期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Occurrence of Extreme Rainfall and Flood Risks in Yopougon, Abidjan, Southeast Côte d’Ivoire from 1971 to 2022
1
作者 Kolotioloma Alama Coulibaly Pauline Agoh Dibi-Anoh +5 位作者 Bi Néné Jules Tah Hervé Anoh Kouadio Christophe N’da Serge Camille Ahilé Kouakou Bernard Djè Daouda Konaté 《American Journal of Climate Change》 2024年第3期427-451,共25页
Yopougon, located in the western part of the Autonomous District of Abidjan, is the most heavily populated municipality in Côte d’Ivoire. However, this area is prone to floods and landslides during the rainy sea... Yopougon, located in the western part of the Autonomous District of Abidjan, is the most heavily populated municipality in Côte d’Ivoire. However, this area is prone to floods and landslides during the rainy season. The study aims to assess recent flood risks in the municipality of Yopougon of the Autonomous District of Abidjan. To achieve this objective, the study analyzed two types of data: daily rainfall from 1971 to 2022 and parameters derived from a Numerical Field and Altitude Model (NFAM). The study examined six rainfall parameters using statistical analysis and combined land use maps obtained from the NFAM of Yopougon. The results indicated that, in 67% of cases, extreme rainfall occurred mainly between week 3 of May and week 1 of July. The peak of extreme rainfall was observed in week 2 of June with 15% of cases. These are critical periods of flood risks in the Autonomous District of Abidjan, especially in Yopougon. In addition, there was variability of rainfall parameters in the Autonomous District of Abidjan. This was characterized by a drop of annual and seasonal rainfall, and an increase of numbers of rainy days. Flood risks in Yopougon are, therefore, due to the regular occurrence of rainy events. Recent floods in Yopougon were caused by normal rains ranging from 55 millimeters (mm) to 153 mm with a return period of less than five years. Abnormal heavy rains of a case study on June 20-21, 2022 in Yopougon were detected by outputs global climate models. Areas of very high risk of flood covered 18% of Yopougon, while 31% were at high risk. Climate information from this study can assist authorities to take in advance adaptation and management measures. 展开更多
关键词 Yopougon-Abidjan extreme rainfall Rainy Day Return Period Flood Risk Areas
下载PDF
On the Influences of Urbanization on the Extreme Rainfall over Zhengzhou on 20 July 2021: A Convection-Permitting Ensemble Modeling Study 被引量:8
2
作者 Yali LUO Jiahua ZHANG +5 位作者 Miao YU Xudong LIANG Rudi XIA Yanyu GAO Xiaoyu GAO Jinfang YIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期393-409,共17页
This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permit... This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permitting scale[1-km resolution in the innermost domain(d3)].Two ensembles of simulation(CTRL,NURB),each consisting of 11 members with a multi-layer urban canopy model and various combinations of physics schemes,were conducted using different land cover scenarios:(i)the real urban land cover,(ii)all cities in d3 being replaced with natural land cover.The results suggest that CTRL reasonably reproduces the spatiotemporal evolution of rainstorms and the 24-h rainfall accumulation over the key region,although the maximum hourly rainfall is underestimated and displaced to the west or southwest by most members.The ensemble mean 24-h rainfall accumulation over the key region of heavy rainfall is reduced by 13%,and the maximum hourly rainfall simulated by each member is reduced by 15–70 mm in CTRL relative to NURB.The reduction in the simulated rainfall by urbanization is closely associated with numerous cities/towns to the south,southeast,and east of Zhengzhou.Their heating effects jointly lead to formation of anomalous upward motions in and above the planetary boundary layer(PBL),which exaggerates the PBL drying effect due to reduced evapotranspiration and also enhances the wind stilling effect due to increased surface friction in urban areas.As a result,the lateral inflows of moisture and high-θe(equivalent potential temperature)air from south and east to Zhengzhou are reduced. 展开更多
关键词 URBANIZATION extreme rainfall convection-permitting ensemble simulation land-atmosphere interaction boundary layer water vapor transport
下载PDF
Characteristics and Preliminary Causes of Tropical Cyclone Extreme Rainfall Events over Hainan Island 被引量:8
3
作者 Xianling JIANG Fumin REN +3 位作者 Yunjie LI Wenyu QIU Zhuguo MA Qinbo CAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第5期580-591,共12页
The characteristics of tropical cyclone(TC) extreme rainfall events over Hainan Island from 1969 to 2014 are analyzed from the viewpoint of the TC maximum daily rainfall(TMDR) using daily station precipitation dat... The characteristics of tropical cyclone(TC) extreme rainfall events over Hainan Island from 1969 to 2014 are analyzed from the viewpoint of the TC maximum daily rainfall(TMDR) using daily station precipitation data from the Meteorological Information Center of the China Meteorological Administration, TC best-track data from the Shanghai Typhoon Institute,and NCEP/NCAR reanalysis data. The frequencies of the TMDR reaching 50, 100 and 250 mm show a decreasing trend[-0.7(10 yr)^(-1)], a weak decreasing trend [-0.2(10 yr)^(-1)] and a weak increasing trend [0.1(10 yr)^(-1)], respectively. For seasonal variations, the TMDR of all intensity grades mainly occurs from July to October, with the frequencies of TMDR 50 mm and 100 mm peaking in September and the frequency of TMDR 250 mm [TC extreme rainstorm(TCER) events]peaking in August and September. The western region(Changjiang) of the Island is always the rainfall center, independent of the intensity or frequencies of different intensity grades. The causes of TCERs are also explored and the results show that topography plays a key role in the characteristics of the rainfall events. TCERs are easily induced on the windward slopes of Wuzhi Mountain, with the coordination of TC tracks and TC wind structure. A slower speed of movement, a stronger TC intensity and a farther westward track are all conducive to extreme rainfall events. A weaker northwestern Pacific subtropical high is likely to make the 500-h Pa steering flow weaker and results in slower TC movement, whereas a stronger South China Sea summer monsoon can carry a higher moisture flux. These two environmental factors are both favorable for TCERs. 展开更多
关键词 Hainan Island tropical cyclones extreme rainfall events CHARACTERISTICS CAUSES
下载PDF
PV Perspective of Impacts on Downstream Extreme Rainfall Event of a Tibetan Plateau Vortex Collaborating with a Southwest China Vortex 被引量:7
4
作者 Guanshun ZHANG Jiangyu MAO +1 位作者 Yimin LIU Guoxiong WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第11期1835-1851,共17页
An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY)during the end of June 2016,which was attributable to a Tibetan Plateau(TP)Vortex(TPV)in conjunction with a Southwest China... An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY)during the end of June 2016,which was attributable to a Tibetan Plateau(TP)Vortex(TPV)in conjunction with a Southwest China Vortex(SWCV).The physical mechanism for this event was investigated from Potential Vorticity(PV)and omega perspectives based on MERRA-2 reanalysis data.The cyclogenesis of the TPV over the northwestern TP along with the lower-tropospheric SWCV was found to involve a midtropospheric large-scale flow reconfiguration across western and eastern China with the formation of a high-amplitude Rossby wave.Subsequently,the eastward-moving TPV coalesced vertically with the SWCV over the eastern Sichuan Basin due to the positive vertical gradient of the TPV-related PV advection,leading the lower-tropospheric jet associated with moisture transport to intensify greatly and converge over the downstream MLY.The merged TPV−SWCV specially facilitated the upper-tropospheric isentropic-gliding ascending motion over the MLY.With the TPV-embedded mid-tropospheric trough migrating continuously eastward,the almost stagnant SWCV was re-separated from the overlying TPV,forming a more eastward-tilted high-PV configuration to trigger stronger ascending motion including isentropic-gliding,isentropic-displacement,and diabatic heating-related ascending components over the MLY.This led to more intense rainfall.Quantitative PV diagnoses demonstrate that both the coalescence and subsequent re-separation processes of the TPV with the SWCV were largely dominated by horizontal PV advection and PV generation due to vertically nonuniform diabatic heating,as well as the feedback of condensation latent heating on the isentropic-displacement vertical velocity. 展开更多
关键词 extreme rainfall Tibetan Plateau vortex Southwest China vortex PV vertical velocity
下载PDF
Why Does Extreme Rainfall Occur in Central China during the Summer of 2020 after a Weak El Niño? 被引量:7
5
作者 Congxi FANG Yu LIU +1 位作者 Qiufang CAI Huiming SONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第12期2067-2081,共15页
In summer 2020,extreme rainfall occurred throughout the Yangtze River basin,Huaihe River basin,and southern Yellow River basin,which are defined here as the central China(CC)region.However,only a weak central Pacific(... In summer 2020,extreme rainfall occurred throughout the Yangtze River basin,Huaihe River basin,and southern Yellow River basin,which are defined here as the central China(CC)region.However,only a weak central Pacific(CP)El Niño happened during winter 2019/20,so the correlations between the El Niño–Southern Oscillation(ENSO)indices and ENSO-induced circulation anomalies were insufficient to explain this extreme precipitation event.In this study,reanalysis data and numerical experiments are employed to identify and verify the primary ENSO-related factors that cause this extreme rainfall event.During summer 2020,unusually strong anomalous southwesterlies on the northwest side of an extremely strong Northwest Pacific anticyclone anomaly(NWPAC)contributed excess moisture and convective instability to the CC region,and thus,triggered extreme precipitation in this area.The tropical Indian Ocean(TIO)has warmed in recent decades,and consequently,intensified TIO basinwide warming appears after a weak El Niño,which excites an extremely strong NWPAC via the pathway of the Indo-western Pacific Ocean capacitor(IPOC)effect.Additionally,the ENSO event of 2019/20 should be treated as a fast-decaying CP El Niño rather than a general CP El Niño,so that the circulation and precipitation anomalies in summer 2020 can be better understood.Last,the increasing trend of tropospheric temperature and moisture content in the CC region after 2000 is also conducive to producing heavy precipitation. 展开更多
关键词 extreme rainfall Northwest Pacific anticyclone anomaly(NWPAC) Indo-western Pacific Ocean capacitor(IPOC) Tropical Indian Ocean warming trend fast-decaying El Niño
下载PDF
Extreme Rainfall Events and Associated Natural Hazards in Alaknanda Valley, Indian Himalayan Region 被引量:4
6
作者 JOSHI Varun KUMAR Kireet 《Journal of Mountain Science》 SCIE CSCD 2006年第3期228-236,共9页
Entire Himalayan region is vulnerable to rain-induced (torrential rainfall) hazards in the form of flash flood, cloudburst or glacial lake outburst flood Flash floods and cloudburst are generally caused by high inte... Entire Himalayan region is vulnerable to rain-induced (torrential rainfall) hazards in the form of flash flood, cloudburst or glacial lake outburst flood Flash floods and cloudburst are generally caused by high intensity rainfall followed by debris flow or landslide often resulting into blockade of river channels. The examples of some major disasters caused by torrential rainfall events in last fifty years are the flash floods of 1968 in Teesta valley, in 1993 and 2000 in Sutlej valley, in 1978 in Bhagirathi and in 1970 in Alaknanda river valleys. The formation of landslide dams and subsequent breaching is also associated with such rainfall events. These dams may persist for years or may burst within a short span of its formation. Due to sudden surge of water level in the river valleys, havoc and panic are created in the down stream. In Maknanda valley, frequencies of such extreme rainfall events are found to be increasing in last two decades. However, the monthly trend of extreme rainfall events has partly indicated this increase. In most of the years extreme rainfall events and cloudburst disaster were reported in August during the later part of the monsoon season. 展开更多
关键词 Flash flood Cloudburst extreme rainfall Alaknanda valley HIMALAYA INDIA
下载PDF
Spatial Characteristics of Extreme Rainfall over China with Hourly through 24-Hour Accumulation Periods Based on National-Level Hourly Rain Gauge Data 被引量:37
7
作者 Yongguang ZHENG Ming XUE +2 位作者 Bo LI Jiong CHEN Zuyu TAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第11期1218-1232,共15页
Hourly rainfall measurements of 1919 national-level meteorological stations from 1981 through 2012 are used to document,for the first time,the climatology of extreme rainfall in hourly through 24-h accumulation period... Hourly rainfall measurements of 1919 national-level meteorological stations from 1981 through 2012 are used to document,for the first time,the climatology of extreme rainfall in hourly through 24-h accumulation periods in China. Rainfall amounts for 3-,6-,12- and 24-h periods at each station are constructed through running accumulation from hourly rainfall data that have been screened by proper quality control procedures. For each station and for each accumulation period,the historical maximum is found,and the corresponding 50-year return values are estimated using generalized extreme value theory. Based on the percentiles of the two types of extreme rainfall values among all the stations,standard thresholds separating Grade I,Grade II and Grade III extreme rainfall are established,which roughly correspond to the 70th and 90th percentiles for each of the accumulation periods. The spatial characteristics of the two types of extreme rainfall are then examined for different accumulation periods. The spatial distributions of extreme rainfall in hourly through 6-h periods are more similar than those of 12- and 24-h periods. Grade III rainfall is mostly found over South China,the western Sichuan Basin,along the southern and eastern coastlines,and in the large river basins and plains. There are similar numbers of stations with Grade III extreme hourly rainfall north and south of 30°N,but the percentage increases to about 70% south of 30°N as the accumulation period increases to 24 hours,reflecting richer moisture and more prolonged rain events in southern China. Potential applications of the extreme rainfall climatology and classification standards are suggested at the end. 展开更多
关键词 extreme rainfall meteorological historical moisture eastern north coastal monsoon seasonal
下载PDF
Climatology of Tropical Cyclone Extreme Rainfall over China from 1960 to 2019 被引量:3
8
作者 Ying LI Dajun ZHAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第2期320-332,共13页
Tropical cyclone extreme rainfall(TCER)causes devastating floods and severe damage in China and it is therefore important to determine its long-term climatological distribution for both disaster prevention and operati... Tropical cyclone extreme rainfall(TCER)causes devastating floods and severe damage in China and it is therefore important to determine its long-term climatological distribution for both disaster prevention and operational forecasting.Based on the tropical cyclone(TC)best-track dataset and TC precipitation data from 1960 to 2019,the spatiotemporal distribution of TCER affecting China is analyzed.Results show that there were large regional differences in the threshold for TCER in China,decreasing from the southeastern coast to the northwest inland.TCER occurred infrequently in northern China but had a high intensity and was highly localized.The frequency and intensity of TCER showed slightly increasing trends over time and was most likely to occur in August(41.0%).Most of the TC precipitation processes with extreme rainfall lasted for four to six days,with TCER mainly occurring on the third to fourth days.TCER with wide areas showed a northwestward prevailing track and a westward prevailing track.Strong TCs are not always accompanied by extreme precipitation while some weak TCs can lead to very extreme rainfall.A total of 64.7%(35.3%)of the TCER samples occurred when the TC was centered over the land(sea).TCER≥250 mm was located within 3°of the center of the TC.When the center of the TC was located over the sea(land),the extreme rainfall over land was most likely to appear on its northwestern(northeastern)side with a dispersed(concentrated)distribution.TCER has unique climatic characteristics relative to the TC precipitation. 展开更多
关键词 tropical cyclones extreme rainfall THRESHOLD track characteristics intensity characteristics
下载PDF
Impact of the Monsoonal Surge on Extreme Rainfall of Landfalling Tropical Cyclones 被引量:3
9
作者 Dajun ZHAO Yubin YU Lianshou CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第5期771-784,共14页
A comparative analysis and quantitative diagnosis has been conducted of extreme rainfall associated with landfalling tropical cyclones(ERLTC)and non-extreme rainfall(NERLTC)using the dynamic composite analysis method.... A comparative analysis and quantitative diagnosis has been conducted of extreme rainfall associated with landfalling tropical cyclones(ERLTC)and non-extreme rainfall(NERLTC)using the dynamic composite analysis method.Reanalysis data and the tropical cyclone precipitation dataset derived from the objective synoptic analysis technique were used.Results show that the vertically integrated water vapor transport(Q_(vt))during the ERLTC is significantly higher than that during the NERLTC.The Q_(vt)reaches a peak 1−2 days before the occurrence of the ERLTC and then decreases rapidly.There is a stronger convergence for both the Q_(vt)and the horizontal wind field during the ERLTC.The Q_(vt)convergence and the wind field convergence are mainly confined to the lower troposphere.The water vapor budget on the four boundaries of the tropical cyclone indicates that water vapor is input through all four boundaries before the occurrence of the ERLTC,whereas water vapor is output continuously from the northern boundary before the occurrence of the NERLTC.The water vapor inflow on both the western and southern boundaries of the ERLTC exceeds that during the NERLTC,mainly as a result of the different intensities of the southwest monsoonal surge in the surrounding environmental field.Within the background of the East Asian summer monsoon,the low-level jet accompanying the southwest monsoonal surge can increase the inflow of water vapor at both the western and southern boundaries during the ERLTC and therefore could enhance the convergence of the horizontal wind field and the water vapor flux,thereby resulting in the ERLTC.On the other hand,the southwest monsoonal surge decreases the zonal mean steering flow,which leads to a slower translation speed for the tropical cyclone associated with the ERLTC.Furthermore,a dynamic monsoon surge index(DMSI)defined here can be simply linked with the ERLTC and could be used as a new predictor for future operational forecasting of ERLTC. 展开更多
关键词 landfalling tropical cyclones extreme rainfall monsoon surge dynamic composite analysis
下载PDF
The effects of extreme rainfall events on carbon release from biological soil crusts covered soil in fixed sand dunes in the Tengger Desert, northern China 被引量:4
10
作者 Yang Zhao XinRong Li +3 位作者 ZhiShan Zhang RongLiang Jia YiGang Hu Peng Zhang 《Research in Cold and Arid Regions》 CSCD 2013年第2期191-196,共6页
In May to August of 2011, we assessed the effects of extreme rainfall (quantity and intensity) events on the carbon release from soils covered by different types of biological soil crusts (BSCs) in fixed sand dune... In May to August of 2011, we assessed the effects of extreme rainfall (quantity and intensity) events on the carbon release from soils covered by different types of biological soil crusts (BSCs) in fixed sand dunes in the Tengger Desert, northern China. A Li-6400-09 Soil Chamber was used to measure the respiration rates of the BSCs immediately after the rainfall stopped, and continued until the respiration rates of the BSCs returned to the pre-rainfall basal rate. Our results showed that almost immediately after extreme rainfall events the respiration rates of algae crust and mixed crust were significantly inhibited, but moss crust was not significantly affected. The respiration rates of algae crust, mixed crust, and moss crust in extreme rainfall quantity and intensity events were, respectively, 0.12 and 0.41 μmolCO2/(m2.s), 0.10 and 0.45 gmolCO2/(m2·s), 0.83 and 1.69 gmolCO2/(m2.s). Our study indicated that moss crust in the advanced succession stage can well adaot to extreme rainfall events in the short term. 展开更多
关键词 carbon release extreme rainfall events biological soil crust
下载PDF
Evaluation of WRF-based Convection-Permitting Multi-Physics Ensemble Forecasts over China for an Extreme Rainfall Event on 21 July 2012 in Beijing 被引量:13
11
作者 Kefeng ZHU Ming XUE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第11期1240-1258,共19页
On 21 July 2012,an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm,occurred in Beijing,China. Most operational models failed to predict such an extreme amount. In this study,a co... On 21 July 2012,an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm,occurred in Beijing,China. Most operational models failed to predict such an extreme amount. In this study,a convective-permitting ensemble forecast system(CEFS),at 4-km grid spacing,covering the entire mainland of China,is applied to this extreme rainfall case. CEFS consists of 22 members and uses multiple physics parameterizations. For the event,the predicted maximum is 415 mm d^-1 in the probability-matched ensemble mean. The predicted high-probability heavy rain region is located in southwest Beijing,as was observed. Ensemble-based verification scores are then investigated. For a small verification domain covering Beijing and its surrounding areas,the precipitation rank histogram of CEFS is much flatter than that of a reference global ensemble. CEFS has a lower(higher) Brier score and a higher resolution than the global ensemble for precipitation,indicating more reliable probabilistic forecasting by CEFS. Additionally,forecasts of different ensemble members are compared and discussed. Most of the extreme rainfall comes from convection in the warm sector east of an approaching cold front. A few members of CEFS successfully reproduce such precipitation,and orographic lift of highly moist low-level flows with a significantly southeasterly component is suggested to have played important roles in producing the initial convection. Comparisons between good and bad forecast members indicate a strong sensitivity of the extreme rainfall to the mesoscale environmental conditions,and,to less of an extent,the model physics. 展开更多
关键词 extreme rainfall ensemble forecast Ensemble convective mesoscale convection mainland verification
下载PDF
Predicting extreme rainfall over eastern Asia by using complex networks 被引量:1
12
作者 何苏红 封泰晨 +3 位作者 龚艳春 黄雁华 吴成国 龚志强 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期665-670,共6页
A climate network of extreme rainfall over eastern Asia is constructed for the period of 1971-2000, employing the tools of complex networks and a measure of nonlinear correlation called event synchronization (ES). U... A climate network of extreme rainfall over eastern Asia is constructed for the period of 1971-2000, employing the tools of complex networks and a measure of nonlinear correlation called event synchronization (ES). Using this network, we predict the extreme rainfall for several cases without delay and with n-day delay (1 ≤ n ≤ 10). The prediction accuracy can reach 58% without delay, 21% with 1-day delay, and 12% with n-day delay (2 ≤ n ≤ 10). The results reveal that the prediction accuracy is low in years of a weak east Asia summer monsoon (EASM) or 1 year later and high in years of a strong EASM or 1 year later. Furthermore, the prediction accuracy is higher due to the many more links that represent correlations between different grid points and a higher extreme rainfall rate during strong EASM years. 展开更多
关键词 PREDICTION extreme rainfall SYNCHRONIZATION complex networks
下载PDF
Understanding the Evolution and Socio-Economic Impacts of the Extreme Rainfall Events in March-May 2017 to 2020 in East Africa 被引量:1
13
作者 Ladislaus Benedict Chang’a Agnes Lawrence Kijazi +10 位作者 Kantamla Biseke Mafuru Patricia Achieng Nying’uro Musa Ssemujju Bamanya Deus Alfred Lawrence Kondowe Isack Baliyendeza Yonah Mohamed Ngwali Sudi Yasini Kisama Gahigi Aimable Joseph Ndakize Sebaziga Blandine Mukamana 《Atmospheric and Climate Sciences》 2020年第4期553-572,共20页
This study aimed at assessing the evolution, distribution and the socio-economic impacts of extreme rainfall over East Africa during the March, April and May (MAM) rainfall season focusing on assessing the trends and ... This study aimed at assessing the evolution, distribution and the socio-economic impacts of extreme rainfall over East Africa during the March, April and May (MAM) rainfall season focusing on assessing the trends and contribution of MAM rainfall in mean annual rainfall across the region. It employed Principal Component Analysis (PCA) methods to capture the patterns and variability of MAM rainfall. The PCA results indicated that the first Principal Component (PC) describe 17% of the total variance, while the first six PCs account only 53.5% of the total variance in MAM rainfall, underscoring the complexity of rainfall forcing factors in the region. It has been observed that MAM rainfall accounts about 30% - 60% of the mean annual rainfall in most parts of the region, signifying its importance in agriculture, water, energy and other socio-economic sectors. MAM has been characterized by increasing variability with varying trend patterns across the region. The MAM rainfall trend is not homogeneous across the region;some areas are experiencing a slight decreasing rainfall trend, while other areas are experiencing a slight increasing rainfall trend. The observed trend dynamics is consistent with the global trend patterns in precipitation as depicted in recent Intergovernmental Panel on Climate Change (IPCC) reports. Over the last five years MAM rainfall season have been characterized by record-breaking extremes. On 8th May 2017, Tanga and Mombasa meteorological stations recorded 316 mm and 235.1 mm of rainfall in 24 hours respectively, which are the highest amounts for these respective stations, since their establishment. Record highest 24 hours rainfall amounting to 134.9 mm and 119.4 mm were also observed at Buginyanya and Kawanda meteorological stations in Uganda on 18th March 2018 and 7<sup>th</sup> May 2020. On 6<sup>th</sup> May 2020, Byimana meteorological station in Rwanda, also observed 140.6 mm of rainfall in 24 hours, the highest since its establishment. These extremes have caused multiple losses of life and property, and severe damages to infrastructure. Unfortunately, the frequency and intensity of these extremes are projected to increase under a changing regional climate patterns. It is therefore important that more studies are carried out to enhance understanding about the evolution, dynamics and predictability of these extremes in East Africa region. 展开更多
关键词 extreme rainfall Events Principal Components MAM ENSO IOD
下载PDF
Contrasts between the Interannual Variations of Extreme Rainfall over Western and Eastern Sichuan in Mid-summer
14
作者 Mengyu DENG Riyu LU Chaofan LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第6期999-1011,共13页
Rainfall amount in mid-summer(July and August)is much greater over eastern than western Sichuan,which are characterized by basin and plateau,respectively.It is shown that the interannual variations of extreme rainfall... Rainfall amount in mid-summer(July and August)is much greater over eastern than western Sichuan,which are characterized by basin and plateau,respectively.It is shown that the interannual variations of extreme rainfall over these two regions are roughly independent,and they correspond to distinct anomalies of both large-scale circulation and sea surface temperature(SST).The enhanced extreme rainfall over western Sichuan is associated with a southward shift of the Asian westerly jet,while the enhanced extreme rainfall over eastern Sichuan is associated with an anticyclonic anomaly in the upper troposphere over China.At low levels,on the other hand,the enhanced extreme rainfall over western Sichuan is related to two components of wind anomalies,namely southwesterly over southwestern Sichuan and northeasterly over northeastern Sichuan,which favor more rainfall under the effects of the topography.Relatively speaking,the enhanced extreme rainfall over eastern Sichuan corresponds to the low-level southerly anomalies to the east of Sichuan,which curve into northeasterly anomalies over the basin when they encounter the mountains to the north of the basin.Therefore,it can be concluded that the topography in and around Sichuan plays a crucial role in inducing extreme rainfall both over western and eastern Sichuan.Finally,the enhanced extreme rainfall in western and eastern Sichuan is related to warmer SSTs in the Maritime Continent and cooler SSTs in the equatorial central Pacific,respectively. 展开更多
关键词 extreme rainfall SICHUAN interannual variation TOPOGRAPHY large-scale circulation
下载PDF
Trend and Return Level Analysis of Extreme Rainfalls in Senegal
15
作者 Mamadou Sarr Mahamat Adoum Moussa +1 位作者 El Hadji Deme Bouya Diop 《Journal of Water Resource and Protection》 2022年第3期221-237,共17页
In recent years, Senegal has been confronted with increasingly frequent and damaging extreme events. In the context of climate change, we conducted this study to characterize the trends of rainfall extremes in Senegal... In recent years, Senegal has been confronted with increasingly frequent and damaging extreme events. In the context of climate change, we conducted this study to characterize the trends of rainfall extremes in Senegal. In this work, we used daily rainfall data from 27 stations in Senegal from the period 1951 to 2005 (55 years). To study their linear trends, non-stationary extreme value models with time as a covariate are fitted to evaluate them. Our results indicate a decreasing trend of extreme rainfalls at most of the stations except for 5 stations. However, the decreasing trends are only significant for two stations (Thiès and Kidira), however, this can only be taken as information that climate change may have already impacted extreme rainfalls. For the 20-year and 30-year return periods, the results show that they have undergone changes, in fact for almost all stations, the trends in return periods are decreasing. 展开更多
关键词 Climate Change extreme rainfall Rain Trend Return Level Senegal
下载PDF
Probability Distribution Characteristics of Extreme Rainfall in Beijiang River Basin
16
作者 Liu Zhanming Wei Xinghu 《Meteorological and Environmental Research》 CAS 2018年第3期10-13,17,共5页
7 kinds of probability distribution functions were used to fit extreme rainfall indexes R1d( the maximum 1-d rainfall in the year) and R5d( the maximum continuous 5-d rainfall in the year) at 18 observation statio... 7 kinds of probability distribution functions were used to fit extreme rainfall indexes R1d( the maximum 1-d rainfall in the year) and R5d( the maximum continuous 5-d rainfall in the year) at 18 observation stations of Beijiang River basin,and linear moment method was used to estimate parameters. According to fitting goodness test,the best probability distribution function was determined. On this basis,spatial analysis of design values of R1d and R5d with 50-a and 100-a reappearance periods was conducted. Via further selection,GH Copula was taken as connection function,and R1d-R5d joint probability distribution in the basin was studied. The results showed that R1d or R5d probability with 50-a and 100-a reappearance periods was larger in Wengyuan and Qingyuan,while R1d and R5d co-occurrence probability with 50-a and 100-a reappearance periods was larger in central north region. 展开更多
关键词 extreme rainfall index Copula function Beijiang River basin
下载PDF
Real Time Monitoring of Extreme Rainfall Events with Simple X-Band Mini Weather Radar
17
作者 Silvano Bertoldo Claudio Lucianaz +1 位作者 Marco Allegretti Giovanni Perona 《Atmospheric and Climate Sciences》 2016年第2期285-299,共15页
Real time rainfall events monitoring is very important for a large number of reasons: Civil Protection, hydrogeological risk management, hydroelectric power purposes, road and traffic regulation, and tourism. Efficien... Real time rainfall events monitoring is very important for a large number of reasons: Civil Protection, hydrogeological risk management, hydroelectric power purposes, road and traffic regulation, and tourism. Efficient monitoring operations need continuous, high-resolution and large-coverage data. To monitor and observe extreme rainfall events, often much localized over small basins of interest, and that could frequently causing flash floods, an unrealistic extremely dense rain gauge network should be needed. On the other hand, common large C-band or S-band long range radars do not provide the necessary spatial and temporal resolution. Simple short-range X-band mini weather radar can be a valid compromise solution. The present work shows how a single polarization, non-Doppler and non-coherent, simple and low cost X-band radar allowed monitoring three very intense rainfall events occurred near Turin during July 2014. The events, which caused damages and floods, are detected and monitored in real time with a sample rate of 1 minute and a radial spatial resolution of 60 m, thus allowing to describe the intensity of the precipitation on each small portion of territory. This information could be very useful if used by authorities in charge of Civil Protection in order to avoid inconvenience to people and to monitor dangerous situations. 展开更多
关键词 X-Band Radar extreme rainfall Event Precipitation Monitoring High Temporal Resolution High Spatial Resolution Real Time Monitoring Single Polarization
下载PDF
Extreme Rainfall Events over the Amazon Basin Produce Significant Quantities of Rain Relative to the Rainfall Climatology
18
作者 Adriane Lima Brito Jose Augusto Paixao Veiga Marcos Cezar Yoshida 《Atmospheric and Climate Sciences》 2014年第2期179-191,共13页
Although much effort has been made to characterize and understand extreme rainfall’s causes and effects, little is known about their frequency and intensity. Moreover, knowledge about their contribution to the total ... Although much effort has been made to characterize and understand extreme rainfall’s causes and effects, little is known about their frequency and intensity. Moreover, knowledge about their contribution to the total rainfall climatology is still minimal, especially over the Amazon where rainfall data are very scarce. In this paper we propose to classify extreme rainfall events by type and analyze their frequency and intensity over South America with a focus on the Amazon basin. Gridded daily data from the MERGE/CPTEC product over a period of 15 years (1998–2013) was used. An adaptation of Rx5d climate index was applied to select different kinds of extreme rainfall for the purpose of quantifying their frequency and intensity as well as their contribution to the accumulated rainfall climatology. According to the results, all kinds of extreme rainfall events can be observed over the studied area. However, the quantity of rainfall produced by each type is different, and consequently their percent contributions to the total accumulated rainfall climatology also differ. For example: in the Amazon region EET-I is responsible for 15% - 40% of the total accumulated rainfall. Moreover, in the Brazilian northeast there are regions where EET-I exceeds 40% of the total rainfall. In northeast Brazil EET-II is responsible up to 30% of the total accumulated rainfall. EET-III is responsible for 5% - 15% in the Amazon basin, 25% - 45% in northeast Brazil and 10% - 45% over Roraima State. Area-mean time variation shows that the quantity of rainfall extremes over the Amazon basin was reduced during the El Nino years of 2002, 2005, 2007 and 2010, while during the La Ni?a episodes of 1999, 2008 and 2011 the quantity of rainfall related to the extremes increased. 展开更多
关键词 extreme rainfall Events CLIMATOLOGY AMAZON
下载PDF
Raindrop Size Distributions in the Zhengzhou Extreme Rainfall Event on 20 July 2021:Temporal-Spatial Variability and Implications for Radar QPE
19
作者 Liman CUI Haoran LI +4 位作者 Aifang SU Yang ZHANG Xiaona LYU Le XI Yuanmeng ZHANG 《Journal of Meteorological Research》 SCIE CSCD 2024年第3期489-503,共15页
In this study,a regional Parsivel OTT disdrometer network covering urban Zhengzhou and adjacent areas is employed to investigate the temporal-spatial variability of raindrop size distributions(DSDs)in the Zhengzhou ex... In this study,a regional Parsivel OTT disdrometer network covering urban Zhengzhou and adjacent areas is employed to investigate the temporal-spatial variability of raindrop size distributions(DSDs)in the Zhengzhou extreme rainfall event on 20 July 2021.The rain rates observed by disdrometers and rain gauges from six operational sites are in good agreement,despite significant site-to-site variations of 24-h accumulated rainfall ranging from 198.3 to 624.1 mm.The Parsivel OTT observations show prominent temporal-spatial variations of DSDs,and the most drastic change was registered at Zhengzhou Station where the record-breaking hourly rainfall of 201.9 mm over 1500-1600 LST(local standard time)was reported.This hourly rainfall is characterized by fairly high concentrations of large raindrops,and the mass-weighted raindrop diameter generally increases with the rain rate before reaching the equilibrium state of DSDs with the rain rate of about 50 mm h^(−1).Besides,polarimetric radar observations show the highest differential phase shift(K_(dp))and differential reflectivity(Z_(dr))near surface over Zhengzhou Station from 1500 to 1600 LST.In light of the remarkable temporal-spatial variability of DSDs,a reflectivity-grouped fitting approach is proposed to optimize the reflectivity-rain rate(Z-R)parameterization for radar quantitative precipitation estimation(QPE),and the rain gauge measurements are used for validation.The results show an increase of mean bias ratio from 0.57 to 0.79 and a decrease of root-mean-square error from 23.69 to 18.36 for the rainfall intensity above 20.0 mm h^(−1),as compared with the fixed Z-R parameterization.This study reveals the drastic temporal-spatial variations of rain microphysics during the Zhengzhou extreme rainfall event and warrants the promise of using reflectivity-grouped fitting Z-R relationships for radar QPE of such events. 展开更多
关键词 extreme rainfall raindrop size distribution RADAR quantitative precipitation estimation(QPE)
原文传递
Microphysical Characteristics of Extreme-Rainfall Convection over the Pearl River Delta Region, South China from Polarimetric Radar Data during the Pre-summer Rainy Season 被引量:1
20
作者 Hao HUANG Kun ZHAO +1 位作者 Johnny CLCHAN Dongming HU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期874-886,共13页
During the pre-summer rainy season,heavy rainfall occurs frequently in South China.Based on polarimetric radar observations,the microphysical characteristics and processes of convective features associated with extrem... During the pre-summer rainy season,heavy rainfall occurs frequently in South China.Based on polarimetric radar observations,the microphysical characteristics and processes of convective features associated with extreme rainfall rates(ERCFs)are examined.In the regions with high ERCF occurrence frequency,sub-regional differences are found in the lightning flash rate(LFR)distributions.In the region with higher LFRs,the ERCFs have larger volumes of high reflectivity factor above the freezing level,corresponding to more active riming processes.In addition,these ERCFs are more organized and display larger spatial coverage,which may be related to the stronger low-level wind shear and higher terrain in the region.In the region with lower LFRs,the ERCFs have lower echo tops and lower-echo centroids.However,no clear differences of the most unstable convective available potential energy(MUCAPE)exist in the ERCFs in the regions with different LFR characteristics.Regardless of the LFRs,raindrop collisional coalescence is the main process for the growth of raindrops in the ERCFs.In the ERCFs within the region with lower LFRs,the main mechanism for the rapid increase of liquid water content with decreasing altitude below 4 km is through the warm-rain processes converting cloud drops to raindrops.However,in those with higher LFRs,the liquid water content generally decreases with decreasing altitude. 展开更多
关键词 MICROPHYSICS extreme rainfall rate polarimetric radar lightning flash rate
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部