The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the ...The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the Runyang Cable-stayed Bridge,the daily variations as well as seasonal ones of measured temperature differences in the box girder cross-section area were summarized.The probability distribution models of temperature differences were further established and the extreme temperature differences were estimated with a return period of 100 years.Finally,the temperature difference models in cross-section area were proposed for bridge thermal design.The results show that horizontal temperature differences in top plate and vertical temperature differences between top plate and bottom plate are considerable.All the positive and negative temperature differences can be described by the weighted sum of two Weibull distributions.The maximum positive and negative horizontal temperature differences in top plate are 10.30 ℃ and -13.80 ℃,respectively.And the maximum positive and negative vertical temperature differences between top plate and bottom plate are 17.30 ℃ and-3.70 ℃,respectively.For bridge thermal design,there are two vertical temperature difference models between top plate and bottom plate,and six horizontal temperature difference models in top plate.展开更多
We performed long-term wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002, and then analyzed the regional wave climate. Comparisons between model results and satellite data are generally...We performed long-term wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002, and then analyzed the regional wave climate. Comparisons between model results and satellite data are generally consistent on monthly mean significant wave height. Then we discuss the temporal and spatial characteristics of the climatological monthly mean significant wave heights and mean wave periods. The climatologically spatial patterns are observed as increasing from northwest to southeast and from offshore to deep-water area for both significant wave height and mean wave period, and the patterns are highly related to the wind forcing and local topography. Seasonal variations of wave parameters are also significant. Furthermore, we compute the extreme values of wind and significant wave height using statistical methods. Results reveal the spatial patterns of N-year return significant wave height in the Yellow Sea and the Bohai Sea, and we discuss the relationship between extreme values of significant wave height and wind forcing.展开更多
Wave climate plays an important role in the air-sea interaction over marginal seas. Extreme wave height provides fundamental information for various ocean engineering practices, such as hazard mitigation, coastal stru...Wave climate plays an important role in the air-sea interaction over marginal seas. Extreme wave height provides fundamental information for various ocean engineering practices, such as hazard mitigation, coastal structure design, and risk assessment. In this paper, we implement a third generation wave model and conduct a high-resolution wave hindcast over the East China Sea to reconstruct a 15-year wave field from 1988 to 2002 for derivation of monthly mean wave parameters and analysis of extreme wave conditions. The numerical results of the wave field are validated through comparison with satellite altimetry measurements, low-resolution reanalysis, and the ocean wave buoy record. The monthly averaged wave height and wave period show seasonal variation and refined spatial patterns of surface waves in the East China Sea. The climatological significant wave height and mean wave period decrease from the open ocean in the southeast toward the continental area in the northwest, with the pattern generally following the bathymetry. Extreme analysis on the significant wave height at the buoy station indicates the hindcast data underestimate the extreme values relative to the observations. The spatial pattern of extreme wave height shows single peak emerges at the southwest of Ryukyu Island although a wind forcing with multi-core structure at the extreme is applied.展开更多
基金Project(51178100)supported by the National Natural Science Foundation of ChinaProject(1105007001)supported by the Foundation of the Priority Academic Development Program of Higher Education Institute of Jiangsu Province,ChinaProject(3205001205)supported by the Teaching and Research Foundation for Excellent Young Teachers of Southeast University,China
文摘The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the Runyang Cable-stayed Bridge,the daily variations as well as seasonal ones of measured temperature differences in the box girder cross-section area were summarized.The probability distribution models of temperature differences were further established and the extreme temperature differences were estimated with a return period of 100 years.Finally,the temperature difference models in cross-section area were proposed for bridge thermal design.The results show that horizontal temperature differences in top plate and vertical temperature differences between top plate and bottom plate are considerable.All the positive and negative temperature differences can be described by the weighted sum of two Weibull distributions.The maximum positive and negative horizontal temperature differences in top plate are 10.30 ℃ and -13.80 ℃,respectively.And the maximum positive and negative vertical temperature differences between top plate and bottom plate are 17.30 ℃ and-3.70 ℃,respectively.For bridge thermal design,there are two vertical temperature difference models between top plate and bottom plate,and six horizontal temperature difference models in top plate.
基金The National Natural Science Foundation of China under contract Nos 41476021 and 41321004the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010104the project of Indo-Pacific Ocean Environment Variation and Air-sea Interaction under contract No.GASI-IPOVAI-04
文摘We performed long-term wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002, and then analyzed the regional wave climate. Comparisons between model results and satellite data are generally consistent on monthly mean significant wave height. Then we discuss the temporal and spatial characteristics of the climatological monthly mean significant wave heights and mean wave periods. The climatologically spatial patterns are observed as increasing from northwest to southeast and from offshore to deep-water area for both significant wave height and mean wave period, and the patterns are highly related to the wind forcing and local topography. Seasonal variations of wave parameters are also significant. Furthermore, we compute the extreme values of wind and significant wave height using statistical methods. Results reveal the spatial patterns of N-year return significant wave height in the Yellow Sea and the Bohai Sea, and we discuss the relationship between extreme values of significant wave height and wind forcing.
基金supported by the National Natural Science Foundation of China(Grant Nos.41476021,41576013&41321004)the National High Technology Research and Development Program of China(Grant No.2013AA122803)National Program on Global Change and Air-Sea Interaction(Grant No.GASI-IPOVAI-04)
文摘Wave climate plays an important role in the air-sea interaction over marginal seas. Extreme wave height provides fundamental information for various ocean engineering practices, such as hazard mitigation, coastal structure design, and risk assessment. In this paper, we implement a third generation wave model and conduct a high-resolution wave hindcast over the East China Sea to reconstruct a 15-year wave field from 1988 to 2002 for derivation of monthly mean wave parameters and analysis of extreme wave conditions. The numerical results of the wave field are validated through comparison with satellite altimetry measurements, low-resolution reanalysis, and the ocean wave buoy record. The monthly averaged wave height and wave period show seasonal variation and refined spatial patterns of surface waves in the East China Sea. The climatological significant wave height and mean wave period decrease from the open ocean in the southeast toward the continental area in the northwest, with the pattern generally following the bathymetry. Extreme analysis on the significant wave height at the buoy station indicates the hindcast data underestimate the extreme values relative to the observations. The spatial pattern of extreme wave height shows single peak emerges at the southwest of Ryukyu Island although a wind forcing with multi-core structure at the extreme is applied.