalysts, alloying provides an effective method to design advanced functional materials. RE alloys can integrate the unique electronic structure and catalytic behavior of RE elements into metal materials, which not only provides an opportunity to adjust the electronic structure and catalytic activity of the active component, but also enhances the structural stability of the alloy and is expected to significantly improve the catalytic performance of the catalyst. From the perspective of electronic and catalytic activity, RE elements have unique electronic configuration and lanthanide shrinkage effect. Alloying with RE elements will make the alloy have more abundant electronic structure, activity, and spatial arrangement, effectively adjusting the reaction kinetics of the electrochemical process of the catalyst. In this paper, the composition,structure, synthesis of RE alloys and their applications in the field of electrocatalysis are summarized, including the hydrogen evolution reaction, the oxygen evolution reaction, the oxygen reduction reaction, the methanol oxidation reaction, the ethanol oxidation reaction, and other catalytic reactions. At the same time, the present challenges of RE alloy electrocatalytic materials are summarized and their future development direction is pointed out. In the field of electrocatalysis, the cost of catalyst is too high and the stability is not strong. Therefore, the testing process should be related to the actual application, and the test method should be standardized, so as to carry forward the field of electrocatalysis.
基金supported by the National Natural Science Foundation of China(21838003,91834301 and 21978278)the Shanghai Scientific and Technological Innovation Project(18JC1410500 and 19JC1410400)the Fundamental Research Funds for the Central Universities(222201718002).
文摘Defect-engineered carbon materials have been emerged as promising electrocatalysts for oxygen reduction reaction(ORR)in metal-air batteries.Developing a facile strategy for the preparation of highly active nanocarbon electrocatalysts remains challenging.Herein,a low-cost and simple route is developed to synthesize defective graphene by pyrolyzing the mixture of glucose and carbon nitride.Molecular dynamics simulations reveal that the graphene formation is ascribed to two-dimensional layered feature of carbon nitride,and high compatibility of carbon nitride/glucose systems.Structural measurements suggest that the graphene possesses rich edge and topological defects.The graphene catalyst exhibits higher power density than commercial Pt/C catalyst in a primary Zn-air battery.Combining experimental results and theoretical thermodynamic analysis,it is identified that graphitic nitrogen-modified topological defects at carbon framework edges are responsible for the decent ORR performance.The strategy presented in this work can be can be scaled up readily to fabricate defective carbon materials.
基金financially supported by the National Natural Science Foundation of China(21674068,52173133,52161145402)the Sichuan Science and Technology Department(2021YFH0180)。
文摘Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their poor conductivity represents the main obstruction to their practical application.Here,we reported a novel synthesis strategy for synergistically endowing a triphenylamine-based COFs with improved electrical conductivity and excellent catalytic activity for oxygen reduction,via the in-situ redox deposition and confined growth of palladium nanoparticles inside the porous structure of COFs using reductive triphenylamine frameworks as reducing agent;meanwhile,the triphenylamine unit was oxidized to radical cation structure and affords radical cation COFs with conductivity as high as3.2*10^(-1) S m^(-1).Such a uniform confine palladium nanoparticle on highly conductive COFs makes it an efficient electrocatalyst for four-electron oxygen reduction reaction(4e-ORR),showing excellent activities and fast kinetics with a remarkable half-wave potential(E_(1/2))of 0.865 V and an ultralow Tafel slope of 39.7 mV dec^(-1) in alkaline media even in the absence of extra commercial conductive fillers.The generality of this strategy was proved by preparing the different metal and metal alloy nanoparticles supported on COFs(Au@COF,Pt@COF,AuPd@COF,AgPd@COF,and PtPd@COF)using reductive triphenylamine frameworks as reducing agent.This work not only provides a facile strategy for the fabrication of highly conductive COF supported ORR electrocatalysts,but also sheds new light on the practical application of Zn-air battery.
基金the support from the National Natural Science Foundation of China(21773146,22171176 and 22102092)the Fok Ying-Tong Education Foundation for Outstanding Young Teachers in University+2 种基金the Research Funds of Shaanxi Normal Universitythe Fundamental Research Funds for the Central Universitiesthe NRF of Korea(NRF-2021R1A3B1076539 and NRF-2020R1I1A1A01074630)。
文摘Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However,both reactions are very slow in kinetics,and thus catalysts are required[3,4].
基金the National Natural Science Foundation of China(No.41807213)the Hydrogeo-logical Survey Project of Huangshui River(No.DD20190331).
文摘Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnSe_(2)(WS)heterojunction significantly activates OER catalysis of CoFe-layered double hydroxide(CF)/carbon nanotubes(CNTs).Specifically,the catalyst achieves an overpotential of 224 mV at 10 mA cm^(-2)and a small Tafel slope of 47 mV dec^(-1),superior to RuO_(2)and most previously reported transition metal-based OER catalysts.The p-n WS heterojunction shows strong light absorption to produce photogenerated carriers.The photogenerated holes are trapped by CF to suppresses the charge recombination and facilitate charge transfer,which accelerates OER kinetics and boost the activity for the OER.This work highlights the possibility of using heterojunctions to activate OER catalysis and advances the design of energy-efficient catalysts for water oxidation systems using solar energy.
基金funding by the Ministry of Culture and Science of the Federal State of North Rhine-Westphalia (NRW Return Grant)CRC/TRR247:"Heterogeneous Oxidation Catalysis in the Liquid Phase"(388390466-TRR247),the RESOLV Cluster of Excellence,funded by the Deutsche Forschungsgemeinschaft under Germany’s Excellence StrategyEXC 2033-390677874-RESOLV+1 种基金the Center for Nanointegration (CENIDE)supported by COST (European Cooperation in Science and Technology)。
文摘The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments.
基金supported by the National Natural Science Foundation of China(22108306,22109090)the Taishan Scholars Program of Shandong Province(tsqn201909065)the Shandong Provincial Natural Science Foundation(ZR2021YQ15,ZR2020QB174)。
文摘Developing high-efficiency multifunctional nanomaterials is promising for wide p H hydrogen evolution reaction(HER) and energy storage but still challenging. Herein, a novel in-situ doping-induced lattice strain strategy of NiCoP/S nanocrystals(NCs) was proposed through using seed crystal conversion approach with NiCo_(2)S_(4) spinel as precursor. The small amount of S atoms in NiCoP/S NCs perturbed the local electronic structure, leading to the atomic position shift of the nearest neighbor in the protocell and the nanoscale lattice strain, which optimized the H* adsorption free energy and activated H_(2)O molecules, resulting the dramatically elevated HER performance within a wide p H range. Especially, the NiCoP/S NCs displayed better HER electrocatalytic activity than comical 20% Pt/C at high current density in 1 M KOH and natural seawater: it only needed 266 m V vs. reversible hydrogen electrode(RHE) and660 m V vs. RHE to arrive the current density of 350 m A cm^(-2) in 1 M KOH and natural seawater, indicating the application prospect for industrial high current. Besides, NiCoP/S NCs also displayed excellent supercapacitor performance: it showed high specific capacity of 2229.9 F g^(-1) at 1 A g^(-1) and energy density of87.49 Wh kg^(-1), when assembled into an all-solid-state flexible device, exceeding performance of most transition metal phosphides. This work provides new insights into the regulation in electronic structure and lattice strain for electrocatalytic and energy storage applications.
基金the National Key Research and Development Program of China(2017YFA0700102)Natural Science Foundation of China(91845202)+3 种基金Dalian National Laboratory for Clean Energy(DNL180404)Strategic Priority Research Program of Chinese Academy of Sciences(XDB2000000)Natural Science Foundation of Fujian Province(2018J01088)State Key Laboratory of Structural Chemistry(20170011,20200012)。
文摘Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inverse mode of solid oxide fuel cells(SOFCs)and therefore inherit most of the advantages of SOFC materials and energy conversion processes.However,the external bias that drives the electrochemical process will strongly change the chemical environments in both in the cathode and anode,therefore necessitating careful reconsideration of key materials and electrocatalysis processes.More importantly,SOECs provide a unique advantage of electrothermal catalysis,especially in converting stable low-carbon alkanes such as methane to ethylene with high selectivity.Here,we review the state-of-the-art of SOEC research progress in electrothermal catalysis and key materials and provide a future perspective.
基金supported by the National Key Research and Development Program (Nos. 2016YFA0202500 and 2016YFA0200102)the Natural Scientific Foundation of China (No. 21561130151)Royal Society for the award of a Newton Advanced Fellowship (Ref: NA140249)
文摘Nanocarbons are of progressively increasing importance in energy electrocatalysis, including oxygen reduction, oxygen evolution, hydrogen evolution, COreduction, etc. Precious-metal-free or metal-free nanocarbon-based electrocatalysts have been revealed to potentially have effective activity and remarkable durability, which is promising to replace precious metals in some important energy technologies,such as fuel cells, metal–air batteries, and water splitting. In this review, rather than overviewing recent progress completely, we aim to give an in-depth digestion of present achievements, focusing on the different roles of nanocarbons and material design principles. The multifunctionalities of nanocarbon substrates(accelerating the electron and mass transport, regulating the incorporation of active components,manipulating electron structures, generating confinement effects, assembly into 3 D free-standing electrodes) and the intrinsic activity of nanocarbon catalysts(multi-heteroatom doping, hierarchical structure,topological defects) are discussed systematically, with perspectives on the further research in this rising research field. This review is inspiring for more insights and methodical research in mechanism understanding, material design, and device optimization, leading to a targeted and high-efficiency development of energy electrocatalysis.
基金supported by The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB150019)Youth Science and Technology Talents Enrollment Project of the Jiangsu Association of Science and Technology。
文摘Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface area,high electrical conductivity,and rich surface functional groups.By virtue of their rapid electron transfer and large surface area,CQDs also emerge as promising functional materials for the applications in energy-conversion sectors through electrocatalysis.Besides,the rich functional groups on the surface of CQDs offer abundant anchoring sites and active sites for the engineering of multicomponent and high-performance composite materials.More importantly,the heteroatom in the CQDs could effectively tailor the charge distribution to promote the electron transfer via internal interactions,which is crucial to the enhancement of electrocatalytic performance.Herein,an overview about recent progress in preparing CQDs-based composites and employing them as promising electrode materials to promote the catalytic activity and stability for electrocatalysis is provided.The introduced CQDs could enhance the conductivity,modify the morphology and crystal phase,optimize the electronic structure,and provide more active centers and defect sites of composites.After establishing a deep understanding of the relationship between CQDs and electrocatalytic performances,the issues and challenges for the development of CQDs-based composites are discussed.
基金supported by the National Key R&D Project from Minister of Science and Technology in China(No.2016YFA0202701,No.2018YFB2200500)the National Natural Science Foundation of China(No.52072041,No.61604012,No.61974170)the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)。
文摘Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century.Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials.This has led to significant interest in the exploitation of 2D nanomaterials for catalysis.There have been a variety of excellent reviews on 2D nanomaterials for catalysis,but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant.Here,we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials.Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted,which point out the differences and similarities of series issues for photocatalysis and electrocatalysis.In addition,2D nanocatalysts and their catalytic applications are discussed.Finally,opportunities,challenges and development directions for 2D nanocatalysts are described.The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.
基金supported by the National Natural Science Foundation of China (21676100, 22008076)the Guangdong Natural Science Foundation (2017A030312005)。
文摘Since the two seminal papers were published independently in 2004, high-entropy-alloys(HEAs) have been applied to structural and functional materials due to the enhanced mechanical properties, thermal stability, and electrical conductivity. In recent years, HEA nanoparticles(HEA-NPs) were paid much attention to in the field of catalysis for the promoted catalytic activity. Furthermore, the various ratios among the metal components and tunable bulk and surface structures enable HEAs have big room to enhance the catalytic performance. Especially, noble-metal-based HEAs displayed significantly improved performance in electrocatalysis, where the ‘core effects’ were employed to explain the superior catalytic activity. However, it is insufficient to understand the essential mechanism or further guide the design of electrocatalysts. Structure–property relationship should be disclosed for the catalysis on HEA-NPs to accelerate the process of seeking high effective and efficient electrocatalysts. Therefore, we summarized the recent advances of noble-metal-based HEA-NPs applied to electrocatalysis, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, methanol oxidation reaction, ethanol oxidation reaction, formic acid oxidation reaction, hydrogen oxidation reaction, carbon dioxide reduction reaction and nitrogen reduction reaction. For each electrocatalytic reaction, the reaction mechanism and catalyst structure were presented, and then the structure–property relationship was elaborated. The review begins with the development, concept, four ‘core effect’ and synthesis methods of HEAs. Next,the electrocatalytic reactions on noble-metal-based HEA-NPs are summarized and discussed independently. Lastly, the main views and difficulties pertaining to structure–property relationship for HEAs are discussed.
基金support from the National Natural Science Foundation of China (No. 21373189)the Natural Science Foundation of Henan Province (No. 182300410278)。
文摘The design of sulfur hosts with high conductivity,large specific surface area,strong adsorption and electrocatalytic ability is crucial to advance high performance lithium-sulfur batteries.Herein,a novel ultrathin sandwich-type Ni-doped MoS_(2)/reduced graphene oxide(denote as Ni-doped MoS_(2)/rGO) hybrid is developed as a sulfur host through a simple one-step hydrothermal route.The two-dimensional layered structure Ni-doped MoS_(2)/rGO hybrid with heterostructure and heteroatom architecture defects not only plays a key role in adsorption of lithium polysulfide but also catalyzes on redox kinetics of sulfur and polysulfide species.Meanwhile,it can contribute to the large specific surface area for Li_(2) S/S_8 deposition,fast Li-ion and electron transportation,thus enhancing the electrocatalytic properties,as confirmed firstly by cyclic voltammetry(CV) results.Due to the adsorption-catalytic synergistic effect,the Ni-doped MoS_(2)/rGO cathode exhibits high specific capacity(1343.6 mA h g^(-1) at 0.2 C,921.6 mA h g^(-1) at 1 C),high coulombic efficiency and an outstanding cycle stability(with the low attenuation rate of 0.077% per cycle over 140 cycles at 0.5 C and 0.11% per cycle over 400 cycles at 1 C,respectively).This work proposes some inspiration for exploring the construction of advanced lithium-sulfur batteries through the rational design defects of atomic structure and electronic states of MoS_(2) as sulfur host.