A dominating set D in a graph G is called an injective equitable dominating set (Inj-equitable dominating set) if for every , there exists such that u is adjacent to v and . The minimum cardinality of such a dominatin...A dominating set D in a graph G is called an injective equitable dominating set (Inj-equitable dominating set) if for every , there exists such that u is adjacent to v and . The minimum cardinality of such a dominating set is denoted by and is called the Inj-equitable domination number of G. In this paper, we introduce the injective equitable domination of a graph and study its relation with other domination parameters. The minimal injective equitable dominating set, the injective equitable independence number , and the injective equitable domatic number are defined.展开更多
文摘A dominating set D in a graph G is called an injective equitable dominating set (Inj-equitable dominating set) if for every , there exists such that u is adjacent to v and . The minimum cardinality of such a dominating set is denoted by and is called the Inj-equitable domination number of G. In this paper, we introduce the injective equitable domination of a graph and study its relation with other domination parameters. The minimal injective equitable dominating set, the injective equitable independence number , and the injective equitable domatic number are defined.