Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce...Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce building energy consumption.With the wider availability of microencapsulated PCM,there is an opportunity to develop a new type of insulating materials,combinate PCM with traditional insulation materials for latent heat energy storage.These materials are typically flammable and are located on the interior wall finishing yet there has been no detailed assessment of their fire performance.In this research work prototypes of low-density insulating boards for indoor spaces from hemp shives using carbamide resin binder and cold pressing were studied.Bench-scale cone calorimeter tests were conducted to evaluate fire risk,with a focus on assessing material flammability properties and the influence of PCM on the results.In this research,the amount of smoke,heat release rate,effective heat of combustion,specific extinction coefficient,mass loss,carbon dioxide yield,specific loss factor,ignition time of hemp straws samples and samples of hemp straws with 10%and without PCM admixture were compared.There is a risk of flammability for PCM and their fire reaction has not been evaluated when incorporating PCM into interior wall finishing boards.The obtained results can be used by designers to balance the potential energy savings of using PCM with a more complete understanding and predictability of the associated fire risk when using the proposed boards.It also allows for appropriate risk mitigation strategies.展开更多
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with ...Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with its legal responsibilities,decides to implement a restoration project for all sites related to the mining and processing of uranium ores.The Malargüe Site is located within the Province of Mendoza in the city of Malargüe.It is the first site to successfully complete its remediation.The activities consist of relocation of tailings to an engineering repository.The tailings management(encapsulation) and rehabilitation of the area was finished in June 2017.The remediation alternative for the ore tailings was selected after conducting comparative studies and submitted the project to the society for consideration.The objective of the encapsulation of the mineral tails is to isolate them from the environment,also proceeding with the decontamination and rehabilitation of the area (landscaping,post-closure monitoring and 20 years monitoring period).Encapsulation consisted of the construction of a containment cell for the mine tailings,to isolate them and prevent pollutants from entering the environment through the transfer routes.To clean the impacted areas,the soil was removed,it was incorporated into the encapsulation,and the filling was carried out with natural soils from the area.Remediation prevents radon transfer to the environment,as ^(222)Ra is an alpha emitter with a half-life of four days,which produces its own radioactive progeny.Radon progeny are solids,and when a ^(222)Ra nucleus emits an alpha particle into the air,the resulting ^(218)Po nucleus,momentarily electrically charged,adheres to any dust particle.Remediation prevents the discharge into the air containing radon and also containing dust particles charged with intensely radioactive radon progeny.The tasks mentioned make it possible to decrease radon emanation,reduce radiological risks to the public and prevent the entry of rainwater into the system.In addition,the containment system prevents the discharge of contaminated liquids into the environment,avoiding contamination of the groundwater.All these activities are according to the concepts of sustainability.展开更多
The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components...The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.展开更多
Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic...Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.展开更多
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ...Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.展开更多
Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulatio...Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity.展开更多
Simple but effective methods are required to incorporate multiple bioactive polyphenols into delivery systems to increase their dispersibility,stability and bioavailability.We developed and tested three p Hdriven prot...Simple but effective methods are required to incorporate multiple bioactive polyphenols into delivery systems to increase their dispersibility,stability and bioavailability.We developed and tested three p Hdriven protocols for creating nanoemulsions loaded with multiple lipophilic polyphenols.These protocols differed in how the different polyphenols were incorporated into the nanoemulsions.The impact of these three methods on the formation,properties,and gastrointestinal fate of nanoemulsions loaded with curcumin,resveratrol,and quercetin was investigated.The three methods produced nanoemulsions with similar initial particle properties:droplet diameters(0.15,0.16,and 0.15μm)and zeta-potentials(–59,–58,and–58 m V),respectively.However,the average encapsulation efficiencies(82%,88%,and 61%),gastrointestinal stabilities(83%,97%,and 29%)and bioaccessibilities(77%,90%,and 73%)for curcumin,resveratrol,and quercetin were somewhat different.In particular,more quercetin degradation occurred using the approach that held it under alkaline conditions for extended periods.In general,the p H-driven method provides researchers with a versatile approach of incorporating multiple polyphenols with different characteristics into functional food and beverages using a simple and inexpensive method.展开更多
Soymilk is a natural nanocarrier.However,the performance of flavonoid-soymilk nano-complex remains unclear.In this work,icariin-soymilk nano-complexes(ISNCs)were successfully fabricated and characterized.The effects o...Soymilk is a natural nanocarrier.However,the performance of flavonoid-soymilk nano-complex remains unclear.In this work,icariin-soymilk nano-complexes(ISNCs)were successfully fabricated and characterized.The effects of high-pressure homogenization(HPH)treatment on structure and physicochemical properties of soymilk and nano-complexes were investigated.HPH treatment could significantly improve the surface hydrophobicity and interfacial activity of soymilk.The soymilk with HPH treatment could significantly improve the water solubility(20 folds),thermal stability and bioavailability of icariin.The highest encapsulation efficiency(93.28%),loading capacity(39.09μg/mg),ζ-potentia(absolute value,31.20 mV)and bioavailability(72.14%)were observed in HSI-200(200 bar of homogenization pressure).While HSI-500(500 bar of homogenization pressure)showed the smallest particle size(183.73 nm).ISNCs showed a rougher surface and an irregular lamellar structure with large amount of fine particles by using Cryo-SEM,suggesting that icariin was encapsulated in soymilk.These data supplied a novel strategy to improve the performance of icariin in functional foods.展开更多
Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile sa...Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile salts and various enzymes.Fortunately,encapsulation based on various nanomaterials shows tremendous potential to protect probiotics.In this review,we introduced some novel encapsulation technologies involving nanomaterials in view of predesigned stability and viability,selective adhesion,smart release and colonization,and efficacy exertion of encapsulated probiotics.Furthermore,the interactions between encapsulated probiotics and the gastrointestinal tract were summarized and analyzed,with highlighting the regulatory mechanisms of encapsulated probiotics on intestinal mechanical barrier,chemical barrier,biological barrier and immune barrier.This review would benefit the food and pharmaceutical industries in preparation and utilization of multifunctional encapsulated probiotics.展开更多
Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the ...Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.展开更多
BACKGROUND Abdominal cocoon syndrome(ACS)represents a category within sclerosing encapsulating peritonitis,characterized by the encapsulation of internal organs with a fibrous,cocoon-like membrane of unknown origin,re...BACKGROUND Abdominal cocoon syndrome(ACS)represents a category within sclerosing encapsulating peritonitis,characterized by the encapsulation of internal organs with a fibrous,cocoon-like membrane of unknown origin,resulting in bowel obstruction and ischemia.Diagnosing this condition before surgery poses a cha-llenge,often requiring confirmation during laparotomy.In this context,we depict three instances of ACS:One linked to intestinal obstruction,the second exclu-sively manifesting as intestinal ischemia without any obstruction,and the final case involving a discrepancy between the radiologist and the surgeon.CASE SUMMARY Three male patients,aged 53,58,and 61 originating from Northern Thailand,arrived at our medical facility complaining of abdominal pain without any prior surgeries.Their vital signs remained stable during the assessment.The diagnosis of abdominal cocoon was confirmed through abdominal computed tomography(CT)before surgery.In the first case,the CT scan revealed capsules around the small bowel loops,showing no enhancement,along with mesenteric congestion affecting both small and large bowel loops,without a clear obstruction.The second case showed intestinal obstruction due to an encapsulated capsule on the CT scan.In the final case,a patient presented with recurring abdominal pain.Initially,the radiologist suspected enteritis as the cause after the CT scan.However,a detailed review led the surgeon to suspect encapsulating peritoneal sclerosis(ACS)and subsequently perform surgery.The surgical procedure involved complete removal of the encapsulating structure,resection of a portion of the small bowel,and end-to-end anastomosis.No complications occurred during surgery,and the patients had a smooth recovery after surgery,eventually discharged in good health.The histopathological examination of the fibrous membrane(cocoon)across all cases consistently revealed the presence of fibro-collagenous tissue,without any indications of malignancy.CONCLUSION Individuals diagnosed with abdominal cocoons commonly manifest vague symptoms of abdominal discomfort.An elevated degree of clinical suspicion,combined with the application of appropriate radiological evaluations,markedly improves the probability of identifying the abdominal cocoon before surgical intervention.In cases of complete bowel obstruction or ischemia,the established norm is the comprehensive removal of the peritoneal sac as part of standard care.Resection with intestinal anastomosis is advised solely when ischemia and gangrene have been confirmed.展开更多
BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focu...BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focused on predicting VETC status in small HCC(sHCC).This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC(≤3 cm)patients.AIM To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients.METHODS A total of 309 patients with sHCC,who underwent segmental resection and had their VETC status confirmed,were included in the study.These patients were recruited from three different hospitals:Hospital 1 contributed 177 patients for the training set,Hospital 2 provided 78 patients for the test set,and Hospital 3 provided 54 patients for the validation set.Independent predictors of VETC were identified through univariate and multivariate logistic analyses.These independent predictors were then used to construct a VETC prediction model for sHCC.The model’s performance was evaluated using the area under the curve(AUC),calibration curve,and clinical decision curve.Additionally,Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence,just as it is with the actual VETC status and early recurrence.RESULTS Alpha-fetoprotein_lg10,carbohydrate antigen 199,irregular shape,non-smooth margin,and arterial peritumoral enhancement were identified as independent predictors of VETC.The model incorporating these predictors demonstrated strong predictive performance.The AUC was 0.811 for the training set,0.800 for the test set,and 0.791 for the validation set.The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets.Furthermore,the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC.Finally,early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group,regardless of whether considering the actual or predicted VETC status.CONCLUSION Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC(≤3 cm)patients,and it holds potential for predicting early recurrence.This model equips clinicians with valuable information to make informed clinical treatment decisions.展开更多
BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in a...BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in an invasion independent manner,and was regarded as an independent risk factor for poor prognosis in hepatocellular carcinoma(HCC).AIM To develop and validate a preoperative nomogram using contrast-enhanced computed tomography(CECT)to predict the presence of VETC+in HCC.METHODS We retrospectively evaluated 190 patients with pathologically confirmed HCC who underwent CECT scanning and immunochemical staining for cluster of differentiation 34 at two medical centers.Radiomics analysis was conducted on intratumoral and peritumoral regions in the portal vein phase.Radiomics features,essential for identifying VETC+HCC,were extracted and utilized to develop a radiomics model using machine learning algorithms in the training set.The model’s performance was validated on two separate test sets.Receiver operating characteristic(ROC)analysis was employed to compare the identified performance of three models in predicting the VETC status of HCC on both training and test sets.The most predictive model was then used to constructed a radiomics nomogram that integrated the independent clinical-radiological features.ROC and decision curve analysis were used to assess the performance characteristics of the clinical-radiological features,the radiomics features and the radiomics nomogram.RESULTS The study included 190 individuals from two independent centers,with the majority being male(81%)and a median age of 57 years(interquartile range:51-66).The area under the curve(AUC)for the combined radiomics features selected from the intratumoral and peritumoral areas were 0.825,0.788,and 0.680 in the training set and the two test sets.A total of 13 features were selected to construct the Rad-score.The nomogram,combining clinicalradiological and combined radiomics features could accurately predict VETC+in all three sets,with AUC values of 0.859,0.848 and 0.757.Decision curve analysis revealed that the radiomics nomogram was more clinically useful than both the clinical-radiological feature and the combined radiomics models.CONCLUSION This study demonstrates the potential utility of a CECT-based radiomics nomogram,incorporating clinicalradiological features and combined radiomics features,in the identification of VETC+HCC.展开更多
Phenylethyl resorcinol(PR)demonstrates inhibitory effects on multiple targets in the melanin synthesis pathway,resulting in a strong whitening effect.However,challenges such as limited solubility in water and suscepti...Phenylethyl resorcinol(PR)demonstrates inhibitory effects on multiple targets in the melanin synthesis pathway,resulting in a strong whitening effect.However,challenges such as limited solubility in water and susceptibility to oxidation and discoloration restrict its practical application in the cosmetics industry.In order to enhance stability and performance characteristics,a whitening nanostructured lipid carrier(NLC)was synthesized through high-pressure homogenization.This method entailed the incorporation of solid lipids,a liquid lipid,and a compound emulsifier,with deionized water fulfilling the roles of solid phase,liquid phase,and water phase,respectively.The NLC's particle size,Zeta potential,stability,encapsulation efficiency,and other parameters were assessed using techniques such as particle sizer,stability analyzer,and HPLC.The results showed that the NLC for phenylethyl resorcinol prepared by using the optimal formula(7.50%solid lipids,3.00%ethylhexyl palmitate,and 2.00%Tween 80 and soybean lecithin)has an encapsulation efficiency of 87.11%,a particle size of 157.2±0.70 nm,a kinetic instability of less than 1.2,and a greatly improved stability,thereby successfully solving the problems of unstable storage and poor solubility of phenylethyl resorcinol.展开更多
The aim of this study was to provide a simple, easy-to-use incubation system for small-scale rural poultry farmers far from the electricity grid. To this end, a naturally ventilated solar thermal incubator was built a...The aim of this study was to provide a simple, easy-to-use incubation system for small-scale rural poultry farmers far from the electricity grid. To this end, a naturally ventilated solar thermal incubator was built and experimentally tested. A U-shaped evacuated tube collector and a wooden crate holding 50 eggs were used to build the solar thermal incubator. Water was used as the heat transfer fluid, and an EPCM was integrated into the incubation chamber for operation at night or when the sun was hidden. The heat generated by the solar collector and stored in the heat transfer fluid is transported to the incubation chamber by thermosiphon to heat the chamber. Temperature and humidity probes powered by a solar panel were placed at various locations to monitor the thermo-hygrometric efficiency of the incubation system. The incubator, heated by natural convection, proved to function normally, and the incubation chamber was maintained throughout the incubation period within a temperature range of 35.53˚C to 39.53˚C and relative humidity averaging 49.4% to 68.5%. The experiment was carried out by introducing 30 eggs and the results of the experimental study showed that the incubator’s efficiency was 87%. The performance tests gave a fertility rate of 93% and a hatching rate of 93%, i.e. 28 fertile eggs and 26 hatched eggs, respectively.展开更多
This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encaps...This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encapsulating OA+UA with ALPs(ALP:OA+UA,50:1;OA:UA,1:1)changed the crystalline nature to a more amorphous state through hydrogen bonding and involving O-H/C-O/O-C-O groups.ALP-OA/UA nanoparticles had a particle size and zeta potential(in water)of 199.1 nm/-7.15 mV,with a narrow unimodal size distribution,and excellent pH,salt solution,temperature and storage stability.Compared with ALPs,ALPOA/UA nanoparticles showed enhanced anti-inflammatory activity(especially at a dose of 100μg/mL)in a CuSO-induced zebrafish inflammation model via down-regulating the NF-κB signalling pathway and gene expression of associated transcription factors and cytokines(TNF-α,IL-1βand IL-8).Therefore,ALP-based nanoparticles are natural and anti-inflammatory carriers for hydrophobic bioactive molecules.展开更多
Metal-Organic Frameworks(MOFs)have been developed as solid sorbents for CO_(2) capture applications and their properties can be controlled by tuning the chemical blocks of their crystalline units.A number of MOFs(e.g....Metal-Organic Frameworks(MOFs)have been developed as solid sorbents for CO_(2) capture applications and their properties can be controlled by tuning the chemical blocks of their crystalline units.A number of MOFs(e.g.,HKUST-1)have been developed but the question remains how to deploy them for gas-solid contact.Unfortunately,the direct use of MOFs as nanocrystals would lead to serious problems and risks.Here,for the first time,we report a novel MOF-based hybrid sorbent that is produced via an innovative in-situ microencapsulated synthesis.Using a custom-made double capillary microfluidic assembly,double emulsions of the MOF precursor solutions and UV-curable silicone shell fluid are produced.Subsequently,HKUST-1 MOF is successfully synthesized within the droplets enclosed in the gas permeable microcapsules.The developed MOF-bearing microcapsules uniquely allow the deployment of functional nanocrystals without the challenge of handling ultrafine particles,and further,can selectively reject undesired compounds to protect encapsulated MOFs.展开更多
Encapsulation of Fe nanoparticles in zeolite is a promising way to significantly improve the catalytic activity and stability of Fe-based catalysts during the degradation process of organic pollutants.Herein,Fe nanoca...Encapsulation of Fe nanoparticles in zeolite is a promising way to significantly improve the catalytic activity and stability of Fe-based catalysts during the degradation process of organic pollutants.Herein,Fe nanocatalysts were encapsulated into silicalite-1(S-1)zeolite by using a ligand-protected method(with dicyandiamide(DCD)as a organic ligand)under direct hydrothermal synthesis condition.High-resolution transmission electron microscopy(HRTEM)results confirmed the high dispersion of Fe nanocatalysts which were successfully encapsulated within the voids among the primary particles of the S-1 zeolite.The developed S-1 zeolite encapsulated Fe nanocatalyst(Fe@S-1)exhibited significantly improved catalytic activity and reusability in the catalytic degradation process of methylene blue(MB).Specifically,the developed Fe0.021@S-1 catalyst showed high catalytic degradation activity,giving a high MB degradation efficiency of 100%in 30 min,outperformed the conventional impregnated catalyst(Fe/S-1).Moreover,the Fe@S-1 catalyst afforded an outstanding stability,showing only ca.7.9%activity loss after five cycling tests,while the Fe/S-1 catalyst presented a significantly activity loss of 50.9%after only three cycles.Notably,the encapsulation strategy enabled a relatively lower Fe loading in the Fe@S-1 catalyst in comparison with that of the Fe/S-1 catalyst,i.e.,0.35%vs.0.81%(mass).Radical scavenging experiments along with electron spin resonance(ESR)measurements confirmed that the major role ofOH in the MB degradation process.Specifically,Fe@S-1 catalyst with high molar ratio of[Fe(DCD)]Cl3 is beneficial to form Fe complexes/nanoclusters in the voids(which has large pore size of 1–2 nm)among the primary particles of the zeolite,and thus improving the diffusion and accessibility of reactants to Fe active sites,and thus exhibiting a relatively higher degradation efficiency.This work demonstrates that zeolite-encapsulated Fe nanocatalysts present potential applications in the advanced oxidation of wastewater treatment.展开更多
We introduce a simple and universal scalable encapsulation strategy for perovskite solar cells based on thermal vacuum evaporation of MgF2or MoO3-xcapping layer followed by sealing the device with glass and UV-curable...We introduce a simple and universal scalable encapsulation strategy for perovskite solar cells based on thermal vacuum evaporation of MgF2or MoO3-xcapping layer followed by sealing the device with glass and UV-curable polymer.The proposed encapsulation method is beneficial to most of the other known encapsulation approaches being fully harmless to perovskite and transporting layers and processible at room temperature.Vacuum deposition of the capping layer promotes efficient removal of water,oxygen and organic solvent residuals from the device prior to sealing and could be easily performed using standard equipment for metal electrode deposition.The proposed strategy is transferrable to any lab-scale perovskite solar cell prototypes regardless of their geometry and architecture and results in excellent stability of the devices in ambient air and long operating conditions.Upon the 1000 hours stability test at ambient air(30%-60% RH),the cells preserved 92.9% of their initial efficiency on average under 1 Sun illumination at constant maximum power point tracking(MPPT,ISOS-L-1) and over 96% under sto rage in the dark(ISOS-D-1),thus evidencing for the high effectiveness of the proposed encapsulation approach.展开更多
基金supported by the European Regional Development Fund Postdoctoral Research Support“Structures and Technology Development of Smart Insulation Materials for Indoor Microclimate Regulation”1.1.1.2/VIAA/1/16/152the European Social Fund within the Project“Development of the Academic Personnel of Riga Technical University in the Strategic Fields of Specialization”Nr.8.2.2.0/18/A/017.
文摘Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce building energy consumption.With the wider availability of microencapsulated PCM,there is an opportunity to develop a new type of insulating materials,combinate PCM with traditional insulation materials for latent heat energy storage.These materials are typically flammable and are located on the interior wall finishing yet there has been no detailed assessment of their fire performance.In this research work prototypes of low-density insulating boards for indoor spaces from hemp shives using carbamide resin binder and cold pressing were studied.Bench-scale cone calorimeter tests were conducted to evaluate fire risk,with a focus on assessing material flammability properties and the influence of PCM on the results.In this research,the amount of smoke,heat release rate,effective heat of combustion,specific extinction coefficient,mass loss,carbon dioxide yield,specific loss factor,ignition time of hemp straws samples and samples of hemp straws with 10%and without PCM admixture were compared.There is a risk of flammability for PCM and their fire reaction has not been evaluated when incorporating PCM into interior wall finishing boards.The obtained results can be used by designers to balance the potential energy savings of using PCM with a more complete understanding and predictability of the associated fire risk when using the proposed boards.It also allows for appropriate risk mitigation strategies.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
文摘Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with its legal responsibilities,decides to implement a restoration project for all sites related to the mining and processing of uranium ores.The Malargüe Site is located within the Province of Mendoza in the city of Malargüe.It is the first site to successfully complete its remediation.The activities consist of relocation of tailings to an engineering repository.The tailings management(encapsulation) and rehabilitation of the area was finished in June 2017.The remediation alternative for the ore tailings was selected after conducting comparative studies and submitted the project to the society for consideration.The objective of the encapsulation of the mineral tails is to isolate them from the environment,also proceeding with the decontamination and rehabilitation of the area (landscaping,post-closure monitoring and 20 years monitoring period).Encapsulation consisted of the construction of a containment cell for the mine tailings,to isolate them and prevent pollutants from entering the environment through the transfer routes.To clean the impacted areas,the soil was removed,it was incorporated into the encapsulation,and the filling was carried out with natural soils from the area.Remediation prevents radon transfer to the environment,as ^(222)Ra is an alpha emitter with a half-life of four days,which produces its own radioactive progeny.Radon progeny are solids,and when a ^(222)Ra nucleus emits an alpha particle into the air,the resulting ^(218)Po nucleus,momentarily electrically charged,adheres to any dust particle.Remediation prevents the discharge into the air containing radon and also containing dust particles charged with intensely radioactive radon progeny.The tasks mentioned make it possible to decrease radon emanation,reduce radiological risks to the public and prevent the entry of rainwater into the system.In addition,the containment system prevents the discharge of contaminated liquids into the environment,avoiding contamination of the groundwater.All these activities are according to the concepts of sustainability.
基金Supported by Research Foundation of CLEP of China (Grant No.TY3Q20110003)。
文摘The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.
基金the funding support from the Ministry of Education,Government of India,under the Prime Minister Research Fellowship programme(Grant Nos.SB21221901CEPMRF008347 and SB22230217CEPMRF008347).
文摘Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.
基金supported by the National Natural Science Foundation of China(51835005,52273237)the National Key R&D Program of China(2022YFF1500400)。
文摘Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.
基金supported by the National Natural Science Foundation of China (22288101,21991090,21991091,22078316,22272171 and 22109167)the Sino-French International Research Network (Zeolites)+2 种基金the BL01B1 beamline of SPring-8 and the 1W1B station of Beijing Synchrotron Radiation Facility (BSRF)for the support of XAS measurementsthe Division of Energy Research Resources of Dalian Institute of Chemical Physics for the support of iDPC-STEM measurementsthe support of the Alexander von Humboldt Foundation (CHN 1220532 HFST-P)。
文摘Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity.
基金the supporting from the USDA National Institute of Food and Agriculture,Agricultural and Food Research Initiative Competitive Program(2020-03921)partly supported by funding from the Good Food Institute。
文摘Simple but effective methods are required to incorporate multiple bioactive polyphenols into delivery systems to increase their dispersibility,stability and bioavailability.We developed and tested three p Hdriven protocols for creating nanoemulsions loaded with multiple lipophilic polyphenols.These protocols differed in how the different polyphenols were incorporated into the nanoemulsions.The impact of these three methods on the formation,properties,and gastrointestinal fate of nanoemulsions loaded with curcumin,resveratrol,and quercetin was investigated.The three methods produced nanoemulsions with similar initial particle properties:droplet diameters(0.15,0.16,and 0.15μm)and zeta-potentials(–59,–58,and–58 m V),respectively.However,the average encapsulation efficiencies(82%,88%,and 61%),gastrointestinal stabilities(83%,97%,and 29%)and bioaccessibilities(77%,90%,and 73%)for curcumin,resveratrol,and quercetin were somewhat different.In particular,more quercetin degradation occurred using the approach that held it under alkaline conditions for extended periods.In general,the p H-driven method provides researchers with a versatile approach of incorporating multiple polyphenols with different characteristics into functional food and beverages using a simple and inexpensive method.
基金the financial support from Youth Innovation Promotion Association,Chinese Academy of Sciences(2022353)Guangdong Basic and Applied Basic Research Foundation(2020A1515011025)Science and Technology Planning Project of Guangdong Province(2022A0505050055)。
文摘Soymilk is a natural nanocarrier.However,the performance of flavonoid-soymilk nano-complex remains unclear.In this work,icariin-soymilk nano-complexes(ISNCs)were successfully fabricated and characterized.The effects of high-pressure homogenization(HPH)treatment on structure and physicochemical properties of soymilk and nano-complexes were investigated.HPH treatment could significantly improve the surface hydrophobicity and interfacial activity of soymilk.The soymilk with HPH treatment could significantly improve the water solubility(20 folds),thermal stability and bioavailability of icariin.The highest encapsulation efficiency(93.28%),loading capacity(39.09μg/mg),ζ-potentia(absolute value,31.20 mV)and bioavailability(72.14%)were observed in HSI-200(200 bar of homogenization pressure).While HSI-500(500 bar of homogenization pressure)showed the smallest particle size(183.73 nm).ISNCs showed a rougher surface and an irregular lamellar structure with large amount of fine particles by using Cryo-SEM,suggesting that icariin was encapsulated in soymilk.These data supplied a novel strategy to improve the performance of icariin in functional foods.
基金supported by the National Key Research and Development Program(2019YFC1606704)the Key Research and Development Program of Shaanxi Province(2022NY-013)+1 种基金National Natural Science Foundation of China(31801653)the Natural Science Foundation of Shaanxi Province(2019JQ-722).
文摘Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile salts and various enzymes.Fortunately,encapsulation based on various nanomaterials shows tremendous potential to protect probiotics.In this review,we introduced some novel encapsulation technologies involving nanomaterials in view of predesigned stability and viability,selective adhesion,smart release and colonization,and efficacy exertion of encapsulated probiotics.Furthermore,the interactions between encapsulated probiotics and the gastrointestinal tract were summarized and analyzed,with highlighting the regulatory mechanisms of encapsulated probiotics on intestinal mechanical barrier,chemical barrier,biological barrier and immune barrier.This review would benefit the food and pharmaceutical industries in preparation and utilization of multifunctional encapsulated probiotics.
基金funding from the European Union's Horizon 2020 Research and Innovation Program(872102)P.S.thanks the Science Achievement Scholarship of Thailand(SAST)for her research secondment at The University of Manchester.Y.J.thanks the National Natural Science Foundation of China(22378407)for funding.
文摘Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.
文摘BACKGROUND Abdominal cocoon syndrome(ACS)represents a category within sclerosing encapsulating peritonitis,characterized by the encapsulation of internal organs with a fibrous,cocoon-like membrane of unknown origin,resulting in bowel obstruction and ischemia.Diagnosing this condition before surgery poses a cha-llenge,often requiring confirmation during laparotomy.In this context,we depict three instances of ACS:One linked to intestinal obstruction,the second exclu-sively manifesting as intestinal ischemia without any obstruction,and the final case involving a discrepancy between the radiologist and the surgeon.CASE SUMMARY Three male patients,aged 53,58,and 61 originating from Northern Thailand,arrived at our medical facility complaining of abdominal pain without any prior surgeries.Their vital signs remained stable during the assessment.The diagnosis of abdominal cocoon was confirmed through abdominal computed tomography(CT)before surgery.In the first case,the CT scan revealed capsules around the small bowel loops,showing no enhancement,along with mesenteric congestion affecting both small and large bowel loops,without a clear obstruction.The second case showed intestinal obstruction due to an encapsulated capsule on the CT scan.In the final case,a patient presented with recurring abdominal pain.Initially,the radiologist suspected enteritis as the cause after the CT scan.However,a detailed review led the surgeon to suspect encapsulating peritoneal sclerosis(ACS)and subsequently perform surgery.The surgical procedure involved complete removal of the encapsulating structure,resection of a portion of the small bowel,and end-to-end anastomosis.No complications occurred during surgery,and the patients had a smooth recovery after surgery,eventually discharged in good health.The histopathological examination of the fibrous membrane(cocoon)across all cases consistently revealed the presence of fibro-collagenous tissue,without any indications of malignancy.CONCLUSION Individuals diagnosed with abdominal cocoons commonly manifest vague symptoms of abdominal discomfort.An elevated degree of clinical suspicion,combined with the application of appropriate radiological evaluations,markedly improves the probability of identifying the abdominal cocoon before surgical intervention.In cases of complete bowel obstruction or ischemia,the established norm is the comprehensive removal of the peritoneal sac as part of standard care.Resection with intestinal anastomosis is advised solely when ischemia and gangrene have been confirmed.
基金Supported by the Project of Shanghai Municipal Commission of Health,No.2022LJ024.
文摘BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focused on predicting VETC status in small HCC(sHCC).This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC(≤3 cm)patients.AIM To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients.METHODS A total of 309 patients with sHCC,who underwent segmental resection and had their VETC status confirmed,were included in the study.These patients were recruited from three different hospitals:Hospital 1 contributed 177 patients for the training set,Hospital 2 provided 78 patients for the test set,and Hospital 3 provided 54 patients for the validation set.Independent predictors of VETC were identified through univariate and multivariate logistic analyses.These independent predictors were then used to construct a VETC prediction model for sHCC.The model’s performance was evaluated using the area under the curve(AUC),calibration curve,and clinical decision curve.Additionally,Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence,just as it is with the actual VETC status and early recurrence.RESULTS Alpha-fetoprotein_lg10,carbohydrate antigen 199,irregular shape,non-smooth margin,and arterial peritumoral enhancement were identified as independent predictors of VETC.The model incorporating these predictors demonstrated strong predictive performance.The AUC was 0.811 for the training set,0.800 for the test set,and 0.791 for the validation set.The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets.Furthermore,the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC.Finally,early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group,regardless of whether considering the actual or predicted VETC status.CONCLUSION Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC(≤3 cm)patients,and it holds potential for predicting early recurrence.This model equips clinicians with valuable information to make informed clinical treatment decisions.
基金The study was reviewed and approved by the Second Hospital of Shandong University Institutional Review Board,IRB No.KYLL-2023LW044.
文摘BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in an invasion independent manner,and was regarded as an independent risk factor for poor prognosis in hepatocellular carcinoma(HCC).AIM To develop and validate a preoperative nomogram using contrast-enhanced computed tomography(CECT)to predict the presence of VETC+in HCC.METHODS We retrospectively evaluated 190 patients with pathologically confirmed HCC who underwent CECT scanning and immunochemical staining for cluster of differentiation 34 at two medical centers.Radiomics analysis was conducted on intratumoral and peritumoral regions in the portal vein phase.Radiomics features,essential for identifying VETC+HCC,were extracted and utilized to develop a radiomics model using machine learning algorithms in the training set.The model’s performance was validated on two separate test sets.Receiver operating characteristic(ROC)analysis was employed to compare the identified performance of three models in predicting the VETC status of HCC on both training and test sets.The most predictive model was then used to constructed a radiomics nomogram that integrated the independent clinical-radiological features.ROC and decision curve analysis were used to assess the performance characteristics of the clinical-radiological features,the radiomics features and the radiomics nomogram.RESULTS The study included 190 individuals from two independent centers,with the majority being male(81%)and a median age of 57 years(interquartile range:51-66).The area under the curve(AUC)for the combined radiomics features selected from the intratumoral and peritumoral areas were 0.825,0.788,and 0.680 in the training set and the two test sets.A total of 13 features were selected to construct the Rad-score.The nomogram,combining clinicalradiological and combined radiomics features could accurately predict VETC+in all three sets,with AUC values of 0.859,0.848 and 0.757.Decision curve analysis revealed that the radiomics nomogram was more clinically useful than both the clinical-radiological feature and the combined radiomics models.CONCLUSION This study demonstrates the potential utility of a CECT-based radiomics nomogram,incorporating clinicalradiological features and combined radiomics features,in the identification of VETC+HCC.
基金supported by the Guangdong Industry Polytechnic University Student Research Project[grant numbers XSKYL202317]Guangdong Provincial Key Laboratory of Green Chemical Product Technology Open Project[grant numbers GC202117].
文摘Phenylethyl resorcinol(PR)demonstrates inhibitory effects on multiple targets in the melanin synthesis pathway,resulting in a strong whitening effect.However,challenges such as limited solubility in water and susceptibility to oxidation and discoloration restrict its practical application in the cosmetics industry.In order to enhance stability and performance characteristics,a whitening nanostructured lipid carrier(NLC)was synthesized through high-pressure homogenization.This method entailed the incorporation of solid lipids,a liquid lipid,and a compound emulsifier,with deionized water fulfilling the roles of solid phase,liquid phase,and water phase,respectively.The NLC's particle size,Zeta potential,stability,encapsulation efficiency,and other parameters were assessed using techniques such as particle sizer,stability analyzer,and HPLC.The results showed that the NLC for phenylethyl resorcinol prepared by using the optimal formula(7.50%solid lipids,3.00%ethylhexyl palmitate,and 2.00%Tween 80 and soybean lecithin)has an encapsulation efficiency of 87.11%,a particle size of 157.2±0.70 nm,a kinetic instability of less than 1.2,and a greatly improved stability,thereby successfully solving the problems of unstable storage and poor solubility of phenylethyl resorcinol.
文摘The aim of this study was to provide a simple, easy-to-use incubation system for small-scale rural poultry farmers far from the electricity grid. To this end, a naturally ventilated solar thermal incubator was built and experimentally tested. A U-shaped evacuated tube collector and a wooden crate holding 50 eggs were used to build the solar thermal incubator. Water was used as the heat transfer fluid, and an EPCM was integrated into the incubation chamber for operation at night or when the sun was hidden. The heat generated by the solar collector and stored in the heat transfer fluid is transported to the incubation chamber by thermosiphon to heat the chamber. Temperature and humidity probes powered by a solar panel were placed at various locations to monitor the thermo-hygrometric efficiency of the incubation system. The incubator, heated by natural convection, proved to function normally, and the incubation chamber was maintained throughout the incubation period within a temperature range of 35.53˚C to 39.53˚C and relative humidity averaging 49.4% to 68.5%. The experiment was carried out by introducing 30 eggs and the results of the experimental study showed that the incubator’s efficiency was 87%. The performance tests gave a fertility rate of 93% and a hatching rate of 93%, i.e. 28 fertile eggs and 26 hatched eggs, respectively.
基金supported by the Shandong Provincial Natural Science Foundation of China(ZR2019BC100)Science,Education and Industry Integration Innovation Pilot Project of Qilu University of Technology(Shandong Academy of Sciences)(2020KJC-ZD10)Incubation Program of Youth Innovation in Shandong Province。
文摘This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encapsulating OA+UA with ALPs(ALP:OA+UA,50:1;OA:UA,1:1)changed the crystalline nature to a more amorphous state through hydrogen bonding and involving O-H/C-O/O-C-O groups.ALP-OA/UA nanoparticles had a particle size and zeta potential(in water)of 199.1 nm/-7.15 mV,with a narrow unimodal size distribution,and excellent pH,salt solution,temperature and storage stability.Compared with ALPs,ALPOA/UA nanoparticles showed enhanced anti-inflammatory activity(especially at a dose of 100μg/mL)in a CuSO-induced zebrafish inflammation model via down-regulating the NF-κB signalling pathway and gene expression of associated transcription factors and cytokines(TNF-α,IL-1βand IL-8).Therefore,ALP-based nanoparticles are natural and anti-inflammatory carriers for hydrophobic bioactive molecules.
基金National Science Foundation (CBET 1927336)Saudi Aramco,and the Lenfest Center for Sustainable Energy at the Earth Institute at Columbia University for financially supporting this work+3 种基金performed at GeoSoilEnviroCARS (The University of Chicago,Sector 13)Advanced Photon Source (APS),Argonne National Laboratory.GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1634415)the Department of Energy-GeoSciences (DE-FG02-94ER14466)the Advanced Photon Source,a U.S.Department of Energy (DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357.
文摘Metal-Organic Frameworks(MOFs)have been developed as solid sorbents for CO_(2) capture applications and their properties can be controlled by tuning the chemical blocks of their crystalline units.A number of MOFs(e.g.,HKUST-1)have been developed but the question remains how to deploy them for gas-solid contact.Unfortunately,the direct use of MOFs as nanocrystals would lead to serious problems and risks.Here,for the first time,we report a novel MOF-based hybrid sorbent that is produced via an innovative in-situ microencapsulated synthesis.Using a custom-made double capillary microfluidic assembly,double emulsions of the MOF precursor solutions and UV-curable silicone shell fluid are produced.Subsequently,HKUST-1 MOF is successfully synthesized within the droplets enclosed in the gas permeable microcapsules.The developed MOF-bearing microcapsules uniquely allow the deployment of functional nanocrystals without the challenge of handling ultrafine particles,and further,can selectively reject undesired compounds to protect encapsulated MOFs.
基金support from the Jiangsu Province Dual Creative Phds Program(JSSCBS20210400)the Jiangsu Specially-Appointed Professors Program.
文摘Encapsulation of Fe nanoparticles in zeolite is a promising way to significantly improve the catalytic activity and stability of Fe-based catalysts during the degradation process of organic pollutants.Herein,Fe nanocatalysts were encapsulated into silicalite-1(S-1)zeolite by using a ligand-protected method(with dicyandiamide(DCD)as a organic ligand)under direct hydrothermal synthesis condition.High-resolution transmission electron microscopy(HRTEM)results confirmed the high dispersion of Fe nanocatalysts which were successfully encapsulated within the voids among the primary particles of the S-1 zeolite.The developed S-1 zeolite encapsulated Fe nanocatalyst(Fe@S-1)exhibited significantly improved catalytic activity and reusability in the catalytic degradation process of methylene blue(MB).Specifically,the developed Fe0.021@S-1 catalyst showed high catalytic degradation activity,giving a high MB degradation efficiency of 100%in 30 min,outperformed the conventional impregnated catalyst(Fe/S-1).Moreover,the Fe@S-1 catalyst afforded an outstanding stability,showing only ca.7.9%activity loss after five cycling tests,while the Fe/S-1 catalyst presented a significantly activity loss of 50.9%after only three cycles.Notably,the encapsulation strategy enabled a relatively lower Fe loading in the Fe@S-1 catalyst in comparison with that of the Fe/S-1 catalyst,i.e.,0.35%vs.0.81%(mass).Radical scavenging experiments along with electron spin resonance(ESR)measurements confirmed that the major role ofOH in the MB degradation process.Specifically,Fe@S-1 catalyst with high molar ratio of[Fe(DCD)]Cl3 is beneficial to form Fe complexes/nanoclusters in the voids(which has large pore size of 1–2 nm)among the primary particles of the zeolite,and thus improving the diffusion and accessibility of reactants to Fe active sites,and thus exhibiting a relatively higher degradation efficiency.This work demonstrates that zeolite-encapsulated Fe nanocatalysts present potential applications in the advanced oxidation of wastewater treatment.
基金financially supported by the Russian Science Foundation(19-73-30022)the support from the program of the Interdisciplinary Scientific and Educational School of M.V.Lomonosov Moscow State University “The future of the planet and global environmental change”MSU Program of Development。
文摘We introduce a simple and universal scalable encapsulation strategy for perovskite solar cells based on thermal vacuum evaporation of MgF2or MoO3-xcapping layer followed by sealing the device with glass and UV-curable polymer.The proposed encapsulation method is beneficial to most of the other known encapsulation approaches being fully harmless to perovskite and transporting layers and processible at room temperature.Vacuum deposition of the capping layer promotes efficient removal of water,oxygen and organic solvent residuals from the device prior to sealing and could be easily performed using standard equipment for metal electrode deposition.The proposed strategy is transferrable to any lab-scale perovskite solar cell prototypes regardless of their geometry and architecture and results in excellent stability of the devices in ambient air and long operating conditions.Upon the 1000 hours stability test at ambient air(30%-60% RH),the cells preserved 92.9% of their initial efficiency on average under 1 Sun illumination at constant maximum power point tracking(MPPT,ISOS-L-1) and over 96% under sto rage in the dark(ISOS-D-1),thus evidencing for the high effectiveness of the proposed encapsulation approach.