The hot deformation behavior of F6NM stainless steel was investigated by hot compression test in a Gleeble-1500D thermal-mechanical simulator. The flow strain-stress curves were obtained and the corresponding metallog...The hot deformation behavior of F6NM stainless steel was investigated by hot compression test in a Gleeble-1500D thermal-mechanical simulator. The flow strain-stress curves were obtained and the corresponding metallographic observation of this steel under different deformation conditions was also carried out. This steel exhibi- ted dynamic recrystallization (DRX) in the temperature range of 1 273- 1473 K and the strain rate range of 0.01- 0.1 s^-1. The activation energy for hot deformation was determined to be 457.91 kJ/mol, and the hot deformation equations were also established. The flow instability zone was determined and could be divided into two regions. The first one was located in the temperature range of 1 173- 1 348 K and the strain rate range of 0. 056-10 s^-1 , while the second one is in the temperature range of 1398-1448 K and the strain rate range of 1.25-10 s^-1. In the end, the optimum conditions for hot working were provided.展开更多
基金Item Sponsored by National Science and Technology Major Project of Large-scale Advanced Pressurized Water Reactor of China(20112X06004-016)
文摘The hot deformation behavior of F6NM stainless steel was investigated by hot compression test in a Gleeble-1500D thermal-mechanical simulator. The flow strain-stress curves were obtained and the corresponding metallographic observation of this steel under different deformation conditions was also carried out. This steel exhibi- ted dynamic recrystallization (DRX) in the temperature range of 1 273- 1473 K and the strain rate range of 0.01- 0.1 s^-1. The activation energy for hot deformation was determined to be 457.91 kJ/mol, and the hot deformation equations were also established. The flow instability zone was determined and could be divided into two regions. The first one was located in the temperature range of 1 173- 1 348 K and the strain rate range of 0. 056-10 s^-1 , while the second one is in the temperature range of 1398-1448 K and the strain rate range of 1.25-10 s^-1. In the end, the optimum conditions for hot working were provided.