针对海量数据提出一种基于改进Fisher分数(F-score)特征选择的改进粒子群优化的BP(Modified Particle Swarm Optimization and Back Propagation,MPSO-BP)神经网络短期负荷预测方法。首先采用改进F-score特征评价准则计算影响负荷预测...针对海量数据提出一种基于改进Fisher分数(F-score)特征选择的改进粒子群优化的BP(Modified Particle Swarm Optimization and Back Propagation,MPSO-BP)神经网络短期负荷预测方法。首先采用改进F-score特征评价准则计算影响负荷预测精度各个特征的F-score值,再通过F-score Area法设定阈值筛选出最优特征子集,然后将最优特征子集作为MPSO-BP神经网络模型的输入变量完成对预测日一天24点负荷的预测,并与MPSO-BP神经网络短期负荷预测和传统BP神经网络短期负荷预测进行对比。算例表明,文中提出的短期负荷预测方法可以较好地对海量数据进行挖掘,具有较高的预测精度。展开更多
Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There i...Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There is limited literature and data-driven analysis about trends in transportation mode. This thesis delves into the operational challenges of vehicle performance management within logistics clusters, a critical aspect of efficient supply chain operations. It aims to address the issues faced by logistics organizations in optimizing their vehicle fleets’ performance, essential for seamless logistics operations. The study’s core design involves the development of a predictive logistics model based on regression, focused on forecasting, and evaluating vehicle performance in logistics clusters. It encompasses a comprehensive literature review, research methodology, data sources, variables, feature engineering, and model training and evaluation and F-test analysis was done to identify and verify the relationships between attributes and the target variable. The findings highlight the model’s efficacy, with a low mean squared error (MSE) value of 3.42, indicating its accuracy in predicting performance metrics. The high R-squared (R2) score of 0.921 emphasizes its ability to capture relationships between input characteristics and performance metrics. The model’s training and testing accuracy further attest to its reliability and generalization capabilities. In interpretation, this research underscores the practical significance of the findings. The regression-based model provides a practical solution for the logistics industry, enabling informed decisions regarding resource allocation, maintenance planning, and delivery route optimization. This contributes to enhanced overall logistics performance and customer service. By addressing performance gaps and embracing modern logistics technologies, the study supports the ongoing evolution of vehicle performance management in logistics clusters, fostering increased competitiveness and sustainability in the logistics sector.展开更多
文摘针对海量数据提出一种基于改进Fisher分数(F-score)特征选择的改进粒子群优化的BP(Modified Particle Swarm Optimization and Back Propagation,MPSO-BP)神经网络短期负荷预测方法。首先采用改进F-score特征评价准则计算影响负荷预测精度各个特征的F-score值,再通过F-score Area法设定阈值筛选出最优特征子集,然后将最优特征子集作为MPSO-BP神经网络模型的输入变量完成对预测日一天24点负荷的预测,并与MPSO-BP神经网络短期负荷预测和传统BP神经网络短期负荷预测进行对比。算例表明,文中提出的短期负荷预测方法可以较好地对海量数据进行挖掘,具有较高的预测精度。
文摘Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There is limited literature and data-driven analysis about trends in transportation mode. This thesis delves into the operational challenges of vehicle performance management within logistics clusters, a critical aspect of efficient supply chain operations. It aims to address the issues faced by logistics organizations in optimizing their vehicle fleets’ performance, essential for seamless logistics operations. The study’s core design involves the development of a predictive logistics model based on regression, focused on forecasting, and evaluating vehicle performance in logistics clusters. It encompasses a comprehensive literature review, research methodology, data sources, variables, feature engineering, and model training and evaluation and F-test analysis was done to identify and verify the relationships between attributes and the target variable. The findings highlight the model’s efficacy, with a low mean squared error (MSE) value of 3.42, indicating its accuracy in predicting performance metrics. The high R-squared (R2) score of 0.921 emphasizes its ability to capture relationships between input characteristics and performance metrics. The model’s training and testing accuracy further attest to its reliability and generalization capabilities. In interpretation, this research underscores the practical significance of the findings. The regression-based model provides a practical solution for the logistics industry, enabling informed decisions regarding resource allocation, maintenance planning, and delivery route optimization. This contributes to enhanced overall logistics performance and customer service. By addressing performance gaps and embracing modern logistics technologies, the study supports the ongoing evolution of vehicle performance management in logistics clusters, fostering increased competitiveness and sustainability in the logistics sector.