Systematic investigation on enhancing removal of natural organic matter (NOM) using inorganic polymer flocculant (IPF), polyaluminum chloride(PACI) and polyacrylamide(PAM) was performed in a typical south-Chin...Systematic investigation on enhancing removal of natural organic matter (NOM) using inorganic polymer flocculant (IPF), polyaluminum chloride(PACI) and polyacrylamide(PAM) was performed in a typical south-China source water. Enhanced coagulation and applying polymer flocculant-aid were compared through jar tests and pilot tests. Raw water and settled water were characterized and fractionated by resin adsorption. The results show that DOC composes major part of TOC. The DOC distribution keeps relatively stable all around the year with typical high amounts of the hydrophilic matter around 50%. The distribution between HoB, HoA and HoN varies and undergoes fluctuation with the year round. During the summer season, the HoN becomes gradually the major part in hydrophobic parts. PACI with the species being tailor-made shows little pH effect during coagulation. The enhanced coagulation dosage for PACI could be 4.5 mg/L for the typical source water. The highest TOC removal achieved 31%. To be economically, 3 mg/L dose is the optimum dosage. Although hydrophilic fractions of NOM of both treatment strategies are removed about 30%, NOM causing UV254 absorbance were well removed(about 90%). Hydrophobic bases and acids fractions are much more removed under enhanced conditions. The hydrophilic fraction could be better removed using PAM, the polymer coagulant aid.展开更多
Presents the effect of enhanced coagulation with a composite chemical containing ferrate upon algae removal with results showing that enhanced coagulation is efficient for algae removal. A comparison made between enha...Presents the effect of enhanced coagulation with a composite chemical containing ferrate upon algae removal with results showing that enhanced coagulation is efficient for algae removal. A comparison made between enhanced coagulation with composite ferrate and conventional pre chlorination, indicates that algae removal efficiency of the former was higher than that of the latter. And the algae removal efficiency can be further improved by extending the time of enhanced coagulation with the composite chemical containing ferrate.展开更多
Waterborne viruses account for 30% to 40% of infectious diarrhea, and some viruses could persevere for some months in nature and move up to 100 m in groundwater. Using filtration setups, coagulation could lessen virus...Waterborne viruses account for 30% to 40% of infectious diarrhea, and some viruses could persevere for some months in nature and move up to 100 m in groundwater. Using filtration setups, coagulation could lessen virus charges as an efficient pre-treatment for reducing viruses. This work discusses the present-day studies on virus mitigation using coagulation in its three versions i.e., chemical coagulation (CC), enhanced coagulation, and electrocoagulation (EC), and debates the new results of virus demobilization. The complexity of viruses as bioparticles and the process of virus demobilization should be adopted, even if the contribution of permeability in virus sorption and aggregation needs to be clarified. The information about virion permeability has been evaluated by interpreting empirical electrophoretic mobility (EM). No practical measures of virion permeability exist, a clear link between permeability and virion composition and morphology has not been advanced, and the direct influence of inner virion structures on surface charge or sorption has yet to be conclusively demonstrated. CC setups utilizing zero-valent or ferrous iron could be killed by iron oxidation, possibly using EC and electrooxidation (EO) methods. The oxidants evolution in the iron oxidation method has depicted promising findings in demobilizing bacteriophage MS2, even if follow-up investigations employing an elution method are needed to secure that bacteriophage elimination is related to demobilization rather than sorption. As a perspective, we could be apt to anticipate virus conduct and determine new bacteriophage surrogates following subtle aspects such as protein structures or genome size and conformation. The present discussion’s advantages would extend far beyond an application in CC—from filtration setups to demobilization by nanoparticles to modeling virus fate and persistence in nature.展开更多
Characterization of water, waste water and natural organic matter are involved in this paper, and as well as the features of flocculation and coagulation for removing natural organic matter from water and waste water ...Characterization of water, waste water and natural organic matter are involved in this paper, and as well as the features of flocculation and coagulation for removing natural organic matter from water and waste water Novel flocculant and coagualant is strongly asked for improving removal efficiency and environment friendly. Enhanced coagulation is introduced to meet the experimental and practical requirement.展开更多
Particle coagulation by Brownian motion is an important but difficult research topic.When particle volume concentration is larger than 0.1%,the classic SMOLUCHOWSKI equation is not applicative anymore.The high concent...Particle coagulation by Brownian motion is an important but difficult research topic.When particle volume concentration is larger than 0.1%,the classic SMOLUCHOWSKI equation is not applicative anymore.The high concentration coagulation,with HEINE's correction,source terms for the Taylor-series expansion method of moments(TEMOM) are firstly driven in this paper.Ultra-fine particle(d0?100 mm) with initial volume fraction f?1% coagulation in a planar jet turbulence flow is simulated via the large eddy simulation(LES).The instantaneous and time-averaged particle distributions and the high concentration enhancement are given out.The particle number concentration distribution results show that the coagulation is more intense comparing to dilute case in previous research,especially near the nozzle exit.After jet flow is fully developed,the effect is much more obvious at the region between vortexes.The time-averaged γ(the high concentration enhance factor) distributes sharply and symmetrically about the jet centerline at the upstream,but becomes broad and flat at downstream where the cross-stream averaged γ fluctuates drastically.As a new attempt,this paper shows Brownian coagulation with high concentration also can be calculated via TEMOM appropriately,and the coagulation at the region between vortexes is about 1.38 times intensive of the dilute result calculated by the classic Smoluchowski theory.展开更多
Comparative pilot tests were conducted to investigate the coagulation-aid effects of the combined preoxidation by potassium permanganate composites (PPC) with chlorine and preozonation. And the synergistie mechanism...Comparative pilot tests were conducted to investigate the coagulation-aid effects of the combined preoxidation by potassium permanganate composites (PPC) with chlorine and preozonation. And the synergistie mechanism of combined preoxidation was discussed. Results showed that 1.0 mg/L PPC with 2. 0 mg/L chlorine could further improve the quality of treated water, as indicated by residual turbidity, TOC and algae. The enhanced efficiency could be explained by the synergistic effect of the preoxidants themselves, or the effect of chlorine and the intermediate such as hydrous manganese dioxide, which was generated by potassium permanga- nate, the main ingredient of PPC.展开更多
Mobile emergency pilot water plant was used to carry out pilot study of KMnO4 pre-oxidation enhanced coagulation treating high-algae source water. Research showed that the optimal dosages of coagulant and KMnO4 in the...Mobile emergency pilot water plant was used to carry out pilot study of KMnO4 pre-oxidation enhanced coagulation treating high-algae source water. Research showed that the optimal dosages of coagulant and KMnO4 in the process were 6 and 0. 4- 0. 6 mg / L respectively. Under the dosage,removal rate of water turbidity after precipitation rose by 11% than simple coagulation,and removal rate of algae rose by 15%. Removal rates of total amount of odor and GSM by the process were respectively 73% and 59%. The removal rate of total amount of algae by KMnO4 preoxidation was 40%,and removal effect of THM precursors was obvious.展开更多
目的探讨加速康复外科管理模式对初次全髋关节置换术后患者血液指标的影响。方法选取江苏大学附属医院2021年6月—2022年1月入院的初次髋关节置换患者进行回顾性研究,ERAS组43例,围手术期采用加速康复外科(enhanced recovery after surg...目的探讨加速康复外科管理模式对初次全髋关节置换术后患者血液指标的影响。方法选取江苏大学附属医院2021年6月—2022年1月入院的初次髋关节置换患者进行回顾性研究,ERAS组43例,围手术期采用加速康复外科(enhanced recovery after surgery,ERAS)管理模式。对照组43例,围手术期采用传统的诊疗常规方案管理。比较ERAS组与对照组术前及术后白细胞、血红蛋白、血小板、白蛋白、D-二聚体、C-反应蛋白、红细胞等相关血液指标。结果ERAS组在术后1、3 d的Hb、总蛋白、白蛋白显著高于对照组(P<0.05)。ERAS组在术后3 d的白细胞、CRP、D-二聚体显著低于对照组(P<0.05)。结论ERAS管理模式能减少初次髋关节置换患者围手术期失血量,能够促进患者早期康复进程,对凝血系统重新达到稳态有促进作用。展开更多
文摘Systematic investigation on enhancing removal of natural organic matter (NOM) using inorganic polymer flocculant (IPF), polyaluminum chloride(PACI) and polyacrylamide(PAM) was performed in a typical south-China source water. Enhanced coagulation and applying polymer flocculant-aid were compared through jar tests and pilot tests. Raw water and settled water were characterized and fractionated by resin adsorption. The results show that DOC composes major part of TOC. The DOC distribution keeps relatively stable all around the year with typical high amounts of the hydrophilic matter around 50%. The distribution between HoB, HoA and HoN varies and undergoes fluctuation with the year round. During the summer season, the HoN becomes gradually the major part in hydrophobic parts. PACI with the species being tailor-made shows little pH effect during coagulation. The enhanced coagulation dosage for PACI could be 4.5 mg/L for the typical source water. The highest TOC removal achieved 31%. To be economically, 3 mg/L dose is the optimum dosage. Although hydrophilic fractions of NOM of both treatment strategies are removed about 30%, NOM causing UV254 absorbance were well removed(about 90%). Hydrophobic bases and acids fractions are much more removed under enhanced conditions. The hydrophilic fraction could be better removed using PAM, the polymer coagulant aid.
文摘Presents the effect of enhanced coagulation with a composite chemical containing ferrate upon algae removal with results showing that enhanced coagulation is efficient for algae removal. A comparison made between enhanced coagulation with composite ferrate and conventional pre chlorination, indicates that algae removal efficiency of the former was higher than that of the latter. And the algae removal efficiency can be further improved by extending the time of enhanced coagulation with the composite chemical containing ferrate.
文摘Waterborne viruses account for 30% to 40% of infectious diarrhea, and some viruses could persevere for some months in nature and move up to 100 m in groundwater. Using filtration setups, coagulation could lessen virus charges as an efficient pre-treatment for reducing viruses. This work discusses the present-day studies on virus mitigation using coagulation in its three versions i.e., chemical coagulation (CC), enhanced coagulation, and electrocoagulation (EC), and debates the new results of virus demobilization. The complexity of viruses as bioparticles and the process of virus demobilization should be adopted, even if the contribution of permeability in virus sorption and aggregation needs to be clarified. The information about virion permeability has been evaluated by interpreting empirical electrophoretic mobility (EM). No practical measures of virion permeability exist, a clear link between permeability and virion composition and morphology has not been advanced, and the direct influence of inner virion structures on surface charge or sorption has yet to be conclusively demonstrated. CC setups utilizing zero-valent or ferrous iron could be killed by iron oxidation, possibly using EC and electrooxidation (EO) methods. The oxidants evolution in the iron oxidation method has depicted promising findings in demobilizing bacteriophage MS2, even if follow-up investigations employing an elution method are needed to secure that bacteriophage elimination is related to demobilization rather than sorption. As a perspective, we could be apt to anticipate virus conduct and determine new bacteriophage surrogates following subtle aspects such as protein structures or genome size and conformation. The present discussion’s advantages would extend far beyond an application in CC—from filtration setups to demobilization by nanoparticles to modeling virus fate and persistence in nature.
文摘Characterization of water, waste water and natural organic matter are involved in this paper, and as well as the features of flocculation and coagulation for removing natural organic matter from water and waste water Novel flocculant and coagualant is strongly asked for improving removal efficiency and environment friendly. Enhanced coagulation is introduced to meet the experimental and practical requirement.
基金supported by National Natural Science Foundation of China (Grant No. 50976107)National Key Technology R&D Program of China (Grant No. 2009BAF39B01)the Science Foundation of Zhejiang Sci-Tech University (ZSTU) of China (Grant No. 1003808-Y)
文摘Particle coagulation by Brownian motion is an important but difficult research topic.When particle volume concentration is larger than 0.1%,the classic SMOLUCHOWSKI equation is not applicative anymore.The high concentration coagulation,with HEINE's correction,source terms for the Taylor-series expansion method of moments(TEMOM) are firstly driven in this paper.Ultra-fine particle(d0?100 mm) with initial volume fraction f?1% coagulation in a planar jet turbulence flow is simulated via the large eddy simulation(LES).The instantaneous and time-averaged particle distributions and the high concentration enhancement are given out.The particle number concentration distribution results show that the coagulation is more intense comparing to dilute case in previous research,especially near the nozzle exit.After jet flow is fully developed,the effect is much more obvious at the region between vortexes.The time-averaged γ(the high concentration enhance factor) distributes sharply and symmetrically about the jet centerline at the upstream,but becomes broad and flat at downstream where the cross-stream averaged γ fluctuates drastically.As a new attempt,this paper shows Brownian coagulation with high concentration also can be calculated via TEMOM appropriately,and the coagulation at the region between vortexes is about 1.38 times intensive of the dilute result calculated by the classic Smoluchowski theory.
基金Sponsored by the Development Program for Outstanding Young Teachers in Harbin Institute of Technology (Grant No.HITQNJS.2008.042)State KeyLab of Urban Water Resource and Environment(Grant No. HIT.ES200803)Harbin Science and Technology Development Program for Young Innovative Scholars(Grant No.2009RFQXS010)
文摘Comparative pilot tests were conducted to investigate the coagulation-aid effects of the combined preoxidation by potassium permanganate composites (PPC) with chlorine and preozonation. And the synergistie mechanism of combined preoxidation was discussed. Results showed that 1.0 mg/L PPC with 2. 0 mg/L chlorine could further improve the quality of treated water, as indicated by residual turbidity, TOC and algae. The enhanced efficiency could be explained by the synergistic effect of the preoxidants themselves, or the effect of chlorine and the intermediate such as hydrous manganese dioxide, which was generated by potassium permanga- nate, the main ingredient of PPC.
基金Supported by Major Science and Technology Program for Water Control and Treatment,China(2012ZX07404-003)Taishan Scholar Post Project,China(ts200640025)
文摘Mobile emergency pilot water plant was used to carry out pilot study of KMnO4 pre-oxidation enhanced coagulation treating high-algae source water. Research showed that the optimal dosages of coagulant and KMnO4 in the process were 6 and 0. 4- 0. 6 mg / L respectively. Under the dosage,removal rate of water turbidity after precipitation rose by 11% than simple coagulation,and removal rate of algae rose by 15%. Removal rates of total amount of odor and GSM by the process were respectively 73% and 59%. The removal rate of total amount of algae by KMnO4 preoxidation was 40%,and removal effect of THM precursors was obvious.
文摘目的 探究基于加速康复外科(ERAS)理念的静脉血栓栓塞症(VTE)预防方案在肝癌手术患者围手术期的应用效果。方法 选取2020年6月至2021年12月146例原发性肝癌行择期手术的住院患者作为观察对象,按区组随机化法分为观察组和对照组,每组73例。观察组采用围手术期VTE预防方案进行干预,对照组采用传统围手术期管理方案进行干预。比较两组患者术后排便时间、通气时间、住院时间、住院费用、再入院率情况差异;比较两组术后第1、3天患者疼痛和睡眠质量情况;比较两组术后第3天凝血功能[血浆纤维蛋白原(FIB)、D-二聚体(D-D)、血浆抗凝血酶原Ⅲ(AT-Ⅲ)]水平差异;比较两组术后1个月内VTE发生风险。结果 观察组患者术后排便时间[(73.48±13.39)h vs (98.27±15.04)h]、通气时间[(51.68±10.27) vs (62.72±13.81)h]、住院时间[(9.21±1.20)d vs (11.42±1.25)d]、住院费用[(3.09±0.33)万元vs (3.79±0.42)万元]均明显低于对照组(均P<0.05),两组再入院率差异无统计学意义(P>0.05)。观察组术后第3天NRS评分[(2.32±0.52)分vs (2.74±0.58)分]和PSQI评分[(0.67±0.32)分vs (0.89±0.34)分]均明显低于对照组(均P<0.05),AT-Ⅲ水平明显高于对照组[(85.49±12.32)%vs(81.38±11.65)%,P<0.05];术后观察组VTE中危及以上发生风险低于对照组(50.68%vs 67.12%,P<0.05)。结论 基于ERAS理念的VTE预防方案能够加快肝癌患者术后康复,降低VTE发生风险,减轻患者经济负担。