Denim is widely accepted among exported textile products due to its aesthetics, appearance, and fashion. Practitioners employed several physical or chemical treatments to improve denim qualities in denim finishing ope...Denim is widely accepted among exported textile products due to its aesthetics, appearance, and fashion. Practitioners employed several physical or chemical treatments to improve denim qualities in denim finishing operations. So, several treatment processes, including enzymatic, bleaching, singeing, heat set, and ozone finish, are used, which made this processing more energy consumption and time-consuming. Therefore, it is significant to investigate how changing the chemicals and raw ingredients could improve the finishing process, which is environmentally and economically beneficial for sustainable production practices in the denim finishing process. This study’s research design comprises an experimental investigation in a denim plant in Bangladesh. Two different fabrics were chosen to analyze, determining the potential savings of finishing on the denim fabrics’ performance characteristics. By deducting singeing and heat-set processes, the researchers ran an experimental process by maintaining the same length of fabric. Then, the impacts of finishing process optimization on the mechanical, thermal, and comfort parameters of drape, stiffness, and tear strength were examined. The study’s findings demonstrated that this experiment increased productivity and reduced the finishing unit’s energy consumption without compromising the denim fabrics’ quality. This study significantly impacts environmental sustainability by preserving limited energy resources and manufacturing denim finishing processes.展开更多
Internal thermally coupled distillation columns (ITCDIC) are the frontier of distillation energy saving research. In this paper, a novel energy saving model of ideal ITCDIC and a simulation algorithm are presented,upo...Internal thermally coupled distillation columns (ITCDIC) are the frontier of distillation energy saving research. In this paper, a novel energy saving model of ideal ITCDIC and a simulation algorithm are presented,upon which a series of comparative studies on energy savings with conventional distillation columns are carried out. Furthermore, we present an optimization model of ideal ITCDIC, which can be used to achieve the maximum energy saving and find the optimal design parameters directly. The binary system of benzene-toluene is adopted for the illustrative example of simulation and optimization. The results show that the maximum energy saving of ITCDIC is 52.25% (compared with energy consumption of conventional distillation under the minimum reflux ratio operation); the optimal design parameters are obtained, where the rectifying section pressure and the feed thermal condition are Pr=0.3006 MPa and q=0.5107 respectively.展开更多
When saving energy in a pneumatic system,the problem of energy losses is usually solved by reducing the air supply pressure.The power-matching method is applied to optimize the air-supply pressure of the pneumatic sys...When saving energy in a pneumatic system,the problem of energy losses is usually solved by reducing the air supply pressure.The power-matching method is applied to optimize the air-supply pressure of the pneumatic system,and the energy-saving effect is verified by experiments.First,the experimental platform of a pneumatic rotary actuator servo-control system is built,and the mechanism of the valve-controlled cylinder system is analyzed.Then,the output power characteristics and load characteristics of the system are derived,and their characteristic curves are drawn.The employed air compressor is considered as a constant-pressure source of a quantitative pump,and the power characteristic of the system is matched.The power source characteristic curve should envelope the output characteristic curve and load characteristic curve.The minimum gas supply pressure obtained by power matching represents the optimal gas supply pressure.The comparative experiments under two different gas supply pressure conditions show that the system under the optimal gas supply pressure can greatly reduce energy losses.展开更多
To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize energy sa...To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize energy savings under a given performance degradation. Machine learning techniques were utilized to develop performance models which would provide accurate performance prediction with change in operating core-uncore frequency. Experiments, performed on a node (28 cores) of a modern computing platform showed significant energy savings of as much as 26% with performance degradation of as low as 5% under the proposed strategy compared with the execution in the unlimited power case.展开更多
The very long tradition of the activated sludge treatment model within the water industry has demonstrated very versatile possibilities to adopt the operation mode for different enhancements. By looking into other tre...The very long tradition of the activated sludge treatment model within the water industry has demonstrated very versatile possibilities to adopt the operation mode for different enhancements. By looking into other treatment models within the activated sludge family it is possible to find alternatives for the operation. This paper concentrates on the possibilities to improve even small WWTP with respect to energy savings. The small plant in Northern Sweden, called Rosvik WWTP, is given as an example. Some important findings related to the intermittent aeration mode may be summarized as follows: 1) An energy savings for the operation of the small WWTP with respect to aeration needs that resulted in a decrease of the energy power supply by more than 35%, as compared with the previous operation based on continuous aeration;2) The up to date effluent levels with respect to the main pollutants have remained at very good levels in 2020, P-level averages 0.16 mg P/l versus consent level <</span><span> </span><span style="font-family:Verdana;">0.5 mg P/l;COD-level 40 versus <</span><span> </span><span><span style="font-family:Verdana;">70 mg/l and BOD</span><sub><span style="font-family:Verdana;">7</span></sub><span style="font-family:Verdana;"> 9 versus <</span></span><span> </span><span><span style="font-family:Verdana;">15 mg/l;3) Sometimes, also improved sludge settling characteristics have been observed, thus providing improved discharge figures;4) The potential to develop an enhanced biological phosphorus removal. There are however </span><span style="font-family:Verdana;">some needed conditions to accomplish these improvements: 1) Reliable</span><span style="font-family:Verdana;"> on-line probes for both oxygen control, SS-concentration control and optionally also for nitrogen control;2) A flexible automation system that allows the needed process modifications to take place;3) And finally, very important dedicated and competent plant operators, with the needed curiosity for operation improvements.展开更多
The French Textile Machinery Manufacturers’ Association (UCMTF) has presented,during a seminar it organized for textile professionals and students,the spectacular energy savings achieved thanks to state of the
The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of t...The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of the fastest growing applications of renewable energy in the world with annual increases of 10 % and much faster in China. With high coefficient of performance (COP) up to 6, GHPs make efficiency of primary energy more than 240 % with assumed a 40 % of electricity generation efficiency, which means energy savings and CO2 emission reduction. In this paper,the geothermal resources and its utilization are talked about, and GHPs technology was introduced. Due to its high efficiency, there will be energy savings by using GHPs. There is also CO2 emission reduction because of using geothermal heat pumps, which is analyzed in the end.展开更多
The purpose of this research is to assess thermal performance and energy saving of a residential building in the hot semi-arid climate of Marrakech(Morocco).The studied house is built as usual in Marrakech without any...The purpose of this research is to assess thermal performance and energy saving of a residential building in the hot semi-arid climate of Marrakech(Morocco).The studied house is built as usual in Marrakech without any thermal insula-tion except for its external walls,facing East and West,which are double walls with a 5 cm air gap in between(“cavity wall”technique).The cavity wall effec-tive thermal conductivity was carefully calculated taking into account both radia-tion and convection heat transfers.Experimental results,obtained from winter and summer monitoring of the house,show well dampening of air temperature,thanks to its thermal inertia.However,this temperature remained outside the standard thermal comfort zone leading to large cooling/heating load.Simula-tion results indicate that the cavity wall contributes to an overall reduction of 13%and 5%of the house heating and cooling loads respectively.Moreover,the addition of XPS roof thermal insulation significantly enhances the heating and cooling energy savings to 26%and 40%respectively.展开更多
In hot-humid climates,particularly in sub-Saharan Africa(SSA),ambient temperatures and relative humidity are as high as 35°C and 84%,respectively,requiring the use of mechanical cooling systems for indoor thermal...In hot-humid climates,particularly in sub-Saharan Africa(SSA),ambient temperatures and relative humidity are as high as 35°C and 84%,respectively,requiring the use of mechanical cooling systems for indoor thermal comfort.Split-type vapor-compression air-conditioners(SVAC)are mainly used for space cooling in SSA and consume 60-80%of total energy consumption in commercial and public buildings.Appropriate control strategy of the indoor set-point temperature of SVAC can result in significant energy savings in these buildings.In this study,modeling and dynamic simulation have been conducted using EnergyPlus to predict the energy saving potential and indoor thermal comfort of buildings in hot-humid climates by controlling set-point temperature of the SVAC.In a case study,climatic data for Ghana,was used to predict the energy saving potential and indoor thermal comfort.The study results revealed that,to ensure indoor thermal comfort at high outdoor temperature condition of 35°C,the least and optimum set-point temperatures of the SVAC should be 21°C and 25°C,respectively.On the other hand,for low outdoor temperature condition,the least and optimum set-point temperatures were 22°C and 26°C,respectively.Considering 1-star and 2-star rated SVACs which are dominantly used in Ghana,operating at 21-25°C in the case of high outdoor conditions,and 22-26°C for low outdoor conditions relative to the least temperatures resulted in energy savings of 8-33%and 12-44%,respectively.展开更多
There are many factors that have a major influence on reducing the energy expenditure in building sector.This research aims at qualitative and quantitative assessment of those factors such as double glazed windows,ver...There are many factors that have a major influence on reducing the energy expenditure in building sector.This research aims at qualitative and quantitative assessment of those factors such as double glazed windows,ver-tical greenery systems(VGS),integrating of semi-transparent photovoltaic device with architectural design of buildings,energy saving by using heat reflecting coating,passive climate control methods,energy saving by shading,building energy performance enhancement by using optimisation technique,double skin green facade,etc.through a holistic and thematic approach.Amongst the aforesaid techniques,VGS is found the most reliable,efficient and sustainable solution.Attractive VGS can improve the urban environment,increase biodiversity,mit-igate pollution also results economic benefit of the buildings as like as energy savings and decreasing surface temperature.Four fundamental energy saving methods are used in VGS which are considered as passive energy saving mechanism.Firstly,interception of solar radiation due to the shadow risen by the vegetation;secondly,vegetation also provides thermal insulation;thirdly,plants evapotranspiration helps for evaporative cooling of building;finally,building blockage makes a variation of wind effect on building.The peak cooling load of ivy coated green building wall has been reduced by 28%.If a VGS is installed without windows and building fac-ing on west,east,south and north correspondingly,the reduction in the cooling load capacity of the building is observed to be up to 20,18,8 and 5%,respectively.Very high thermally resistive glazed areas on building envelope can be secured via thin film PV glazing and vacuum glazing products with an average U-value of 1.1 and 0.4 W/m 2 K,respectively.Energy use policies are also helpful to improve energy consumption scenario of buildings.For developing more energy-efficient,sustainable and eco-friendly buildings,these techniques might be helpful for the building designers and architects.展开更多
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
This paper analyzes the effect of the depth of submetering(i.e.,from whole-building level to system level to equipment level and further to sensor level)on the energy savings that can be achieved in energy analytics o...This paper analyzes the effect of the depth of submetering(i.e.,from whole-building level to system level to equipment level and further to sensor level)on the energy savings that can be achieved in energy analytics or energy information system(EIS)implementations.An EIS is defined as a combination of software and hardware systems that gather energy-related data,feed it into an analytics engine,and present building operators with analyses that allow them to reduce energy consumption.Data regarding the energy savings,the depth of sub-metering in the EIS implementation,and the cost of submetering was gathered for 21 case(building portfolio)studies and analyzed to determine if there is a relationship between the depth of submetering and the energy savings achieved.It was found that in general,deeper submetering does in fact appear to enable deeper energy savings.The one exception to this is sensor-level data:the addition of detailed sensor level metering to other higher levels of metering data does not seem to enable deeper energy savings in EIS implementations.Detailed findings in energy savings,cost and cost-effectiveness were presented for different levels of metering that may provide insightful rule-of-thumb estimations for similar implementations.展开更多
The selection of high-performance building facade systems is essential to promote building energy efficiency.However,this selection is highly dependent on early-stage design decisions,which are extremely challenging c...The selection of high-performance building facade systems is essential to promote building energy efficiency.However,this selection is highly dependent on early-stage design decisions,which are extremely challenging considering numerous design parameters with early-stage uncertainties.This paper aims to evaluate the appli-cability of deep learning networks in estimating the energy savings of different facade alternatives in the early-stage design of buildings.The energy performance of two competing façade systems(i.e.,Ultra-High-Performance Fiber-Reinforced-Concrete and conventional panels)was estimated for different scenarios through building en-ergy simulations using EnergyPlusTM.Three deep learning networks were trained using the collected data from the simulation of fourteen buildings in fourteen different locations to estimate the heating,cooling,and total site energy savings.The accuracy of trained deep networks was compared with the accuracy of three common data-driven prediction models including,Gradient Boosting Machines,Random Forest,and Generalized Linear Regression.The results showed that the deep learning network trained to predict building total site energy savings had the highest accuracy among other models with a mean absolute error of 1.59 and a root mean square error of 3.48,followed by Gradient Boosting Machines,Random Forest,and last Generalized Linear Regression.Similarly,deep networks trained to predict building cooling and heating energy savings had the lowest mean average error of 0.20 and 1.17,respectively,compared to other predictive models.It is expected the decision support system developed based on this methodology helps architects and designers to quantify the energy savings of different facade systems in early stages of design decisions.展开更多
Mining shovel is a crucial piece of equipment for high-efficiency production in open-pit mining and stands as one of the largest energy consumption sources in mining.However,substantial energy waste occurs during the ...Mining shovel is a crucial piece of equipment for high-efficiency production in open-pit mining and stands as one of the largest energy consumption sources in mining.However,substantial energy waste occurs during the descent of the hoisting system or the deceleration of the slewing platform.To reduce the energy loss,an innovative hydrau-lic-electric hybrid drive system is proposed,in which a hydraulic pump/motor connected with an accumulator is added to assist the electric motor to drive the hoisting system or slewing platform,recycling kinetic and potential energy.The utilization of the kinetic and potential energy reduces the energy loss and installed power of the min-ing shovel.Meanwhile,the reliability of the mining shovel pure electric drive system also can be increased.In this paper,the hydraulic-electric hybrid driving principle is introduced,a small-scale testbed is set up to verify the feasibil-ity of the system,and a co-simulation model of the proposed system is established to clarify the system operation and energy characteristics.The test and simulation results show that,by adopting the proposed system,compared with the traditional purely electric driving system,the peak power and energy consumption of the hoisting electric motor are reduced by 36.7%and 29.7%,respectively.Similarly,the slewing electric motor experiences a significant decrease in peak power by 86.9%and a reduction in energy consumption by 59.4%.The proposed system expands the application area of the hydraulic electric hybrid drive system and provides a reference for its application in over-sized and super heavy equipment.展开更多
The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that deman...The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that demand always for varied control and data signalling based on control base station(CBS)and data base station(DBS).Hence,this paper discusses the energy management in wireless cellular networks using wide range of control for twice the reduction in energy conservation in non-standalone deployment of 5G network.As the new radio(NR)based 5G network is configured to transmit signal blocks for every 20 ms,the proposed algorithm implements withstanding capacity of on or off based energy switching,which in-turn operates in wide range control by carrying out reduced computational complexity.The proposed Wide range of control for base station in green cellular network using sleep mode for switch(WGCNS)algorithm toon and off the base station will work in heavy load with neighbouring base station.For reducing the overhead duration in air,heuristic versions of the algorithm are proposed at the base station.The algorithm operates based on the specification with suggested protocol-level to give best amount of energy savings.The proposed algorithm reduces 40%to 83%of residual energy based on the traffic pattern of the urban scenario.展开更多
In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has n...In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has not been sufficiently investigated.This paper studied the factors influencing the energy performance of intermittent heating for the representativeoffice inhot summer&coldwinter zone.Basedon theheatbalancemethod,adynamic thermalmodel of the intermittent heating roomwas built and tested by experiments.And then,it analyzed the total space heating load,the amount of energy saving and energy saving ratio of the intermittent heating under different preheating hours,occupation hours,required roomtemperatures,air change rates,overall heat transfer coefficients(U-value)of windows and wall materials.If the adjacent rooms were not heated,for a typical room occupied about 10 h a day,the energy-saving ratio of intermittent heating was about 30%compared with continuous heating.But the preheating power was higher than two times of continuous heating.The results also indicated that the occupation hours had a significant effect on energy saving amount and ratio,it should be noted that the energy saving ratio by intermittent heating was much lower than the unoccupied period ratio.Relative to other factors,the heating temperatures,room air change rates and U-value of windows,and room envelope materials had little effect on energy efficiency.If the adjacent rooms were heated in the same manner as the roomin question,the energy-saving ratio of the total load of intermittent heating was heavily reduced to 8.46%.展开更多
The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of ...The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.展开更多
Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,...Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,energy-saving performance of the whole metro system cannot be guaranteed.Design/methodology/approach–A cooperative train control framework is formulated to regulate a novel train operation mode.The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train.An improved brute force(BF)algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.Findings–Case studies on the actual metro line in Guangzhou,China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters.The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.Originality/value–Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process,which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation.This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea,where energy-efficient train operation can be realised once train running time is determined,thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.展开更多
The system translates the arm/boom/buck's potential energy into electrical energy and then the electrical energy is stored in a storage device.This study develops a set of energy management strategy to make the re...The system translates the arm/boom/buck's potential energy into electrical energy and then the electrical energy is stored in a storage device.This study develops a set of energy management strategy to make the recoverable energy recycling efficiently.This energy of traditional excavator is lost in the form of heat energy,which is wasteful,and makes the component's temperature higher and higher to reduce the machine's life.Research on this system not only conforms to the current topic of energy crisis,but also mates with the actual engineering,so it is significant to research that.展开更多
In order to have an in-depth understanding of the metal ceiling radiant panel with capillary tubes, a radiant ceiling heating system is constructed to study the actual heating performance and thermal comfort by experi...In order to have an in-depth understanding of the metal ceiling radiant panel with capillary tubes, a radiant ceiling heating system is constructed to study the actual heating performance and thermal comfort by experiments. In addition, the energy saving potential of the novel heating system is discussed in terms of the COP (coefficient of performance) of the ground source heat pump and the exergy efficiency of the radiant terminal. The results indicate that the heating system shows high thermal stability and thermal comfort. When the system reaches a stable condition, the radiant heat transfer accounts for 62.7% of the total heat transfer, and the total heat transfer can meet the heating demands of most buildings. Compared to a radiant floor heating system, it offers advantages in a shorter preheating time, a lower supply water temperature and a stronger heating capability. The COP of the ground source heat pump is increased greatly when the supply water temperature is 28 to 33 ℃, and the exergy efficiency of the metal ceiling with capillary tubes is 1.6 times that of the radiant floor when the reference temperature is 5 ℃ The novel radiant ceiling heating system shows a tremendous energy saving potential.展开更多
文摘Denim is widely accepted among exported textile products due to its aesthetics, appearance, and fashion. Practitioners employed several physical or chemical treatments to improve denim qualities in denim finishing operations. So, several treatment processes, including enzymatic, bleaching, singeing, heat set, and ozone finish, are used, which made this processing more energy consumption and time-consuming. Therefore, it is significant to investigate how changing the chemicals and raw ingredients could improve the finishing process, which is environmentally and economically beneficial for sustainable production practices in the denim finishing process. This study’s research design comprises an experimental investigation in a denim plant in Bangladesh. Two different fabrics were chosen to analyze, determining the potential savings of finishing on the denim fabrics’ performance characteristics. By deducting singeing and heat-set processes, the researchers ran an experimental process by maintaining the same length of fabric. Then, the impacts of finishing process optimization on the mechanical, thermal, and comfort parameters of drape, stiffness, and tear strength were examined. The study’s findings demonstrated that this experiment increased productivity and reduced the finishing unit’s energy consumption without compromising the denim fabrics’ quality. This study significantly impacts environmental sustainability by preserving limited energy resources and manufacturing denim finishing processes.
基金Supported by the National Environmental Protection Bureau of P.R.China(Huan-Ke-Ke,1997,No.006,Project 14),China-Japan cooperative project:"Research on energy savings and alleviating environmental burden in petroleum enterprises"of Institute of Industrial
文摘Internal thermally coupled distillation columns (ITCDIC) are the frontier of distillation energy saving research. In this paper, a novel energy saving model of ideal ITCDIC and a simulation algorithm are presented,upon which a series of comparative studies on energy savings with conventional distillation columns are carried out. Furthermore, we present an optimization model of ideal ITCDIC, which can be used to achieve the maximum energy saving and find the optimal design parameters directly. The binary system of benzene-toluene is adopted for the illustrative example of simulation and optimization. The results show that the maximum energy saving of ITCDIC is 52.25% (compared with energy consumption of conventional distillation under the minimum reflux ratio operation); the optimal design parameters are obtained, where the rectifying section pressure and the feed thermal condition are Pr=0.3006 MPa and q=0.5107 respectively.
基金Supported by Henan Province Science and Technology Key Project of China(Grant Nos.202102210081,202102210082)Fundamental Research Funds for Henan Province Colleges and Universities of China(Grant No.NSFRF140120)Doctor Foundation of Henan Polytechnic University(Grant No.B2012-101).
文摘When saving energy in a pneumatic system,the problem of energy losses is usually solved by reducing the air supply pressure.The power-matching method is applied to optimize the air-supply pressure of the pneumatic system,and the energy-saving effect is verified by experiments.First,the experimental platform of a pneumatic rotary actuator servo-control system is built,and the mechanism of the valve-controlled cylinder system is analyzed.Then,the output power characteristics and load characteristics of the system are derived,and their characteristic curves are drawn.The employed air compressor is considered as a constant-pressure source of a quantitative pump,and the power characteristic of the system is matched.The power source characteristic curve should envelope the output characteristic curve and load characteristic curve.The minimum gas supply pressure obtained by power matching represents the optimal gas supply pressure.The comparative experiments under two different gas supply pressure conditions show that the system under the optimal gas supply pressure can greatly reduce energy losses.
文摘To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize energy savings under a given performance degradation. Machine learning techniques were utilized to develop performance models which would provide accurate performance prediction with change in operating core-uncore frequency. Experiments, performed on a node (28 cores) of a modern computing platform showed significant energy savings of as much as 26% with performance degradation of as low as 5% under the proposed strategy compared with the execution in the unlimited power case.
文摘The very long tradition of the activated sludge treatment model within the water industry has demonstrated very versatile possibilities to adopt the operation mode for different enhancements. By looking into other treatment models within the activated sludge family it is possible to find alternatives for the operation. This paper concentrates on the possibilities to improve even small WWTP with respect to energy savings. The small plant in Northern Sweden, called Rosvik WWTP, is given as an example. Some important findings related to the intermittent aeration mode may be summarized as follows: 1) An energy savings for the operation of the small WWTP with respect to aeration needs that resulted in a decrease of the energy power supply by more than 35%, as compared with the previous operation based on continuous aeration;2) The up to date effluent levels with respect to the main pollutants have remained at very good levels in 2020, P-level averages 0.16 mg P/l versus consent level <</span><span> </span><span style="font-family:Verdana;">0.5 mg P/l;COD-level 40 versus <</span><span> </span><span><span style="font-family:Verdana;">70 mg/l and BOD</span><sub><span style="font-family:Verdana;">7</span></sub><span style="font-family:Verdana;"> 9 versus <</span></span><span> </span><span><span style="font-family:Verdana;">15 mg/l;3) Sometimes, also improved sludge settling characteristics have been observed, thus providing improved discharge figures;4) The potential to develop an enhanced biological phosphorus removal. There are however </span><span style="font-family:Verdana;">some needed conditions to accomplish these improvements: 1) Reliable</span><span style="font-family:Verdana;"> on-line probes for both oxygen control, SS-concentration control and optionally also for nitrogen control;2) A flexible automation system that allows the needed process modifications to take place;3) And finally, very important dedicated and competent plant operators, with the needed curiosity for operation improvements.
文摘The French Textile Machinery Manufacturers’ Association (UCMTF) has presented,during a seminar it organized for textile professionals and students,the spectacular energy savings achieved thanks to state of the
文摘The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of the fastest growing applications of renewable energy in the world with annual increases of 10 % and much faster in China. With high coefficient of performance (COP) up to 6, GHPs make efficiency of primary energy more than 240 % with assumed a 40 % of electricity generation efficiency, which means energy savings and CO2 emission reduction. In this paper,the geothermal resources and its utilization are talked about, and GHPs technology was introduced. Due to its high efficiency, there will be energy savings by using GHPs. There is also CO2 emission reduction because of using geothermal heat pumps, which is analyzed in the end.
基金supported by the PARS grant from the Hassan Ⅱ Academy of Sciences and Techniques,Morocco。
文摘The purpose of this research is to assess thermal performance and energy saving of a residential building in the hot semi-arid climate of Marrakech(Morocco).The studied house is built as usual in Marrakech without any thermal insula-tion except for its external walls,facing East and West,which are double walls with a 5 cm air gap in between(“cavity wall”technique).The cavity wall effec-tive thermal conductivity was carefully calculated taking into account both radia-tion and convection heat transfers.Experimental results,obtained from winter and summer monitoring of the house,show well dampening of air temperature,thanks to its thermal inertia.However,this temperature remained outside the standard thermal comfort zone leading to large cooling/heating load.Simula-tion results indicate that the cavity wall contributes to an overall reduction of 13%and 5%of the house heating and cooling loads respectively.Moreover,the addition of XPS roof thermal insulation significantly enhances the heating and cooling energy savings to 26%and 40%respectively.
文摘In hot-humid climates,particularly in sub-Saharan Africa(SSA),ambient temperatures and relative humidity are as high as 35°C and 84%,respectively,requiring the use of mechanical cooling systems for indoor thermal comfort.Split-type vapor-compression air-conditioners(SVAC)are mainly used for space cooling in SSA and consume 60-80%of total energy consumption in commercial and public buildings.Appropriate control strategy of the indoor set-point temperature of SVAC can result in significant energy savings in these buildings.In this study,modeling and dynamic simulation have been conducted using EnergyPlus to predict the energy saving potential and indoor thermal comfort of buildings in hot-humid climates by controlling set-point temperature of the SVAC.In a case study,climatic data for Ghana,was used to predict the energy saving potential and indoor thermal comfort.The study results revealed that,to ensure indoor thermal comfort at high outdoor temperature condition of 35°C,the least and optimum set-point temperatures of the SVAC should be 21°C and 25°C,respectively.On the other hand,for low outdoor temperature condition,the least and optimum set-point temperatures were 22°C and 26°C,respectively.Considering 1-star and 2-star rated SVACs which are dominantly used in Ghana,operating at 21-25°C in the case of high outdoor conditions,and 22-26°C for low outdoor conditions relative to the least temperatures resulted in energy savings of 8-33%and 12-44%,respectively.
基金Authors would like to acknowledge the financial support from Uni-versity of Malaya,Impact orientated Interdisciplinary Research Grant(Project:IIRG015B-2019)to carry out this research.
文摘There are many factors that have a major influence on reducing the energy expenditure in building sector.This research aims at qualitative and quantitative assessment of those factors such as double glazed windows,ver-tical greenery systems(VGS),integrating of semi-transparent photovoltaic device with architectural design of buildings,energy saving by using heat reflecting coating,passive climate control methods,energy saving by shading,building energy performance enhancement by using optimisation technique,double skin green facade,etc.through a holistic and thematic approach.Amongst the aforesaid techniques,VGS is found the most reliable,efficient and sustainable solution.Attractive VGS can improve the urban environment,increase biodiversity,mit-igate pollution also results economic benefit of the buildings as like as energy savings and decreasing surface temperature.Four fundamental energy saving methods are used in VGS which are considered as passive energy saving mechanism.Firstly,interception of solar radiation due to the shadow risen by the vegetation;secondly,vegetation also provides thermal insulation;thirdly,plants evapotranspiration helps for evaporative cooling of building;finally,building blockage makes a variation of wind effect on building.The peak cooling load of ivy coated green building wall has been reduced by 28%.If a VGS is installed without windows and building fac-ing on west,east,south and north correspondingly,the reduction in the cooling load capacity of the building is observed to be up to 20,18,8 and 5%,respectively.Very high thermally resistive glazed areas on building envelope can be secured via thin film PV glazing and vacuum glazing products with an average U-value of 1.1 and 0.4 W/m 2 K,respectively.Energy use policies are also helpful to improve energy consumption scenario of buildings.For developing more energy-efficient,sustainable and eco-friendly buildings,these techniques might be helpful for the building designers and architects.
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
文摘This paper analyzes the effect of the depth of submetering(i.e.,from whole-building level to system level to equipment level and further to sensor level)on the energy savings that can be achieved in energy analytics or energy information system(EIS)implementations.An EIS is defined as a combination of software and hardware systems that gather energy-related data,feed it into an analytics engine,and present building operators with analyses that allow them to reduce energy consumption.Data regarding the energy savings,the depth of sub-metering in the EIS implementation,and the cost of submetering was gathered for 21 case(building portfolio)studies and analyzed to determine if there is a relationship between the depth of submetering and the energy savings achieved.It was found that in general,deeper submetering does in fact appear to enable deeper energy savings.The one exception to this is sensor-level data:the addition of detailed sensor level metering to other higher levels of metering data does not seem to enable deeper energy savings in EIS implementations.Detailed findings in energy savings,cost and cost-effectiveness were presented for different levels of metering that may provide insightful rule-of-thumb estimations for similar implementations.
文摘The selection of high-performance building facade systems is essential to promote building energy efficiency.However,this selection is highly dependent on early-stage design decisions,which are extremely challenging considering numerous design parameters with early-stage uncertainties.This paper aims to evaluate the appli-cability of deep learning networks in estimating the energy savings of different facade alternatives in the early-stage design of buildings.The energy performance of two competing façade systems(i.e.,Ultra-High-Performance Fiber-Reinforced-Concrete and conventional panels)was estimated for different scenarios through building en-ergy simulations using EnergyPlusTM.Three deep learning networks were trained using the collected data from the simulation of fourteen buildings in fourteen different locations to estimate the heating,cooling,and total site energy savings.The accuracy of trained deep networks was compared with the accuracy of three common data-driven prediction models including,Gradient Boosting Machines,Random Forest,and Generalized Linear Regression.The results showed that the deep learning network trained to predict building total site energy savings had the highest accuracy among other models with a mean absolute error of 1.59 and a root mean square error of 3.48,followed by Gradient Boosting Machines,Random Forest,and last Generalized Linear Regression.Similarly,deep networks trained to predict building cooling and heating energy savings had the lowest mean average error of 0.20 and 1.17,respectively,compared to other predictive models.It is expected the decision support system developed based on this methodology helps architects and designers to quantify the energy savings of different facade systems in early stages of design decisions.
基金Supported by National Natural Science Foundation of China(Grant No.U1910211)National Key Research and Development Program of China(Grant No.2021YFB2011903).
文摘Mining shovel is a crucial piece of equipment for high-efficiency production in open-pit mining and stands as one of the largest energy consumption sources in mining.However,substantial energy waste occurs during the descent of the hoisting system or the deceleration of the slewing platform.To reduce the energy loss,an innovative hydrau-lic-electric hybrid drive system is proposed,in which a hydraulic pump/motor connected with an accumulator is added to assist the electric motor to drive the hoisting system or slewing platform,recycling kinetic and potential energy.The utilization of the kinetic and potential energy reduces the energy loss and installed power of the min-ing shovel.Meanwhile,the reliability of the mining shovel pure electric drive system also can be increased.In this paper,the hydraulic-electric hybrid driving principle is introduced,a small-scale testbed is set up to verify the feasibil-ity of the system,and a co-simulation model of the proposed system is established to clarify the system operation and energy characteristics.The test and simulation results show that,by adopting the proposed system,compared with the traditional purely electric driving system,the peak power and energy consumption of the hoisting electric motor are reduced by 36.7%and 29.7%,respectively.Similarly,the slewing electric motor experiences a significant decrease in peak power by 86.9%and a reduction in energy consumption by 59.4%.The proposed system expands the application area of the hydraulic electric hybrid drive system and provides a reference for its application in over-sized and super heavy equipment.
文摘The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that demand always for varied control and data signalling based on control base station(CBS)and data base station(DBS).Hence,this paper discusses the energy management in wireless cellular networks using wide range of control for twice the reduction in energy conservation in non-standalone deployment of 5G network.As the new radio(NR)based 5G network is configured to transmit signal blocks for every 20 ms,the proposed algorithm implements withstanding capacity of on or off based energy switching,which in-turn operates in wide range control by carrying out reduced computational complexity.The proposed Wide range of control for base station in green cellular network using sleep mode for switch(WGCNS)algorithm toon and off the base station will work in heavy load with neighbouring base station.For reducing the overhead duration in air,heuristic versions of the algorithm are proposed at the base station.The algorithm operates based on the specification with suggested protocol-level to give best amount of energy savings.The proposed algorithm reduces 40%to 83%of residual energy based on the traffic pattern of the urban scenario.
基金supported by the National Natural Science Foundation of China(No.71974129).
文摘In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has not been sufficiently investigated.This paper studied the factors influencing the energy performance of intermittent heating for the representativeoffice inhot summer&coldwinter zone.Basedon theheatbalancemethod,adynamic thermalmodel of the intermittent heating roomwas built and tested by experiments.And then,it analyzed the total space heating load,the amount of energy saving and energy saving ratio of the intermittent heating under different preheating hours,occupation hours,required roomtemperatures,air change rates,overall heat transfer coefficients(U-value)of windows and wall materials.If the adjacent rooms were not heated,for a typical room occupied about 10 h a day,the energy-saving ratio of intermittent heating was about 30%compared with continuous heating.But the preheating power was higher than two times of continuous heating.The results also indicated that the occupation hours had a significant effect on energy saving amount and ratio,it should be noted that the energy saving ratio by intermittent heating was much lower than the unoccupied period ratio.Relative to other factors,the heating temperatures,room air change rates and U-value of windows,and room envelope materials had little effect on energy efficiency.If the adjacent rooms were heated in the same manner as the roomin question,the energy-saving ratio of the total load of intermittent heating was heavily reduced to 8.46%.
基金supported by“Key Technology Research on Operational Performance Improvement of the Green Building”(2020YFS0060)Key Project of Science and Technology Department of Sichuan Province+2 种基金supported by“Creative VR Teaching and Learning Research Based on‘PBL+’and Multidimensional Collaboration”(JG2021-721)“Reform in the Mode and Practice of Architecture Education with the Characteristics of Geology”(JG2021-672)Education Quality and Teaching Reform Project of Higher Education in Sichuan Province in 2021–2023.
文摘The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.
基金This research was supported by the National Natural Science Foundation of China(Grant No.71971016).On behalf of all co-authors,the corresponding author states that there is no conflict of interest.
文摘Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,energy-saving performance of the whole metro system cannot be guaranteed.Design/methodology/approach–A cooperative train control framework is formulated to regulate a novel train operation mode.The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train.An improved brute force(BF)algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.Findings–Case studies on the actual metro line in Guangzhou,China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters.The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.Originality/value–Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process,which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation.This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea,where energy-efficient train operation can be realised once train running time is determined,thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.
基金supported by Science and Technology Research and Development Plan Project of Handan City(22422401138ZC)2022 School Level Project in Handan University(XZ2022203)。
文摘The system translates the arm/boom/buck's potential energy into electrical energy and then the electrical energy is stored in a storage device.This study develops a set of energy management strategy to make the recoverable energy recycling efficiently.This energy of traditional excavator is lost in the form of heat energy,which is wasteful,and makes the component's temperature higher and higher to reduce the machine's life.Research on this system not only conforms to the current topic of energy crisis,but also mates with the actual engineering,so it is significant to research that.
基金The National Natural Science Foundation of China(No.51106023)the National Key Technology R&D Program during the12th Five-Year Plan Period(No.2011BAJ03B14)
文摘In order to have an in-depth understanding of the metal ceiling radiant panel with capillary tubes, a radiant ceiling heating system is constructed to study the actual heating performance and thermal comfort by experiments. In addition, the energy saving potential of the novel heating system is discussed in terms of the COP (coefficient of performance) of the ground source heat pump and the exergy efficiency of the radiant terminal. The results indicate that the heating system shows high thermal stability and thermal comfort. When the system reaches a stable condition, the radiant heat transfer accounts for 62.7% of the total heat transfer, and the total heat transfer can meet the heating demands of most buildings. Compared to a radiant floor heating system, it offers advantages in a shorter preheating time, a lower supply water temperature and a stronger heating capability. The COP of the ground source heat pump is increased greatly when the supply water temperature is 28 to 33 ℃, and the exergy efficiency of the metal ceiling with capillary tubes is 1.6 times that of the radiant floor when the reference temperature is 5 ℃ The novel radiant ceiling heating system shows a tremendous energy saving potential.