An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear ar...An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry.展开更多
To improve the electrochemical performance of graphite anode materials,pitches with various softening points(150℃,180℃,200℃,and 250℃)were prepared from ethylene tar and used to coat graphite through a liquid coati...To improve the electrochemical performance of graphite anode materials,pitches with various softening points(150℃,180℃,200℃,and 250℃)were prepared from ethylene tar and used to coat graphite through a liquid coating process.The effects of the softening point of the pitch and the coating amount on the microstructure and electrochemical properties of graphite were studied by methods including thermogravimetric analysis,X-ray diffraction,Raman spectroscopy,surface area analysis,scanning electron microscopy,transmission electron microscopy,and electrochemical testing.The graphite particles were coated uniformly by the pyrolytic carbon in the pitch.The coating changed the degree of graphitization,decreased the average specific surface area,and improved the electrochemical performance significantly.The best battery anode performance was obtained when the mass ratio of pitch to graphite was 10%,the heat treatment temperature was 1100℃,and the softening point of the pitch was 250℃.Under the optimum conditions,the irreversible capacity loss in the first cycle at 0.1 C was only 23 mAh/g,and the first Coulombic efficiency reached 94.2%.The capacity retention rate was 98.3%after 100 charge-discharge cycles at 0.1 C.展开更多
As a kind of low-cost and readily available industrial byproduct, ethylene tar (ET) was for the first time utilized for the preparation of heat-resistant condensed polynuclear aromatic resin (COPNAR). The basic pr...As a kind of low-cost and readily available industrial byproduct, ethylene tar (ET) was for the first time utilized for the preparation of heat-resistant condensed polynuclear aromatic resin (COPNAR). The basic properties of ET and the resulted COPNAR were characterized by FT-IR, IH-NMR, TGA and elemental analysis. The test results showed that ET with high aromatic content (〉50%) was suitable for the synthesis of COPNAR with superior heat resistance. The average molecular structure of ET was obtained by means of the improved Brown-Ladner method, and the reaction mechanism was considered as an acid-catalyzed positive ion-typed polymerization. Our findings have provided a new route to develop ET into technology-added heat-resistant resins.展开更多
基金support of National Natural Science Foundation of P.R.China(22308104).
文摘An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry.
基金This work was financially supported by the Research Program of China Petrochemical Corporation(SINOPEC 121023).
文摘To improve the electrochemical performance of graphite anode materials,pitches with various softening points(150℃,180℃,200℃,and 250℃)were prepared from ethylene tar and used to coat graphite through a liquid coating process.The effects of the softening point of the pitch and the coating amount on the microstructure and electrochemical properties of graphite were studied by methods including thermogravimetric analysis,X-ray diffraction,Raman spectroscopy,surface area analysis,scanning electron microscopy,transmission electron microscopy,and electrochemical testing.The graphite particles were coated uniformly by the pyrolytic carbon in the pitch.The coating changed the degree of graphitization,decreased the average specific surface area,and improved the electrochemical performance significantly.The best battery anode performance was obtained when the mass ratio of pitch to graphite was 10%,the heat treatment temperature was 1100℃,and the softening point of the pitch was 250℃.Under the optimum conditions,the irreversible capacity loss in the first cycle at 0.1 C was only 23 mAh/g,and the first Coulombic efficiency reached 94.2%.The capacity retention rate was 98.3%after 100 charge-discharge cycles at 0.1 C.
基金supported by the Program for New Century Excellent Talents in University, China Ministry of Education, 2009 (No. NCET-10-0768)the National Natural Science Foundation of China (Nos. 20876176 and 51172285)the Natural Science Foundation of Shandong Province (ZR2011EL031, ZR2011EL030)
文摘As a kind of low-cost and readily available industrial byproduct, ethylene tar (ET) was for the first time utilized for the preparation of heat-resistant condensed polynuclear aromatic resin (COPNAR). The basic properties of ET and the resulted COPNAR were characterized by FT-IR, IH-NMR, TGA and elemental analysis. The test results showed that ET with high aromatic content (〉50%) was suitable for the synthesis of COPNAR with superior heat resistance. The average molecular structure of ET was obtained by means of the improved Brown-Ladner method, and the reaction mechanism was considered as an acid-catalyzed positive ion-typed polymerization. Our findings have provided a new route to develop ET into technology-added heat-resistant resins.