Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in ...Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.展开更多
Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal...Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.展开更多
Hot deformation behavior and microstructure evolution of TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) alloy with equiaxed structure were investigated in the two-phase field at temperatures in the range of 980-800 ℃ and at stra...Hot deformation behavior and microstructure evolution of TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) alloy with equiaxed structure were investigated in the two-phase field at temperatures in the range of 980-800 ℃ and at strain rates of 0.001 s-1,0.01 s-1,0.1 s-1.Effects of thermo-mechanical parameters on both of the stress—strain curves and microstructure evolution were analyzed.Grain boundary characteristics of deformation microstructures were tested by electron backscattered diffraction(EBSD).The results reveal that β-phase dominates the deformation and presents discontinuous dynamic recrystallization at 980 ℃;meanwhile,α-phase coarsens at lower strain rates and dissolves at higher strain rates,and α-phase volume fraction and grain size decrease with increasing strain rate.Super-plastic deformation occurs at 950-900 ℃ and strain rate of 0.001 s-1.And the deformation is dominated by soft β-phase,phase interfaces and grain boundaries.Microstructural mechanism operated at 850 ℃ is continuous dynamic recrystallization of α-phase that dominates the deformation,and β-phase deforms to match the deformation of α-phase.展开更多
The settling velocity of equiaxed dendrites can cause macrosegregation and influence the structure of the equiaxed zone during the casting solidification process. So an understanding of the settling characteristics is...The settling velocity of equiaxed dendrites can cause macrosegregation and influence the structure of the equiaxed zone during the casting solidification process. So an understanding of the settling characteristics is needed to predict the structure and segregation in castings. The settling velocity of NH4Cl equiaxed dendrites of non-spherical geometry was studied experimentally in an NH4Cl-70wt.%H2O solution. A calculation formula was proposed to calculate the settling velocity of sediment equiaxed dendrites in a tube filled with saturated solution at a moderate Reynolds number region. The retardation effects of the wall and morphology of the equiaxed dendrite on the settling velocity were taken into account in the development of the calculation formula, and the correction function B of the drag coefficient with consideration of the retardation effects of the wall and morphology of the equiaxed dendrite on the settling velocity of the equiaxed dendrite was calibrated according to the experimental results. A comparison showed that the formula has a good accordance with the experimental results.展开更多
The formation reason and elimination method of non-uniform microstructure defects in Ti al- loy TC11 bar have been studied.The coagulating and coarsening into block of the part of grain boundary α and secondary α se...The formation reason and elimination method of non-uniform microstructure defects in Ti al- loy TC11 bar have been studied.The coagulating and coarsening into block of the part of grain boundary α and secondary α seem to be caused by the ingot cogging and initial forging temperature in the β region as well as no more enough deformation and uneven distribution. The grain α,elongated α and blocky α may be finally eliminated by adopting the technique of (α+β)thermomechanical processing+β processing,W.Q.+recrystallization annealing,A.C., thus the size of uniform and fine equiaxed α structure is believed to be reduced to 1.9258μm.展开更多
This study examines mechanisms for providing nuclei to equiaxed grains in the welds of pure ferritic stainless steel (FSS). The addition of the alloy element Ti to pure FSS 439 causes the precipitation of TiN, which...This study examines mechanisms for providing nuclei to equiaxed grains in the welds of pure ferritic stainless steel (FSS). The addition of the alloy element Ti to pure FSS 439 causes the precipitation of TiN, which can benefit the columnar-to-equiaxed transition (CET) of gas tungsten arc welding (GTAW). Meanwhile,the initial morphology of the precipitates, the concentration multiplications of Ti, N, etc. of FSS 439 should be controlled to induce the formation of CET during the short welding process.展开更多
The quality of central equiaxed grain zone (CEGZ) of GCr15 bearing steel billets was investigated at different superheats (20, 25 and 35 ℃ by experimental observations and a finite element model in order to optimi...The quality of central equiaxed grain zone (CEGZ) of GCr15 bearing steel billets was investigated at different superheats (20, 25 and 35 ℃ by experimental observations and a finite element model in order to optimize superheat in continuous casting process. Several GCrl5 billets were collected from the continuous casting shop, and the same CEGZ was chosen for comparison of internal quality of GCrl5 billets. Considering the limitation of segregation index at some points, two- dimensional segregation ratio in CEGZ was introduced. Firstly, the segregation ratio and the area of center large dark points in CEGZ obtain the minimum at 25 ℃ superheat, which indicates that the quality of CEGZ at 25 ~C superheat is improved compared with those at 20 and 35 ℃ superheats for corresponding continuously cast billets. The highest superheat and the lowest superheat are not beneficial for improving the central zone quality in the billets. Secondly, the quality of CEGZ of GCr15 billets increases with a decrease in the secondary dendrite arm spacing of CEGZ. Finally, according to the established finite element model, it is deduced that the secondary dendrite arm spacing of CEGZ is closely related to its later solidifica- tion time at solid fraction of 0.5-1.0, and the former will be decreased when decreasing the latter.展开更多
The formation of fine,non-dendritic equiaxed grains throughout a casting without the addition of refiners(i.e.independent of alloy chemistry),is made possible by using ultrasonic,magnetic or pulsed magnetic and electr...The formation of fine,non-dendritic equiaxed grains throughout a casting without the addition of refiners(i.e.independent of alloy chemistry),is made possible by using ultrasonic,magnetic or pulsed magnetic and electric current pulse techniques.The dominant mechanisms proposed for the grain refinement produced during the application of an external field are cavitation phenomena assisted nucleation or fragmentation of dendrites(ultrasonic field),wall crystals arising from the cold surface of the mould(electric current pulse,magnetic and pulsed magnetic fields).In all these cases fluid flow provides an additional contribution(e.g.reduced temperature gradients,growth rate and remelting of dendrites)to maintaining an equiaxed grain structure.The origin of equiaxed grains under an external field also depends on the casting conditions(volume and shape of casting)and the type of alloy other than the mechanisms specific to a particular technique.The current work aims to provide a detailed understanding of the various factors and mechanisms that influence the grain refinement achieved during the solidification of pure metals(magnesium and zinc)subjected to Ultra Sonic Treatment(UST).The role of the temperature range of UST application,time duration and an unpreheated sonotrode are examined with respect to the origin,evolution of equiaxed grain structure,morphology and the columnar to equiaxed transition.The origin of grains was analysed from three fundamental aspects that contribute to refinement(i)heterogeneous nucleation(ii)fragmentation of existing dendrites and(iii)grains produced from the colder surfaces(arising from mould walls or vibrating surfaces as wall crystals).A comparison of UST refinement with mechanical,low-frequency vibration,electric current pulse and magnetic field solidification of pure metals has also been provided to highlight the importance of the cold surfaces(sonotrode and mould wall)in influencing grain refinement.展开更多
A new approach to applying the electric current pulse (ECP) with parallel electrodes to the promotion of the transition from columnar crystal to equiaxed crystal and the improvement of macrosegregation was introduce...A new approach to applying the electric current pulse (ECP) with parallel electrodes to the promotion of the transition from columnar crystal to equiaxed crystal and the improvement of macrosegregation was introduced. The ECP was applied to different stages of the solidification. The results showed that the application of the ECP in both the initial stage (the thickness of solidified shell reached 2 mm approximately) and the late stage (the thickness of solidified shell reached 14 mm approximately) of solidification can promote the columnar to equiaxed transition (CET). The analysis showed that during solidification, a large number of nuclei around the upper surface fell off due to ECP, which subsequently showered on the melt and impinged the growth front of the columnar crystal. Therefore, the CEToccurred. In addition, this method was also employed to influence the solidification process of bearing steel, and the results showed that the structure was changed from columnar crystal to equiaxed crystal, indicating that ECP can enhance the homogeneity of structure and composition of bearing steel.展开更多
Coarse columnar β grains result in anisotropic mechanical properties in Ti alloys deposited by additive manufacturing. This study reports that Ti-6Al-4V alloy fabricated by coaxial electron beam wire feeding additive...Coarse columnar β grains result in anisotropic mechanical properties in Ti alloys deposited by additive manufacturing. This study reports that Ti-6Al-4V alloy fabricated by coaxial electron beam wire feeding additive manufacturing presents a weak anisotropy, high strength and ductility. The superior tensile property arises from a microstructure with fine equiaxed β grains(EGβ), discontinuous grain boundary α phase and short intragranular α lamellae. A large region of fine EGβ arises from a special combination of the temperature gradient and solidification rate, and attractive α morphology is caused by solid phase transformations during interpass thermal cycling and post heat treatments.展开更多
A circular seam cooling nozzle and its online control system have been developed to reduce the center segregation in high carbon steel billets by decreasing the superheat of the molten steel and improving the equiaxed...A circular seam cooling nozzle and its online control system have been developed to reduce the center segregation in high carbon steel billets by decreasing the superheat of the molten steel and improving the equiaxed crystal ratio based on the numerical results. An industrial experiment has been carried out on a 150 mm× 150 mm caster to investigate the effect of the circular seam cooling nozzle on the superheat removal of the molten steel. The results show that the circular seam cooling nozzle can be used to control the casting temperature in a closed loop control system. The online control system can be effectively adapted to the variation of operating parameters. The casting lasts about 4 h and about 400 t steel is successfully produced in a continuous operation. The removal of about 14 ℃ superheat and the improvement of approximate 10% equiaxed crystal ratio can be achieved by the newly developed circular seam cooling nozzle.展开更多
Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building d...Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building direction and the room-temperature tensile properties along the horizontal and vertical directions(building direction) were systematically studied through SEM and OM. EBSD and XRD were utilized to accurately demonstrate the texture of the α and β phases. The results showed that the α phase presented a low texture intensity, which was ascribed to the weak textured β grain with near-equiaxed morphology, since there are Burgers orientation relationships during the β →α transition. In addition, numerical simulation, combined with the CET curve of Ti60 alloy considering the effect of multi-composition,was utilized to elucidate the formation mechanism of the near-equiaxed β grains. Furthermore, according to the solidification theory, we proposed that the solidification temperature range ΔTfwas more accurate than the growth restriction factor Q in predicting the formation tendency of equiaxed β grain in different titanium alloys. Tensile results showed that the horizontal and vertical samples had similar strength,while the former exhibited larger elongation than the latter. The effect of the near-equiaxed β grain and the internal α phase on mechanical properties were revealed at last.展开更多
To study the effect ofαphase morphology(equiaxedα(αE)/lamellarα(αL))on the in situ tensile behavior of TC21 alloy,the slip band,dislocation,crack initiation,and propagation were analyzed by scanning electron micr...To study the effect ofαphase morphology(equiaxedα(αE)/lamellarα(αL))on the in situ tensile behavior of TC21 alloy,the slip band,dislocation,crack initiation,and propagation were analyzed by scanning electron microscopy(SEM)with in situ tensile stage and transmission electron microscopy(TEM).The results show that the slip bands first concentrate in theαE phases and easily truncate at theα/βphase boundaries,whereas the slip bands move across theαlamellae in theαL phase.Microcracks are easily generated inαE orα/βphase boundaries with large plastic deformation.When the quantity ofαL is more thanαE,the crack tip is more easily deflected atαphases orαclusters with different orientations,making the main crack propagation path more zigzag.When the volume fraction ratio ofαE toαL is~3:4,i.e.,the volume fraction ofαE is close to that ofαL,TC21 alloy exhibits better strength and slower crack propagation rate.展开更多
With the purpose of improving both the strength and ductility,gradient equiaxed grains were successfully achieved in the matrix of the laminated TiB/Ti-TiB/Ti-6.58Al-1.76Zr-1.04V-0.89Mo composite via water quenching(W...With the purpose of improving both the strength and ductility,gradient equiaxed grains were successfully achieved in the matrix of the laminated TiB/Ti-TiB/Ti-6.58Al-1.76Zr-1.04V-0.89Mo composite via water quenching(WQ) and thermal compressing deformation. Gradient equiaxed grains varied from approximately 1.0 μm in TiB/Ti-6.58Al-1.76Zr-1.04V-0.89Mo layer to 5.5 μm in TiB/Ti layer. The formation of the gradient structure was related to the alloying elements diffusion during the initial sintering process,and the equiaxed shape was constructed by dynamic recrystallization during thermal compressing. WQ treatment before thermal compressing was adopted to obtain fine lamellar structure,which promoted the segmentation of αlamellae,and accelerated the dynamic recrystallization process. Raising the quenching temperature can increase the proportion of equiaxed grains in the composite,which improved both the bending strength and ductility. Compared with the as-sintered specimen,the specimen with gradient equiaxed grains exhibited nearly 30% enhancement in flexural strength(from 1719 to 2218 MPa),and the ultimate bending fracture strain was increased from 7.0% to 17.2%. This significant improvement should be attributed to the coordination deformation by interface gradient grains,the grain refinement strengthening and the good balance between strength and ductility of the recrystallized equiaxed grains.展开更多
The aim of this study is to investigate mechanical and microstructural variations of Ti-6 Al-4 V acquired through various equal channel angular pressing(ECAP)cycles.The ECAP of Ti-6 Al-4 V alloy with the first equiaxe...The aim of this study is to investigate mechanical and microstructural variations of Ti-6 Al-4 V acquired through various equal channel angular pressing(ECAP)cycles.The ECAP of Ti-6 Al-4 V alloy with the first equiaxed micros tructure was carried out by an isothermal warm and isothermal die method.EC A pressing carried out on cylindrical samples at 650℃.Mechanical and microstructural investigations were performed concerning Ti-6 Al-4 V in the first state after 2,4,and 8 passes.Optical microscopy(OM)investigation shows that alpha grain size increases and beta grain size decreases with the pass numbers increasing.Beta phase content initially decreases in the first two ECAP passes.The results show that more equiaxed alpha grains are achieved after four ECAP passes.Results of X-ray diffraction(XRD)analysis show that crystallite size decreases with the number of passes increasing.After two ECAP passes,a vivid increase in mechanical strength is observed;however,the increment dramatically slows down by the increasing number of passes.展开更多
The effect of Ru addition on solidification behavior, microstructure and hardness of Re-free Ni-based equiaxed superalloys with high Cr content has been investigated. With the increase of Ru, the solidus temperature o...The effect of Ru addition on solidification behavior, microstructure and hardness of Re-free Ni-based equiaxed superalloys with high Cr content has been investigated. With the increase of Ru, the solidus temperature of the alloys and the γ" solvus temperature decreased, respectively. However, the liquidus temperatures of the alloys bad no obvious change. The microstructure of the as-cast alloys was mainly composed of γ, γ', γ'/γ' eutectic and MC carbides. The γ/γ' eutectic was completely dissolved after the heat treatment. The morphology of γ' was more cuboidal in heat-treated alloys with increasing Ru. Furthermore, the volume fraction of γ' in the as-cast and heat-treated alloys diminished upon the increase of Ru. It was noted that Ru addition changed the segregation behaviors of Cr and Mo in the alloys from positive segregation element to negative segregation element and promotes the segregation degree of W. As the Ru content increased, the magnitude of segregation of the positive segregation elements Ta and Ti increased accordingly. Meanwhile, the magnitude of Al segregation decreased and Ru tended to segregate in the dendrite core. In addition, the hardness of the alloys improved and their porosity reduced with increasing amount of Ru.展开更多
In a sample quenched during equiaxed solidification of an Al-5 wt.% Cu alloy, the multi-scales 3-dimensional morphology of equiaxed dendrite was observed. The slim primary stem and secondary branches constitute the fr...In a sample quenched during equiaxed solidification of an Al-5 wt.% Cu alloy, the multi-scales 3-dimensional morphology of equiaxed dendrite was observed. The slim primary stem and secondary branches constitute the frame of dendrite, and rows of dense tertiary branches further divide the 3-dimensional space. In the divided space, the quartic branches grow further. The dendritic branches,which are perpendicular to each other, can change their growth directions and coalesce into a whole. In the tertiary branches and quartic branches, the formation of double branch structures is induced by competitive growth. The branch that wins in the competitive growth will produce a cabbage-like structure by wrapping the failed branches. In addition, the side branch can also wrap the original parent branch to produce cabbage-like structures. Depending on the historical growth direction, the dendritic arms can form vein-like and spicate structures, and the shapes of single dendritic arm may be the cylinder, plate and trapezoid platform. According to the compositions and etching morphology, the single dendritic arm in the final solidification structures should coalesce from a fine porous structure. The porous structures at different length-scales are principally induced by the preferential growth. Based on 3-dimensional morphology of equiaxed dendrite, a new research object for the investigation of microsegregation was suggested.展开更多
Two sets of internal-Sn Nb3Sn superconducting strands were fabricated through RRP method, one with 2 wt% of Ti alloyed in Sn core and the other just pure Sn. Four reaction temperatures of 650℃, 675℃, 700℃ and 725℃...Two sets of internal-Sn Nb3Sn superconducting strands were fabricated through RRP method, one with 2 wt% of Ti alloyed in Sn core and the other just pure Sn. Four reaction temperatures of 650℃, 675℃, 700℃ and 725℃ and 128 h duration were applied for A15 phase formation heat treatment after Cu-Sn alloying procedure of 210℃/50 h + 340℃/25 h. For the heat-treated coil samples, transport non-Cu JC was examined through standard 4-probe technique and phase microstructure was observed by means of Field Emission Scanning Electronic Microscope (FESEM). The obtained results demonstrate that the transport critical current density JC of Nb3Sn superconductors is more importantly determined by the cubic equiaxed crystalline morphology than by grain size. Ti addition in Sn stabilizes the cubic equiaxed phase at lower temperature so that heat reaction temperature is effectively reduced, the flux pinning performance is largely reinforced and the transport critical current density JC is substantially promoted.展开更多
Refinement of grains and intermetallic phases in the as-solidified alloy structure offers uniform struc-tural properties,eliminates or minimizes common solidification defects,including segregation and hot cracking,and...Refinement of grains and intermetallic phases in the as-solidified alloy structure offers uniform struc-tural properties,eliminates or minimizes common solidification defects,including segregation and hot cracking,and improves thermomechanical processing of wrought alloys.Melt processing by an external field is an efficient process for achieving refinement of the solidification structure of Al and Mg alloys without altering the alloy composition.A wide range of melt processing methods and solidification stud-ies(conventional,directional,and in-situ approaches)have been reported in the literature that explore the mechanism of refinement.Identifying the dominant grain refinement mechanism has been a focus of most investigations because significant variations exist according to the casting conditions and the type of applied external treatments.The origin of fine grains occurs through either one or a combination of heterogenous nucleation,fragmentation of dendrites and grains formed and then separated from the surface of the melt and mould wall under vibration or agitation.The first part of this review describes the prominent external field techniques and the mechanisms proposed for the origin of fine grains.The second part critically compares the current understanding of these grain refinement mechanisms to de-termine differences and commonalities to identify the factors that promote the formation of equiaxed zones occupying a large volume fraction of the casting.展开更多
Tensile behavior of an equiaxed-grained Fe-6.5 wt.%Si alloy,which was deformed intoφ6 mm bar by hot rotary swaging,was investigated at various temperatures(300–400℃)and stretching rates(0.42–1 mm/min).The results ...Tensile behavior of an equiaxed-grained Fe-6.5 wt.%Si alloy,which was deformed intoφ6 mm bar by hot rotary swaging,was investigated at various temperatures(300–400℃)and stretching rates(0.42–1 mm/min).The results revealed an enhancement in the intermediate-temperature tensile ductility after heat treatments.Deformation twinning was found in the equiaxed-grained Fe-6.5 wt.%Si bars during the tensile test,and heat treatments can enhance the deformation twinning.More twins can be observed in the necking areas than other regions.The high Schmid factor values above 0.4 after heat treatments demonstrated that deformation twinning can easily occur in the equiaxed-grained Fe-6.5 wt.%Si alloy.Higher deformation temperatures,higher strain rates,and larger degree of order suppressed the formation of deformation twinning,while the grain sizes had little effect on the deformation twinning.The twinning stress of the Fe-6.5 wt.%Si alloy increased with the increasing grain size,which did not agree with the Hall–Petch type relationship.The deformation twinning resulted in the improved ductility of the Fe-6.5 wt.%Si alloy.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB3702005)the National Natural Science Foundation of China(52304352)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)2022"Chunhui Program"Collaborative Scientific Research Project(202200042)the Doctoral Start-up Foundation of Liaoning Province(2023-BS-182)the Technology Development Project of State Key Laboratory of Metal Material for Marine Equipment and Application[HGSKL-USTLN(2022)01].
文摘Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.
基金Project(51001074)supported by the National Natural Science Foundation of ChinaProject(12ZR1414500)supported by Shanghai Municipal Natural Science Fund of ChinaProject(2012CB619505)supported by the National Basic Research Program of China
文摘Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.
基金Project(2008011045) supported by the Natural Science Foundation of Shanxi Province,China
文摘Hot deformation behavior and microstructure evolution of TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) alloy with equiaxed structure were investigated in the two-phase field at temperatures in the range of 980-800 ℃ and at strain rates of 0.001 s-1,0.01 s-1,0.1 s-1.Effects of thermo-mechanical parameters on both of the stress—strain curves and microstructure evolution were analyzed.Grain boundary characteristics of deformation microstructures were tested by electron backscattered diffraction(EBSD).The results reveal that β-phase dominates the deformation and presents discontinuous dynamic recrystallization at 980 ℃;meanwhile,α-phase coarsens at lower strain rates and dissolves at higher strain rates,and α-phase volume fraction and grain size decrease with increasing strain rate.Super-plastic deformation occurs at 950-900 ℃ and strain rate of 0.001 s-1.And the deformation is dominated by soft β-phase,phase interfaces and grain boundaries.Microstructural mechanism operated at 850 ℃ is continuous dynamic recrystallization of α-phase that dominates the deformation,and β-phase deforms to match the deformation of α-phase.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB10402)the National Natural Science Foundation of China (Grant Nos. 50901061 and 50971102)the Foundation of State Key Laboratory of Solidification Processing, China (Grant Nos. 02-TZ-2008 and 36-TP-2009)
文摘The settling velocity of equiaxed dendrites can cause macrosegregation and influence the structure of the equiaxed zone during the casting solidification process. So an understanding of the settling characteristics is needed to predict the structure and segregation in castings. The settling velocity of NH4Cl equiaxed dendrites of non-spherical geometry was studied experimentally in an NH4Cl-70wt.%H2O solution. A calculation formula was proposed to calculate the settling velocity of sediment equiaxed dendrites in a tube filled with saturated solution at a moderate Reynolds number region. The retardation effects of the wall and morphology of the equiaxed dendrite on the settling velocity were taken into account in the development of the calculation formula, and the correction function B of the drag coefficient with consideration of the retardation effects of the wall and morphology of the equiaxed dendrite on the settling velocity of the equiaxed dendrite was calibrated according to the experimental results. A comparison showed that the formula has a good accordance with the experimental results.
文摘The formation reason and elimination method of non-uniform microstructure defects in Ti al- loy TC11 bar have been studied.The coagulating and coarsening into block of the part of grain boundary α and secondary α seem to be caused by the ingot cogging and initial forging temperature in the β region as well as no more enough deformation and uneven distribution. The grain α,elongated α and blocky α may be finally eliminated by adopting the technique of (α+β)thermomechanical processing+β processing,W.Q.+recrystallization annealing,A.C., thus the size of uniform and fine equiaxed α structure is believed to be reduced to 1.9258μm.
文摘This study examines mechanisms for providing nuclei to equiaxed grains in the welds of pure ferritic stainless steel (FSS). The addition of the alloy element Ti to pure FSS 439 causes the precipitation of TiN, which can benefit the columnar-to-equiaxed transition (CET) of gas tungsten arc welding (GTAW). Meanwhile,the initial morphology of the precipitates, the concentration multiplications of Ti, N, etc. of FSS 439 should be controlled to induce the formation of CET during the short welding process.
基金The authors are very grateful for National Natu- ral Science Foundation of China (No. 51504047) and Fundamental Research Funds for the Central Universities (No. CDJPY 14130001 ). Meanwhile, the authors acknowledge very valuable discussion with Prof. Guang-hua Wen and Prof. Ping Tang from Chongqing University.
文摘The quality of central equiaxed grain zone (CEGZ) of GCr15 bearing steel billets was investigated at different superheats (20, 25 and 35 ℃ by experimental observations and a finite element model in order to optimize superheat in continuous casting process. Several GCrl5 billets were collected from the continuous casting shop, and the same CEGZ was chosen for comparison of internal quality of GCrl5 billets. Considering the limitation of segregation index at some points, two- dimensional segregation ratio in CEGZ was introduced. Firstly, the segregation ratio and the area of center large dark points in CEGZ obtain the minimum at 25 ℃ superheat, which indicates that the quality of CEGZ at 25 ~C superheat is improved compared with those at 20 and 35 ℃ superheats for corresponding continuously cast billets. The highest superheat and the lowest superheat are not beneficial for improving the central zone quality in the billets. Secondly, the quality of CEGZ of GCr15 billets increases with a decrease in the secondary dendrite arm spacing of CEGZ. Finally, according to the established finite element model, it is deduced that the secondary dendrite arm spacing of CEGZ is closely related to its later solidifica- tion time at solid fraction of 0.5-1.0, and the former will be decreased when decreasing the latter.
基金funding support provided by the Australian Research Council Research Hub for Advanced Manufacturing of Medical Devices IH150100024the ARC Discovery grant DP140100702ARC linkage project LP150100950。
文摘The formation of fine,non-dendritic equiaxed grains throughout a casting without the addition of refiners(i.e.independent of alloy chemistry),is made possible by using ultrasonic,magnetic or pulsed magnetic and electric current pulse techniques.The dominant mechanisms proposed for the grain refinement produced during the application of an external field are cavitation phenomena assisted nucleation or fragmentation of dendrites(ultrasonic field),wall crystals arising from the cold surface of the mould(electric current pulse,magnetic and pulsed magnetic fields).In all these cases fluid flow provides an additional contribution(e.g.reduced temperature gradients,growth rate and remelting of dendrites)to maintaining an equiaxed grain structure.The origin of equiaxed grains under an external field also depends on the casting conditions(volume and shape of casting)and the type of alloy other than the mechanisms specific to a particular technique.The current work aims to provide a detailed understanding of the various factors and mechanisms that influence the grain refinement achieved during the solidification of pure metals(magnesium and zinc)subjected to Ultra Sonic Treatment(UST).The role of the temperature range of UST application,time duration and an unpreheated sonotrode are examined with respect to the origin,evolution of equiaxed grain structure,morphology and the columnar to equiaxed transition.The origin of grains was analysed from three fundamental aspects that contribute to refinement(i)heterogeneous nucleation(ii)fragmentation of existing dendrites and(iii)grains produced from the colder surfaces(arising from mould walls or vibrating surfaces as wall crystals).A comparison of UST refinement with mechanical,low-frequency vibration,electric current pulse and magnetic field solidification of pure metals has also been provided to highlight the importance of the cold surfaces(sonotrode and mould wall)in influencing grain refinement.
基金Item Sponsored by National Natural Science Foundation of China(50674064,50734008)
文摘A new approach to applying the electric current pulse (ECP) with parallel electrodes to the promotion of the transition from columnar crystal to equiaxed crystal and the improvement of macrosegregation was introduced. The ECP was applied to different stages of the solidification. The results showed that the application of the ECP in both the initial stage (the thickness of solidified shell reached 2 mm approximately) and the late stage (the thickness of solidified shell reached 14 mm approximately) of solidification can promote the columnar to equiaxed transition (CET). The analysis showed that during solidification, a large number of nuclei around the upper surface fell off due to ECP, which subsequently showered on the melt and impinged the growth front of the columnar crystal. Therefore, the CEToccurred. In addition, this method was also employed to influence the solidification process of bearing steel, and the results showed that the structure was changed from columnar crystal to equiaxed crystal, indicating that ECP can enhance the homogeneity of structure and composition of bearing steel.
基金supported by the internal funding source from University of Shanghai for Science and Technology.
文摘Coarse columnar β grains result in anisotropic mechanical properties in Ti alloys deposited by additive manufacturing. This study reports that Ti-6Al-4V alloy fabricated by coaxial electron beam wire feeding additive manufacturing presents a weak anisotropy, high strength and ductility. The superior tensile property arises from a microstructure with fine equiaxed β grains(EGβ), discontinuous grain boundary α phase and short intragranular α lamellae. A large region of fine EGβ arises from a special combination of the temperature gradient and solidification rate, and attractive α morphology is caused by solid phase transformations during interpass thermal cycling and post heat treatments.
基金Item Sponsored by National Basic Research Program of China (2004CB619107)
文摘A circular seam cooling nozzle and its online control system have been developed to reduce the center segregation in high carbon steel billets by decreasing the superheat of the molten steel and improving the equiaxed crystal ratio based on the numerical results. An industrial experiment has been carried out on a 150 mm× 150 mm caster to investigate the effect of the circular seam cooling nozzle on the superheat removal of the molten steel. The results show that the circular seam cooling nozzle can be used to control the casting temperature in a closed loop control system. The online control system can be effectively adapted to the variation of operating parameters. The casting lasts about 4 h and about 400 t steel is successfully produced in a continuous operation. The removal of about 14 ℃ superheat and the improvement of approximate 10% equiaxed crystal ratio can be achieved by the newly developed circular seam cooling nozzle.
基金supported by the National Key Technologies R&D Program (Nos. 2016YFB1100102, 2018YFB1106003).
文摘Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building direction and the room-temperature tensile properties along the horizontal and vertical directions(building direction) were systematically studied through SEM and OM. EBSD and XRD were utilized to accurately demonstrate the texture of the α and β phases. The results showed that the α phase presented a low texture intensity, which was ascribed to the weak textured β grain with near-equiaxed morphology, since there are Burgers orientation relationships during the β →α transition. In addition, numerical simulation, combined with the CET curve of Ti60 alloy considering the effect of multi-composition,was utilized to elucidate the formation mechanism of the near-equiaxed β grains. Furthermore, according to the solidification theory, we proposed that the solidification temperature range ΔTfwas more accurate than the growth restriction factor Q in predicting the formation tendency of equiaxed β grain in different titanium alloys. Tensile results showed that the horizontal and vertical samples had similar strength,while the former exhibited larger elongation than the latter. The effect of the near-equiaxed β grain and the internal α phase on mechanical properties were revealed at last.
基金financially supported by Guizhou Science and Technology Project(Nos.(2018)1027 and(2019)2165)the Engineering Research Center Project from Guizhou Provincial Education Department(No.(2017)016)。
文摘To study the effect ofαphase morphology(equiaxedα(αE)/lamellarα(αL))on the in situ tensile behavior of TC21 alloy,the slip band,dislocation,crack initiation,and propagation were analyzed by scanning electron microscopy(SEM)with in situ tensile stage and transmission electron microscopy(TEM).The results show that the slip bands first concentrate in theαE phases and easily truncate at theα/βphase boundaries,whereas the slip bands move across theαlamellae in theαL phase.Microcracks are easily generated inαE orα/βphase boundaries with large plastic deformation.When the quantity ofαL is more thanαE,the crack tip is more easily deflected atαphases orαclusters with different orientations,making the main crack propagation path more zigzag.When the volume fraction ratio ofαE toαL is~3:4,i.e.,the volume fraction ofαE is close to that ofαL,TC21 alloy exhibits better strength and slower crack propagation rate.
基金This work was supported by the National Key R&D Program of China(Grant No.2017YFB0703100)the Guangdong Province Key Area R&D Program(Grant No.2019B010942001)+1 种基金the National Natural Science Foundation of China(Grant Nos.51822103,51801206 and 51731009)the Fundamental Research Funds for the Central Universities(Grant No.HIT.BRETIV.201902)。
文摘With the purpose of improving both the strength and ductility,gradient equiaxed grains were successfully achieved in the matrix of the laminated TiB/Ti-TiB/Ti-6.58Al-1.76Zr-1.04V-0.89Mo composite via water quenching(WQ) and thermal compressing deformation. Gradient equiaxed grains varied from approximately 1.0 μm in TiB/Ti-6.58Al-1.76Zr-1.04V-0.89Mo layer to 5.5 μm in TiB/Ti layer. The formation of the gradient structure was related to the alloying elements diffusion during the initial sintering process,and the equiaxed shape was constructed by dynamic recrystallization during thermal compressing. WQ treatment before thermal compressing was adopted to obtain fine lamellar structure,which promoted the segmentation of αlamellae,and accelerated the dynamic recrystallization process. Raising the quenching temperature can increase the proportion of equiaxed grains in the composite,which improved both the bending strength and ductility. Compared with the as-sintered specimen,the specimen with gradient equiaxed grains exhibited nearly 30% enhancement in flexural strength(from 1719 to 2218 MPa),and the ultimate bending fracture strain was increased from 7.0% to 17.2%. This significant improvement should be attributed to the coordination deformation by interface gradient grains,the grain refinement strengthening and the good balance between strength and ductility of the recrystallized equiaxed grains.
基金financially supported by Amirkabir University of Technology (No.40.509)
文摘The aim of this study is to investigate mechanical and microstructural variations of Ti-6 Al-4 V acquired through various equal channel angular pressing(ECAP)cycles.The ECAP of Ti-6 Al-4 V alloy with the first equiaxed micros tructure was carried out by an isothermal warm and isothermal die method.EC A pressing carried out on cylindrical samples at 650℃.Mechanical and microstructural investigations were performed concerning Ti-6 Al-4 V in the first state after 2,4,and 8 passes.Optical microscopy(OM)investigation shows that alpha grain size increases and beta grain size decreases with the pass numbers increasing.Beta phase content initially decreases in the first two ECAP passes.The results show that more equiaxed alpha grains are achieved after four ECAP passes.Results of X-ray diffraction(XRD)analysis show that crystallite size decreases with the number of passes increasing.After two ECAP passes,a vivid increase in mechanical strength is observed;however,the increment dramatically slows down by the increasing number of passes.
文摘The effect of Ru addition on solidification behavior, microstructure and hardness of Re-free Ni-based equiaxed superalloys with high Cr content has been investigated. With the increase of Ru, the solidus temperature of the alloys and the γ" solvus temperature decreased, respectively. However, the liquidus temperatures of the alloys bad no obvious change. The microstructure of the as-cast alloys was mainly composed of γ, γ', γ'/γ' eutectic and MC carbides. The γ/γ' eutectic was completely dissolved after the heat treatment. The morphology of γ' was more cuboidal in heat-treated alloys with increasing Ru. Furthermore, the volume fraction of γ' in the as-cast and heat-treated alloys diminished upon the increase of Ru. It was noted that Ru addition changed the segregation behaviors of Cr and Mo in the alloys from positive segregation element to negative segregation element and promotes the segregation degree of W. As the Ru content increased, the magnitude of segregation of the positive segregation elements Ta and Ti increased accordingly. Meanwhile, the magnitude of Al segregation decreased and Ru tended to segregate in the dendrite core. In addition, the hardness of the alloys improved and their porosity reduced with increasing amount of Ru.
文摘In a sample quenched during equiaxed solidification of an Al-5 wt.% Cu alloy, the multi-scales 3-dimensional morphology of equiaxed dendrite was observed. The slim primary stem and secondary branches constitute the frame of dendrite, and rows of dense tertiary branches further divide the 3-dimensional space. In the divided space, the quartic branches grow further. The dendritic branches,which are perpendicular to each other, can change their growth directions and coalesce into a whole. In the tertiary branches and quartic branches, the formation of double branch structures is induced by competitive growth. The branch that wins in the competitive growth will produce a cabbage-like structure by wrapping the failed branches. In addition, the side branch can also wrap the original parent branch to produce cabbage-like structures. Depending on the historical growth direction, the dendritic arms can form vein-like and spicate structures, and the shapes of single dendritic arm may be the cylinder, plate and trapezoid platform. According to the compositions and etching morphology, the single dendritic arm in the final solidification structures should coalesce from a fine porous structure. The porous structures at different length-scales are principally induced by the preferential growth. Based on 3-dimensional morphology of equiaxed dendrite, a new research object for the investigation of microsegregation was suggested.
基金Supported by the France-China Collaboration Research Contract: CNRS No722441 and the SUST Doctoral Foundation BJ07-07
文摘Two sets of internal-Sn Nb3Sn superconducting strands were fabricated through RRP method, one with 2 wt% of Ti alloyed in Sn core and the other just pure Sn. Four reaction temperatures of 650℃, 675℃, 700℃ and 725℃ and 128 h duration were applied for A15 phase formation heat treatment after Cu-Sn alloying procedure of 210℃/50 h + 340℃/25 h. For the heat-treated coil samples, transport non-Cu JC was examined through standard 4-probe technique and phase microstructure was observed by means of Field Emission Scanning Electronic Microscope (FESEM). The obtained results demonstrate that the transport critical current density JC of Nb3Sn superconductors is more importantly determined by the cubic equiaxed crystalline morphology than by grain size. Ti addition in Sn stabilizes the cubic equiaxed phase at lower temperature so that heat reaction temperature is effectively reduced, the flux pinning performance is largely reinforced and the transport critical current density JC is substantially promoted.
基金support provided by the Australian Research Council Research Hub for Advanced Manufacturing of Medical Devices (No.IH150100024)the ARC Discovery (No.DP140100702)and the ARC linkage project (No.LP150100950).
文摘Refinement of grains and intermetallic phases in the as-solidified alloy structure offers uniform struc-tural properties,eliminates or minimizes common solidification defects,including segregation and hot cracking,and improves thermomechanical processing of wrought alloys.Melt processing by an external field is an efficient process for achieving refinement of the solidification structure of Al and Mg alloys without altering the alloy composition.A wide range of melt processing methods and solidification stud-ies(conventional,directional,and in-situ approaches)have been reported in the literature that explore the mechanism of refinement.Identifying the dominant grain refinement mechanism has been a focus of most investigations because significant variations exist according to the casting conditions and the type of applied external treatments.The origin of fine grains occurs through either one or a combination of heterogenous nucleation,fragmentation of dendrites and grains formed and then separated from the surface of the melt and mould wall under vibration or agitation.The first part of this review describes the prominent external field techniques and the mechanisms proposed for the origin of fine grains.The second part critically compares the current understanding of these grain refinement mechanisms to de-termine differences and commonalities to identify the factors that promote the formation of equiaxed zones occupying a large volume fraction of the casting.
基金financially supported by the National Natural Science Foundation of China(Nos.51471031 and U1660115)the State Key Laboratory for Advanced Metals and Materials(No.2016Z-17)。
文摘Tensile behavior of an equiaxed-grained Fe-6.5 wt.%Si alloy,which was deformed intoφ6 mm bar by hot rotary swaging,was investigated at various temperatures(300–400℃)and stretching rates(0.42–1 mm/min).The results revealed an enhancement in the intermediate-temperature tensile ductility after heat treatments.Deformation twinning was found in the equiaxed-grained Fe-6.5 wt.%Si bars during the tensile test,and heat treatments can enhance the deformation twinning.More twins can be observed in the necking areas than other regions.The high Schmid factor values above 0.4 after heat treatments demonstrated that deformation twinning can easily occur in the equiaxed-grained Fe-6.5 wt.%Si alloy.Higher deformation temperatures,higher strain rates,and larger degree of order suppressed the formation of deformation twinning,while the grain sizes had little effect on the deformation twinning.The twinning stress of the Fe-6.5 wt.%Si alloy increased with the increasing grain size,which did not agree with the Hall–Petch type relationship.The deformation twinning resulted in the improved ductility of the Fe-6.5 wt.%Si alloy.