Fixed field experimental studies are carried out on daily variations of the undis-turbed community and soil respiration fluxes in different phenological phases of 2001―2002 in semiarid Aneurolepidium chinense steppe ...Fixed field experimental studies are carried out on daily variations of the undis-turbed community and soil respiration fluxes in different phenological phases of 2001―2002 in semiarid Aneurolepidium chinense steppe of Inner Mongolia,China using static black chamber method.Corresponding statistical analysis of the contributions of the water-heat factors(air temperature,ground temperature,surface soil water content)and ecological factors(above-ground biomass,underground biomass,litter biomass)to daily variation law of the undisturbed community and soil respiration fluxes as well as differences in daily respiration are also con-ducted.The results indicate that undisturbed community and soil respiration have apparent daily variation laws,daily variation patterns of respiration fluxes during different phenological phases are basically the same,and the variations of environmental factors only exert effect on CO_(2)emission intensities,while the effect on daily variation pattern of grassland CO_(2)emission fluxes is relatively small.The daily total respiration of the undisturbed community in different phenological phases ranges from 1.34―10.13 g·m^(-2);soil daily total respiration ranges from 0.98―5.17 g·m^(-2);both daily variations of undisturbed community and soil respiration fluxes are significantly corre-lated(p<0.05)or extremely significantly correlated(p<0.01)with air temperatures and ground surface temperatures,but the correlativity with the soil temperature at 5 and 10 cm depths is relatively weak;multiple regression analysis indicates that about 80%of the difference in daily respiration of the undisturbed community among different phenological phases is induced by the variation of the aboveground biomass,while the variations of the remaining factors can jointly explain around 20%of the daily respiration variations of the whole grassland ecosystem;about 83%of the soil daily respiration variation of the different phenological phases is caused by 0―20 cm underground biomass.Besides,surface soil water content is also an important environmental factor affecting soil daily respiration variations of the Aneurolepidium chinense steppe,but its partial correlation coefficient with soil daily respiration amount does not reach the significance level of 0.05.展开更多
Nonferrous mining activities are some of the largest sources of heavy metals emissions into the environment and China is one of the largest producers and consumers of lead and zinc in the world.The cumulative producti...Nonferrous mining activities are some of the largest sources of heavy metals emissions into the environment and China is one of the largest producers and consumers of lead and zinc in the world.The cumulative productions and emissions of lead and zinc from mining-related activities in China were estimated.Up to 2007,the cumulative productions of lead and zinc in China were estimated to be about 6.69 and 12.59 Mt,respectively;and about 1.62 Mt lead and 3.32 Mt zinc emitted into the ambient environment during the mining,processing and smelting activities,representing 24.39% and 26.36% cumulative production,respectively.Among these three types of mining-related activities,mineral processing contributes the most to the total emission of 50.67% lead and 45.51% zinc.展开更多
A split-plot experiment in a rice-winter wheat rotation system was performed to study the effects of water regime and wheat straw application in rice-growing season on N2O emission from following wheat growing season....A split-plot experiment in a rice-winter wheat rotation system was performed to study the effects of water regime and wheat straw application in rice-growing season on N2O emission from following wheat growing season. Water regime in the rice-growing season was designed as the conventional irrigation (flooding/drainage cycle) and the permanent flooding. Wheat straw was incorporated with three rates of 0, 225 and 450 g m-2 into the paddy soil for each water regime just before rice was transplanted. N2O emission was measured by static chamber-gas chromatograph method. Results from the variance analysis indicated that the permanent flooding in rice-growing season markedly enhanced N2O emission in following wheat growing season (P=0. 003), and that the effect of straw application on N2O emission was distinguished between two water regimes. Under the conventional irrigation, incoporation of wheat straw reduced N2O emission in the following wheat growing season, while there were no significant differences in the emission for the straw application rates of 225 and 450 g m-2. No significant differences in N2O emissions were observed among the three rates of straw application for the permanent flooding regime. In addition, the seasonal variation of N2O emission was regulated by soil temperature and moisture. The daily N2O flux (Y, mg m-2 d-1) can be quantitatively described by soil temperature (T, ℃) and moisture (W, WFPS %) asY=A0+A1T+A2W+A3W2(n=23, R2 ≥0. 4159** )or y=C0+C1W+C2W2(n=23,R2≥0. 4074** ). Compared with the effect of soil temperature on N2O emission, soil moisture was an important factor regulating the seasonal pattern of N2O emission.展开更多
[Objective] The aim was to overview the emission of greenhouse gases in farmland. [Method] Based on domestic and foreign references, production mechanism, discharging characters and major influential factors of CO2, C...[Objective] The aim was to overview the emission of greenhouse gases in farmland. [Method] Based on domestic and foreign references, production mechanism, discharging characters and major influential factors of CO2, CH4 and N2O in soils of farmland were overviewed. [Result] Production and discharge of CO2, CH. and N2O played an important role in circulation of carbon and nitrogen in terrestrial ecosystem and constituted a key method for carbon and nitrogen output. It is significant to conduct research on reduction of greenhouse gas and increase of absorption. [Conclusion] The research is beneficial for exploration on discharge rule and influential factors of greenhouse gases, providing theoretical references for reduction of greenhouse gases and study on climate change.展开更多
The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 ...The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 cultivation patterns (conventional plain culture of rice(T1), no-tillage and ridge culture of rice(T2), no-tillage and ridge culture of rice and wheat (T3), and rice-wheat rotation(T4)) were measured with the closed chamber technique in 1996 and 1998 in Chongqing, China. The results showed that differences existed in CH_4 emission from paddy fields under these land management practices. In 1996 and 1998, CH_4 emission was 71 48% and 78 82%(T2), 65 93% and 57 18%(T3), and 61 53% and 34 22%(T4) of that in T1 during the rice growing season. During the non-rice growing season, CH_4 emission from rice fields was 76 23% in T2 and 38 69% in T1 The accumulated annual CH_4 emission in T2, T3 and T4 in 1996 decreased by 33 53%, 63 30% and 65 73%, respectively, as compared with that in T1 In 1998, the accumulated annual CH_4 emission in T1, T2, T3 and T4 was 116 96 g/m^2, 68 44 g/m^2, 19 70 g/m^2 and 11 80 g/m^2, respectively. Changes in soil physical and chemical properties, in thermal and moisture conditions in the soil and in rice plant growth induced by different land use patterns were the dominant causes for the difference in CH_4 emission observed. The relative contribution of various influencing factors to CH_4 emission from paddy fields differed significantly under different land use patterns. However, the general trend was that chlorophyll content in rice leaves, air temperature and temperature at the 5 cm soil layer play a major role in CH_4 emission from paddy fields and the effects of illumination, relative humidity and water layer depth in the paddy field and CH_4 concentration in the crop canopy were relatively non-significant. Such conservative land use patterns as no-tillage and ridge culture of rice with or without rotation with wheat are thought to be beneficial to reducing CH_4 emission from paddy fields and are, therefore, recommended as a significant solution to the problems of global(climatic) change.展开更多
Emissions of biogenic sulfur gases(hydrogen sulfide(H_2S) and carbonyl sulfide(COS)) from Phragmites australis coastal marsh in the Yellow River estuary of China were determined during April to December in 2014 using ...Emissions of biogenic sulfur gases(hydrogen sulfide(H_2S) and carbonyl sulfide(COS)) from Phragmites australis coastal marsh in the Yellow River estuary of China were determined during April to December in 2014 using static chamber-gas chromatography technique with monthly sampling. The results showed that the fluxes of H_2S and COS both had distinct seasonal and diurnal variations. The H_2S fluxes ranged from 0.09 μg/(m^2·h) to 7.65 μg/(m^2·h), and the COS fluxes ranged from –1.10 μg/(m^2·h) to 3.32 μg/(m^2·h). The mean fluxes of H_2S and COS from the P. australis coastal marsh were 2.28 μg/(m^2·h), and 1.05 μg/(m^2·h), respectively. The P. australis coastal marsh was the emission source of both H_2S and COS over the whole year. Fluxes of H_2S and COS were both higher in plant growing season than in the non-growing season. Temperature had a dramatic effect on the H_2S emission flux, while the correlations between COS flux and the environmental factors were not found during sampling periods. More in-depth and comprehensive research on other related factors, such as vegetation, sediment substrates, and tidal action is needed to discover and further understand the key factors and the release mechanism of sulfur gases.展开更多
Reservoir construction and operation profoundly alter the hydrological,hydrodynamic,and carbon and nitrogen cycling processes of rivers.However,current research still lacks a systematic understanding of the characteri...Reservoir construction and operation profoundly alter the hydrological,hydrodynamic,and carbon and nitrogen cycling processes of rivers.However,current research still lacks a systematic understanding of the characteristics of greenhouse gas(GHG)emissions from reservoirs in arid/semi-arid regions.This study integrates existing monitoring data to discuss the characteristics of GHG emissions from reservoirs in the Yellow River Basin and illustrate the controlling factors and underlying mechanism of these processes.The results indicate that while CO_(2) emission flux from reservoirs is lower than that from river channels,the emission fluxes of CH_(4) and N_(2)O are 1.9 times and 10 times those from rivers,respectively,indicating that the emission of GHG with stronger radiative effect is significantly enhanced in reservoirs.Compared to the reservoirs in humid climates(e.g.,the Three Gorges Reservoir),reservoirs in the Yellow River Basin exhibit relatively lower emissions of CO_(2) and CH_4 due to lower organic matter concentrations,but significantly higher N_(2)O emissions due to higher nitrogen loads.Monte Carlo simulations for 237 reservoirs in the Yellow River Basin showed that total emission of the three GHGs is 3.05 Tg CO_(2)-eq yr^(-1),accounting for 0.39% of the total emission from global reservoirs and lower than the area percentage of the basin(0.53%).This study has important implications on revealing the GHG emission characteristics and control mechanisms of reservoirs in arid/semi-arid regions.展开更多
Oxygenated volatile organic compounds(OVOCs) emitted from orange wastes during aerobic decomposition were investigated in a laboratory-controlled incubator for a period of two months. Emission of total OVOCs(TOVOCs...Oxygenated volatile organic compounds(OVOCs) emitted from orange wastes during aerobic decomposition were investigated in a laboratory-controlled incubator for a period of two months. Emission of total OVOCs(TOVOCs) from orange wastes reached 1714 mg/dry kg(330 mg/wet kg). Ethanol, methanol, ethyl acetate, methyl acetate, 2-butanone and acetaldehyde were the most abundant OVOC species with shares of 26.9%, 24.8%, 20.3%, 13.9%, 2.8%and 2.5%, respectively, in the TOVOCs released. The emission fluxes of the above top five OVOCs were quite trivial in the beginning but increased sharply to form one "peak emission window" with maximums at days 1-8 until leveling off after 10 days. This type of "peak emission window" was synchronized with the CO2 fluxes and incubation temperature of the orange wastes, indicating that released OVOCs were mainly derived from secondary metabolites of orange substrates through biotic processes rather than abiotic processes or primary volatilization of the inherent pool in oranges. Acetaldehyde instead had emission fluxes decreasing sharply from its initial maximum to nearly zero in about four days,suggesting that it was inherent rather than secondarily formed. For TOVOCs or all OVOC species except 2-butanone and acetone, over 80% of their emissions occurred during the first week, implying that organic wastes might give off a considerable amount of OVOCs during the early disposal period under aerobic conditions.展开更多
A laboratory study was conducted to investigate volatile organic compound(VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66 days unde...A laboratory study was conducted to investigate volatile organic compound(VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66 days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone,2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition(5924 ng C/(kg·hr)) was significantly higher than that under the flooded condition(2211 ng C/(kg·hr)). One "peak emission window" appeared at days 0–44 or 4–44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis(DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils.展开更多
An approximate integral method for volatile compounds emission from plate is presented in this paper. The gas-phase mass transfer resistance was neglected for simplifying computation. Compared to Laplace Transformatio...An approximate integral method for volatile compounds emission from plate is presented in this paper. The gas-phase mass transfer resistance was neglected for simplifying computation. Compared to Laplace Transformation Method, the method suggested is simple, and emission flux, chamber concentration of volatile compounds and concentration distribution of volatile compounds in the material can be determined conveniently. Results of the present method show good agreement with experimental data. The influence of CO, D, K and N on concentration of total volatile organic compounds (TVOC) in the air is also calculated.展开更多
Control policies such as "odd-and-even license plate rule" were implemented by the Chinese government to restrict traffic and suspend factory production in Beijing and neighboring cities during the Asia-Paci...Control policies such as "odd-and-even license plate rule" were implemented by the Chinese government to restrict traffic and suspend factory production in Beijing and neighboring cities during the Asia-Pacific Economic Cooperation summit. We use ozone monitoring instrument(OMI), mobile differential optical absorption spectroscopy(DOAS), and multi-axis differential optical absorption spectroscopy(MAX-DOAS) to measure the variation of the spatial and temporal patterns of NO2 column densities from October 24, 2014 to November 22, 2014. It is found that the NO2 column densities during the episode of control policies are significantly lower than those during other periods, and the emission flux of NO2 calculated by mobile DOAS is also lower than the results from other periods. Some daily low NO2 column densities occur with the northwest wind direction. We then compare the relationship between OMI and mobile DOAS NO2 column density observations, and the results of mobile DOAS are approximately 2.7 times larger than the OMI values. The largest discrepancy occurs in the northern part of Beijing city. In other parts, the two instruments have a better correlation coefficient(R2) of 0.61. The low NO2 column densities that occur during the episode of control policies are affected by the control policies as well as meteorological conditions.展开更多
Coronal mass ejections(CMEs) and solar flares are the large-scale and most energetic eruptive phenomena in our solar system and able to release a large quantity of plasma and magnetic flux from the solar atmosphere in...Coronal mass ejections(CMEs) and solar flares are the large-scale and most energetic eruptive phenomena in our solar system and able to release a large quantity of plasma and magnetic flux from the solar atmosphere into the solar wind. When these high-speed magnetized plasmas along with the energetic particles arrive at the Earth, they may interact with the magnetosphere and ionosphere, and seriously affect the safety of human high-tech activities in outer space. The travel time of a CME to 1 AU is about 1–3 days, while energetic particles from the eruptions arrive even earlier. An efficient forecast of these phenomena therefore requires a clear detection of CMEs/flares at the stage as early as possible. To estimate the possibility of an eruption leading to a CME/flare, we need to elucidate some fundamental but elusive processes including in particular the origin and structures of CMEs/flares. Understanding these processes can not only improve the prediction of the occurrence of CMEs/flares and their effects on geospace and the heliosphere but also help understand the mass ejections and flares on other solar-type stars. The main purpose of this review is to address the origin and early structures of CMEs/flares, from multi-wavelength observational perspective. First of all, we start with the ongoing debate of whether the pre-eruptive configuration, i.e., a helical magnetic flux rope(MFR), of CMEs/flares exists before the eruption and then emphatically introduce observational manifestations of the MFR. Secondly, we elaborate on the possible formation mechanisms of the MFR through distinct ways. Thirdly, we discuss the initiation of the MFR and associated dynamics during its evolution toward the CME/flare. Finally, we come to some conclusions and put forward some prospects in the future.展开更多
基金the Statc Key Basic Research Development and Planning Project(Grant No.2002CB412503)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX1-sw-01-04)the Knowl-edge Innovation Project of the Institute of Geographic Sciences and Natural Resources Research,CAS(Grant No.CXIOG-E01-03-01).
文摘Fixed field experimental studies are carried out on daily variations of the undis-turbed community and soil respiration fluxes in different phenological phases of 2001―2002 in semiarid Aneurolepidium chinense steppe of Inner Mongolia,China using static black chamber method.Corresponding statistical analysis of the contributions of the water-heat factors(air temperature,ground temperature,surface soil water content)and ecological factors(above-ground biomass,underground biomass,litter biomass)to daily variation law of the undisturbed community and soil respiration fluxes as well as differences in daily respiration are also con-ducted.The results indicate that undisturbed community and soil respiration have apparent daily variation laws,daily variation patterns of respiration fluxes during different phenological phases are basically the same,and the variations of environmental factors only exert effect on CO_(2)emission intensities,while the effect on daily variation pattern of grassland CO_(2)emission fluxes is relatively small.The daily total respiration of the undisturbed community in different phenological phases ranges from 1.34―10.13 g·m^(-2);soil daily total respiration ranges from 0.98―5.17 g·m^(-2);both daily variations of undisturbed community and soil respiration fluxes are significantly corre-lated(p<0.05)or extremely significantly correlated(p<0.01)with air temperatures and ground surface temperatures,but the correlativity with the soil temperature at 5 and 10 cm depths is relatively weak;multiple regression analysis indicates that about 80%of the difference in daily respiration of the undisturbed community among different phenological phases is induced by the variation of the aboveground biomass,while the variations of the remaining factors can jointly explain around 20%of the daily respiration variations of the whole grassland ecosystem;about 83%of the soil daily respiration variation of the different phenological phases is caused by 0―20 cm underground biomass.Besides,surface soil water content is also an important environmental factor affecting soil daily respiration variations of the Aneurolepidium chinense steppe,but its partial correlation coefficient with soil daily respiration amount does not reach the significance level of 0.05.
基金Project (2007BAC03A11-07) supported by the Ministry of Science and Technology of ChinaProject (KZCX3-SW-437) supported by the Chinese Academy of SciencesProjects (41040014,40571008) supported by the National Natural Science Foundation of China
文摘Nonferrous mining activities are some of the largest sources of heavy metals emissions into the environment and China is one of the largest producers and consumers of lead and zinc in the world.The cumulative productions and emissions of lead and zinc from mining-related activities in China were estimated.Up to 2007,the cumulative productions of lead and zinc in China were estimated to be about 6.69 and 12.59 Mt,respectively;and about 1.62 Mt lead and 3.32 Mt zinc emitted into the ambient environment during the mining,processing and smelting activities,representing 24.39% and 26.36% cumulative production,respectively.Among these three types of mining-related activities,mineral processing contributes the most to the total emission of 50.67% lead and 45.51% zinc.
基金This work was supported by the Hundred Talents Program launched by the Chinese Academy of Sciencesthe National Key Basic Research Development Foundation of China(G1999011805).
文摘A split-plot experiment in a rice-winter wheat rotation system was performed to study the effects of water regime and wheat straw application in rice-growing season on N2O emission from following wheat growing season. Water regime in the rice-growing season was designed as the conventional irrigation (flooding/drainage cycle) and the permanent flooding. Wheat straw was incorporated with three rates of 0, 225 and 450 g m-2 into the paddy soil for each water regime just before rice was transplanted. N2O emission was measured by static chamber-gas chromatograph method. Results from the variance analysis indicated that the permanent flooding in rice-growing season markedly enhanced N2O emission in following wheat growing season (P=0. 003), and that the effect of straw application on N2O emission was distinguished between two water regimes. Under the conventional irrigation, incoporation of wheat straw reduced N2O emission in the following wheat growing season, while there were no significant differences in the emission for the straw application rates of 225 and 450 g m-2. No significant differences in N2O emissions were observed among the three rates of straw application for the permanent flooding regime. In addition, the seasonal variation of N2O emission was regulated by soil temperature and moisture. The daily N2O flux (Y, mg m-2 d-1) can be quantitatively described by soil temperature (T, ℃) and moisture (W, WFPS %) asY=A0+A1T+A2W+A3W2(n=23, R2 ≥0. 4159** )or y=C0+C1W+C2W2(n=23,R2≥0. 4074** ). Compared with the effect of soil temperature on N2O emission, soil moisture was an important factor regulating the seasonal pattern of N2O emission.
基金Supported by the Special R&D Fund for Public Welfare IndustryApplication of Remote Sensing Technology in Agrometeorological Forecast(GYHY201106027)~~
文摘[Objective] The aim was to overview the emission of greenhouse gases in farmland. [Method] Based on domestic and foreign references, production mechanism, discharging characters and major influential factors of CO2, CH4 and N2O in soils of farmland were overviewed. [Result] Production and discharge of CO2, CH. and N2O played an important role in circulation of carbon and nitrogen in terrestrial ecosystem and constituted a key method for carbon and nitrogen output. It is significant to conduct research on reduction of greenhouse gas and increase of absorption. [Conclusion] The research is beneficial for exploration on discharge rule and influential factors of greenhouse gases, providing theoretical references for reduction of greenhouse gases and study on climate change.
文摘The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 cultivation patterns (conventional plain culture of rice(T1), no-tillage and ridge culture of rice(T2), no-tillage and ridge culture of rice and wheat (T3), and rice-wheat rotation(T4)) were measured with the closed chamber technique in 1996 and 1998 in Chongqing, China. The results showed that differences existed in CH_4 emission from paddy fields under these land management practices. In 1996 and 1998, CH_4 emission was 71 48% and 78 82%(T2), 65 93% and 57 18%(T3), and 61 53% and 34 22%(T4) of that in T1 during the rice growing season. During the non-rice growing season, CH_4 emission from rice fields was 76 23% in T2 and 38 69% in T1 The accumulated annual CH_4 emission in T2, T3 and T4 in 1996 decreased by 33 53%, 63 30% and 65 73%, respectively, as compared with that in T1 In 1998, the accumulated annual CH_4 emission in T1, T2, T3 and T4 was 116 96 g/m^2, 68 44 g/m^2, 19 70 g/m^2 and 11 80 g/m^2, respectively. Changes in soil physical and chemical properties, in thermal and moisture conditions in the soil and in rice plant growth induced by different land use patterns were the dominant causes for the difference in CH_4 emission observed. The relative contribution of various influencing factors to CH_4 emission from paddy fields differed significantly under different land use patterns. However, the general trend was that chlorophyll content in rice leaves, air temperature and temperature at the 5 cm soil layer play a major role in CH_4 emission from paddy fields and the effects of illumination, relative humidity and water layer depth in the paddy field and CH_4 concentration in the crop canopy were relatively non-significant. Such conservative land use patterns as no-tillage and ridge culture of rice with or without rotation with wheat are thought to be beneficial to reducing CH_4 emission from paddy fields and are, therefore, recommended as a significant solution to the problems of global(climatic) change.
基金National Nature Science Foundation of China(No.41103036)Natural Science Foundation of Shandong Province,China(No.BS2009HZ013)
文摘Emissions of biogenic sulfur gases(hydrogen sulfide(H_2S) and carbonyl sulfide(COS)) from Phragmites australis coastal marsh in the Yellow River estuary of China were determined during April to December in 2014 using static chamber-gas chromatography technique with monthly sampling. The results showed that the fluxes of H_2S and COS both had distinct seasonal and diurnal variations. The H_2S fluxes ranged from 0.09 μg/(m^2·h) to 7.65 μg/(m^2·h), and the COS fluxes ranged from –1.10 μg/(m^2·h) to 3.32 μg/(m^2·h). The mean fluxes of H_2S and COS from the P. australis coastal marsh were 2.28 μg/(m^2·h), and 1.05 μg/(m^2·h), respectively. The P. australis coastal marsh was the emission source of both H_2S and COS over the whole year. Fluxes of H_2S and COS were both higher in plant growing season than in the non-growing season. Temperature had a dramatic effect on the H_2S emission flux, while the correlations between COS flux and the environmental factors were not found during sampling periods. More in-depth and comprehensive research on other related factors, such as vegetation, sediment substrates, and tidal action is needed to discover and further understand the key factors and the release mechanism of sulfur gases.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC3200401)the National Natural Science Foundation of China(Grant Nos.52379057&52039001)。
文摘Reservoir construction and operation profoundly alter the hydrological,hydrodynamic,and carbon and nitrogen cycling processes of rivers.However,current research still lacks a systematic understanding of the characteristics of greenhouse gas(GHG)emissions from reservoirs in arid/semi-arid regions.This study integrates existing monitoring data to discuss the characteristics of GHG emissions from reservoirs in the Yellow River Basin and illustrate the controlling factors and underlying mechanism of these processes.The results indicate that while CO_(2) emission flux from reservoirs is lower than that from river channels,the emission fluxes of CH_(4) and N_(2)O are 1.9 times and 10 times those from rivers,respectively,indicating that the emission of GHG with stronger radiative effect is significantly enhanced in reservoirs.Compared to the reservoirs in humid climates(e.g.,the Three Gorges Reservoir),reservoirs in the Yellow River Basin exhibit relatively lower emissions of CO_(2) and CH_4 due to lower organic matter concentrations,but significantly higher N_(2)O emissions due to higher nitrogen loads.Monte Carlo simulations for 237 reservoirs in the Yellow River Basin showed that total emission of the three GHGs is 3.05 Tg CO_(2)-eq yr^(-1),accounting for 0.39% of the total emission from global reservoirs and lower than the area percentage of the basin(0.53%).This study has important implications on revealing the GHG emission characteristics and control mechanisms of reservoirs in arid/semi-arid regions.
基金supported by the Ministry of Science and Technology of China (No. 2012IM030700)the National Natural Science Foundation of China (Nos. 41025012, U0833003, 41273095 and 41103067)
文摘Oxygenated volatile organic compounds(OVOCs) emitted from orange wastes during aerobic decomposition were investigated in a laboratory-controlled incubator for a period of two months. Emission of total OVOCs(TOVOCs) from orange wastes reached 1714 mg/dry kg(330 mg/wet kg). Ethanol, methanol, ethyl acetate, methyl acetate, 2-butanone and acetaldehyde were the most abundant OVOC species with shares of 26.9%, 24.8%, 20.3%, 13.9%, 2.8%and 2.5%, respectively, in the TOVOCs released. The emission fluxes of the above top five OVOCs were quite trivial in the beginning but increased sharply to form one "peak emission window" with maximums at days 1-8 until leveling off after 10 days. This type of "peak emission window" was synchronized with the CO2 fluxes and incubation temperature of the orange wastes, indicating that released OVOCs were mainly derived from secondary metabolites of orange substrates through biotic processes rather than abiotic processes or primary volatilization of the inherent pool in oranges. Acetaldehyde instead had emission fluxes decreasing sharply from its initial maximum to nearly zero in about four days,suggesting that it was inherent rather than secondarily formed. For TOVOCs or all OVOC species except 2-butanone and acetone, over 80% of their emissions occurred during the first week, implying that organic wastes might give off a considerable amount of OVOCs during the early disposal period under aerobic conditions.
基金financially supported by the Natural Science Foundation of China(Nos.41025012,41103067,41571130031 and 41273095)
文摘A laboratory study was conducted to investigate volatile organic compound(VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66 days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone,2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition(5924 ng C/(kg·hr)) was significantly higher than that under the flooded condition(2211 ng C/(kg·hr)). One "peak emission window" appeared at days 0–44 or 4–44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis(DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils.
基金the National Natural Science Foundation of China (No.50776006)"863"Plan(No.2006AA05Z228)Ministry of Education of China (No.107113)
文摘An approximate integral method for volatile compounds emission from plate is presented in this paper. The gas-phase mass transfer resistance was neglected for simplifying computation. Compared to Laplace Transformation Method, the method suggested is simple, and emission flux, chamber concentration of volatile compounds and concentration distribution of volatile compounds in the material can be determined conveniently. Results of the present method show good agreement with experimental data. The influence of CO, D, K and N on concentration of total volatile organic compounds (TVOC) in the air is also calculated.
基金supported by the National Natural Science Foundation of China(41275038)the Key Research Program of the Chinese Academy of Sciences(KJZD-EW-TZ-G06)+2 种基金the National High Technology Research and Development Program of China(2014AA06A508,2014AA06A511)the Scientific and Technological Project of Anhui Province(1301022083)the Special Project of Environmental Nonprofit Industry Research,China(201409006)
文摘Control policies such as "odd-and-even license plate rule" were implemented by the Chinese government to restrict traffic and suspend factory production in Beijing and neighboring cities during the Asia-Pacific Economic Cooperation summit. We use ozone monitoring instrument(OMI), mobile differential optical absorption spectroscopy(DOAS), and multi-axis differential optical absorption spectroscopy(MAX-DOAS) to measure the variation of the spatial and temporal patterns of NO2 column densities from October 24, 2014 to November 22, 2014. It is found that the NO2 column densities during the episode of control policies are significantly lower than those during other periods, and the emission flux of NO2 calculated by mobile DOAS is also lower than the results from other periods. Some daily low NO2 column densities occur with the northwest wind direction. We then compare the relationship between OMI and mobile DOAS NO2 column density observations, and the results of mobile DOAS are approximately 2.7 times larger than the OMI values. The largest discrepancy occurs in the northern part of Beijing city. In other parts, the two instruments have a better correlation coefficient(R2) of 0.61. The low NO2 column densities that occur during the episode of control policies are affected by the control policies as well as meteorological conditions.
基金supported by the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China (Grant Nos. 11303016, 11373023, 11533005, 11203014)National Key Basic Research Special Foundation (Grant No. 2014CB744203)
文摘Coronal mass ejections(CMEs) and solar flares are the large-scale and most energetic eruptive phenomena in our solar system and able to release a large quantity of plasma and magnetic flux from the solar atmosphere into the solar wind. When these high-speed magnetized plasmas along with the energetic particles arrive at the Earth, they may interact with the magnetosphere and ionosphere, and seriously affect the safety of human high-tech activities in outer space. The travel time of a CME to 1 AU is about 1–3 days, while energetic particles from the eruptions arrive even earlier. An efficient forecast of these phenomena therefore requires a clear detection of CMEs/flares at the stage as early as possible. To estimate the possibility of an eruption leading to a CME/flare, we need to elucidate some fundamental but elusive processes including in particular the origin and structures of CMEs/flares. Understanding these processes can not only improve the prediction of the occurrence of CMEs/flares and their effects on geospace and the heliosphere but also help understand the mass ejections and flares on other solar-type stars. The main purpose of this review is to address the origin and early structures of CMEs/flares, from multi-wavelength observational perspective. First of all, we start with the ongoing debate of whether the pre-eruptive configuration, i.e., a helical magnetic flux rope(MFR), of CMEs/flares exists before the eruption and then emphatically introduce observational manifestations of the MFR. Secondly, we elaborate on the possible formation mechanisms of the MFR through distinct ways. Thirdly, we discuss the initiation of the MFR and associated dynamics during its evolution toward the CME/flare. Finally, we come to some conclusions and put forward some prospects in the future.