Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in hi...Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics.展开更多
Solar energy has gained attention in the past two decades,since it is an effective renewable energy source that causes no harm to the environment.Solar Irradiation Prediction(SIP)is essential to plan,schedule,and mana...Solar energy has gained attention in the past two decades,since it is an effective renewable energy source that causes no harm to the environment.Solar Irradiation Prediction(SIP)is essential to plan,schedule,and manage photovoltaic power plants and grid-based power generation systems.Numerous models have been proposed for SIP in the literature while such studies demand huge volumes of weather data about the target location for a lengthy period of time.In this scenario,commonly available Artificial Intelligence(AI)technique can be trained over past values of irradiance as well as weatherrelated parameters such as temperature,humidity,wind speed,pressure,and precipitation.Therefore,in current study,the authors aimed at developing a solar irradiance prediction model by integrating big data analytics with AI models(BDAAI-SIP)using weather forecasting data.In order to perform long-term collection of weather data,Hadoop MapReduce tool is employed.The proposed solar irradiance prediction model operates on different stages.Primarily,data preprocessing take place using various sub processes such as data conversion,missing value replacement,and data normalization.Besides,Elman Neural Network(ENN),a type of feedforward neural network is also applied for predictive analysis.It is divided into input layer,hidden layer,loadbearing layer,and output layer.To overcome the insufficiency of ENN in choosing the value of weights and hidden layer neuron count,Mayfly Optimization(MFO)algorithm is applied.In order to validate the performance of the proposed model,a series of experiments was conducted.The experimental values infer that the proposed model outperformed other methods used for comparison.展开更多
Design of rectangular concrete-filled steel tubular (CFT) columns has been a big concern owing to their complex constraint mechanism. Generally, most existing methods are based on simplified mechanical model with li...Design of rectangular concrete-filled steel tubular (CFT) columns has been a big concern owing to their complex constraint mechanism. Generally, most existing methods are based on simplified mechanical model with limited experimental data, which is not reliable under many conditions, e.g., columns using high strength materials. Artificial neural network (ANN) models have shown the effectiveness to solve complex problems in many areas of civil engineering in recent years. In this paper, ANN models were employed to predict the axial bearing capacity of rectangular CFT columns based on the experimental data. 305 experimental data from articles were collected, and 275 experimental samples were chosen to train the ANN models while 30 experimental samples were used for testing. Based on the comparison among different models, artificial neural network modell (ANN1) and artificial neural network model2 (ANN2) with a 20- neuron hidden layer were chosen as the fit prediction models. ANN1 has five inputs: the length (D) and width (B) of cross section, the thickness of steel (t), the yield strength of steel (fy), the cylinder strength of concrete (fc')- ANN2 has ten inputs: D, B, t, fy, f′, the length to width ratio (D/B), the length to thickness ratio (D/t), the width to thickness ratio (B/t), restraint coefficient (ξ), the steel ratio (α). The axial beating capacity is the output data for both models.The outputs from ANN1 and ANN2 were verified and compared with those from EC4, ACI, GJB4142 and AISC360-10. The results show that the implemented models have good prediction and generalization capacity. Parametric study was conducted using ANN1 and ANN2 which indicates that effect law of basic parameters of columns on the axial bearing capacity of rectangular CFT columns differs from design codes.The results also provide convincing design reference to rectangular CFT columns.展开更多
基金supported by the ‘‘Detection of very low-flux background neutrons in China Jinping Underground Laboratory’’ project of the National Natural Science Foundation of China(No.11275134)
文摘Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics.
文摘Solar energy has gained attention in the past two decades,since it is an effective renewable energy source that causes no harm to the environment.Solar Irradiation Prediction(SIP)is essential to plan,schedule,and manage photovoltaic power plants and grid-based power generation systems.Numerous models have been proposed for SIP in the literature while such studies demand huge volumes of weather data about the target location for a lengthy period of time.In this scenario,commonly available Artificial Intelligence(AI)technique can be trained over past values of irradiance as well as weatherrelated parameters such as temperature,humidity,wind speed,pressure,and precipitation.Therefore,in current study,the authors aimed at developing a solar irradiance prediction model by integrating big data analytics with AI models(BDAAI-SIP)using weather forecasting data.In order to perform long-term collection of weather data,Hadoop MapReduce tool is employed.The proposed solar irradiance prediction model operates on different stages.Primarily,data preprocessing take place using various sub processes such as data conversion,missing value replacement,and data normalization.Besides,Elman Neural Network(ENN),a type of feedforward neural network is also applied for predictive analysis.It is divided into input layer,hidden layer,loadbearing layer,and output layer.To overcome the insufficiency of ENN in choosing the value of weights and hidden layer neuron count,Mayfly Optimization(MFO)algorithm is applied.In order to validate the performance of the proposed model,a series of experiments was conducted.The experimental values infer that the proposed model outperformed other methods used for comparison.
基金Acknowledgements This work was sponsored by the National Natural Science Foundation of China (Grant No. 61272264).
文摘Design of rectangular concrete-filled steel tubular (CFT) columns has been a big concern owing to their complex constraint mechanism. Generally, most existing methods are based on simplified mechanical model with limited experimental data, which is not reliable under many conditions, e.g., columns using high strength materials. Artificial neural network (ANN) models have shown the effectiveness to solve complex problems in many areas of civil engineering in recent years. In this paper, ANN models were employed to predict the axial bearing capacity of rectangular CFT columns based on the experimental data. 305 experimental data from articles were collected, and 275 experimental samples were chosen to train the ANN models while 30 experimental samples were used for testing. Based on the comparison among different models, artificial neural network modell (ANN1) and artificial neural network model2 (ANN2) with a 20- neuron hidden layer were chosen as the fit prediction models. ANN1 has five inputs: the length (D) and width (B) of cross section, the thickness of steel (t), the yield strength of steel (fy), the cylinder strength of concrete (fc')- ANN2 has ten inputs: D, B, t, fy, f′, the length to width ratio (D/B), the length to thickness ratio (D/t), the width to thickness ratio (B/t), restraint coefficient (ξ), the steel ratio (α). The axial beating capacity is the output data for both models.The outputs from ANN1 and ANN2 were verified and compared with those from EC4, ACI, GJB4142 and AISC360-10. The results show that the implemented models have good prediction and generalization capacity. Parametric study was conducted using ANN1 and ANN2 which indicates that effect law of basic parameters of columns on the axial bearing capacity of rectangular CFT columns differs from design codes.The results also provide convincing design reference to rectangular CFT columns.