期刊文献+
共找到948篇文章
< 1 2 48 >
每页显示 20 50 100
Engineering Thermoelectric Performance of α-GeTe by Ferroelectric Distortion 被引量:1
1
作者 Yuting Fan Chenghao Xie +5 位作者 Jun Li Xiangyu Meng Jinchang Sun Jinsong Wu Xinfeng Tang Gangjian Tan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期171-179,共9页
The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural ... The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural distortion on its transport properties remains unclear.Herein,we performed a systematic study on the crystal structure and electronic band structure evolutions of Ge_(1-x)Sn_(x)Te alloys where the degree of ferroelectric distortion is continuously tuned.It is revealed that the band gap is maximized while multiple valence bands are converged at x=0.6,where the ferroelectric distortion is the least but still works.Once undistorted,the band gap is considerably reduced,and the valence bands are largely separated again.Moreover,near the ferro-to-paraelectric phase transition Curie temperature,the lattice thermal conductivity reaches its minima because of significant lattice softening enabled by ferroelectric instability.We predict a peak ZT value of 2.6 at 673 K inα-GeTe by use of proper dopants which are powerful in suppressing the excess hole concentrations but meanwhile exert little influence on the ferroelectric distortion. 展开更多
关键词 electronic band structures ferroelectric distortion lattice softening THERMOELECTRIC α-GeTe
下载PDF
Ultra‑Stable Sodium‑Ion Battery Enabled by All‑Solid‑State Ferroelectric‑Engineered Composite Electrolytes
2
作者 Yumei Wang Zhongting Wang +8 位作者 Xiaoyu Xu Sam Jin An Oh Jianguo Sun Feng Zheng Xiao Lu Chaohe Xu Binggong Yan Guangsheng Huang Li Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期704-717,共14页
Symmetric Na-ion cells using the NASICON-structured electrodes could simplify the manufacturing process,reduce the cost,facilitate the recycling post-process,and thus attractive in the field of large-scale stationary ... Symmetric Na-ion cells using the NASICON-structured electrodes could simplify the manufacturing process,reduce the cost,facilitate the recycling post-process,and thus attractive in the field of large-scale stationary energy storage.However,the long-term cycling performance of such batteries is usually poor.This investigation reveals the unavoidable side reactions between the NASICON-type Na_(3)V_(2)(PO_(4))_(3)(NVP)anode and the commercial liquid electrolyte,leading to serious capacity fading in the symmetric NVP//NVP cells.To resolve this issue,an all-solid-state composite electrolyte is used to replace the liquid electrolyte so that to overcome the side reaction and achieve high anode/electrolyte interfacial stability.The ferroelectric engineering could further improve the interfacial ion conduction,effectively reducing the electrode/electrolyte interfacial resistances.The NVP//NVP cell using the ferroelectric-engineered composite electrolyte can achieve a capacity retention of 86.4%after 650 cycles.Furthermore,the electrolyte can also be used to match the Prussianblue cathode NaxFeyFe(CN)_(6−z)·nH_(2)O(NFFCN).Outstanding long-term cycling stability has been obtained in the all-solid-state NVP//NFFCN cell over 9000 cycles at a current density of 500 mA g^(-1),with a fading rate as low as 0.005%per cycle. 展开更多
关键词 Sodium-ion battery NVP anode ALL-SOLID-STATE Cyclic stability ferroelectric
下载PDF
Enhanced ferroelectric and improved leakage of BFO-based thin films through increasing entropy strategy
3
作者 Dongfei Lu Guoqiang Xi +5 位作者 Hangren Li Jie Tu Xiuqiao Liu Xudong Liu Jianjun Tian Linxing Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2263-2273,共11页
BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric p... BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric properties.Herein,the sol-gel method was used to deposit a series of BFO-based thin films on fluorine-doped tin oxide substrates,and the effects of the substitution of the elements Co,Cu,Mn(B-site)and Sm,Eu,La(A-site)on the crystal structure,ferroelectricity,and leakage current of the BFO-based thin films were invest-igated.Results confirmed that lattice distortion by X-ray diffraction can be attributed to the substitution of individual elements in the BFO-based films.Sm and Eu substitutions contribute to the lattice distortion in a pseudo-cubic structure,while La is biased toward pseudo-tet-ragonal.Piezoelectric force microscopy confirmed that reversible switching of ferroelectric domains by nearly 180°can be realized through the prepared films.The ferroelectric hysteresis loops showed that the order for the polarization contribution is as follows:Cu>Co>Mn(B-site),Sm>La>Eu(A-site).The current density voltage curves indicated that the order for leakage contribution is as follows:Mn<Cu<Co(B-site),La<Eu<Sm(A-site).Scanning electron microscopy showed that the introduction of Cu elements facilitates the formation of dense grains,and the grain size distribution statistics proved that La element promotes the reduction of grain size,leading to the increase of grain boundaries and the reduction of leakage.Finally,a Bi_(0.985)Sm_(0.045)La_(0.03)Fe_(0.96)Co_(0.02)Cu_(0.02)O_(3)(SmLa-CoCu)thin film with a qualitative leap in the remnant polarization from 25.5(Bi_(0.985)Sm_(0.075)FeO_(3))to 98.8µC/cm^(2)(SmLa-CoCu)was prepared through the syner-gistic action of Sm,La,Co,and Cu elements.The leakage current is also drastically reduced from 160 to 8.4 mA/cm^(2)at a field strength of 150 kV/cm.Thus,based on the increasing entropy strategy of chemical engineering,this study focuses on enhancing ferroelectricity and decreasing leakage current,providing a promising path for the advancement of ferroelectric devices. 展开更多
关键词 increasing entropy SYNERGISTIC ferroelectric film remnant polarization leakage current
下载PDF
BaTiO_(3)/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization
4
作者 韩无双 刘可为 +6 位作者 杨佳霖 朱勇学 程祯 陈星 李炳辉 刘雷 申德振 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期202-207,共6页
Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector ... Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property.At 0 V bias,the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO_(3),which allows the performance of photodetectors to be controlled by the ferroelectric effect.Meanwhile,a relatively large responsivity and a fast response speed can be also observed.In particular,when the depolarization field of BaTiO_(3) is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction(up polarized state),the photodetector exhibits a high responsivity of 18 mA/W at 360 nm,and a fast response speed of<40 ms at 0 V.These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents. 展开更多
关键词 ferroelectric effect BIPOLAR self-driven PHOTODETECTOR
下载PDF
Enhancing BiVO_(4)photoanode performance by insertion of an epitaxial BiFeO_(3)ferroelectric layer
5
作者 Haejin Jang Yejoon Kim +6 位作者 Hojoong Choi Jiwoong Yang Yoonsung Jung Sungkyun Choi Donghyeon Lee Ho Won Jang Sanghan Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期71-78,I0003,共9页
BiVO_(4)(BVO)is a promising material as the photoanode for use in photoelectrochemical applications.However,the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfacto... BiVO_(4)(BVO)is a promising material as the photoanode for use in photoelectrochemical applications.However,the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance.To address this,various modifications have been attempted,including the use of ferroelectric materials.Ferroelectric materials can form a permanent polarization within the layer,enhancing the separation and transport of photo-excited electron-hole pairs.In this study,we propose a novel approach by depositing an epitaxial BiFeO_(3)(BFO)thin film underneath the BVO thin film(BVO/BFO)to harness the ferroelectric property of BFO.The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination.As a result,the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density(0.65 mA cm^(-2))at 1.23 V_(RHE)under the illumination compared to the bare BVO photoanodes(0.18 m A cm^(-2)),which is consistent with the increase of the applied bias photon-to-current conversion efficiencies(ABPE)and the result of electrochemical impedance spectroscopy(EIS)analysis.These results can be attributed to the self-polarization exhibited by the inserted BFO thin film,which promoted the charge separation and transfer efficiency of the BVO photoanodes. 展开更多
关键词 PHOTOELECTROCHEMICAL PHOTOANODE BiVO_(4) ferroelectric materials BiFeO_(3)
下载PDF
Non-contact intelligent sensor for recognizing transparent and naked-eye indistinguishable materials based on ferroelectric BiFeO_(3)thin films
6
作者 Shengjie Yin Hongyu Li +2 位作者 Weiqi Qian Md Al Mahadi Hasan Ya Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期263-271,共9页
At present,the research on ferroelectric photovoltaic materials mainly focuses on photoelectric detection.In the context of the rapid development of the Internet of Things(IoT),it is particularly important to use smal... At present,the research on ferroelectric photovoltaic materials mainly focuses on photoelectric detection.In the context of the rapid development of the Internet of Things(IoT),it is particularly important to use smaller thin-film devices as sensors.In this work,an indium tin oxide/bismuth ferrite(BFO)/lanthanum nickelate device has been fabricated on an F-doped tin oxide glass substrate using the sol–gel method.The sensor can continuously output photoelectric signals with little environmental impact.Compared to other types of sensors,this photoelectric sensor has an ultra-low response time of 1.25 ms and ultra-high sensitivity.Furthermore,a material recognition system based on a BFO sensor is developed.It can effectively identify eight kinds of materials that are difficult for human eyes to distinguish.This provides new ideas and methods for developing the IoT in material identification. 展开更多
关键词 BiFeO_(3) ferroelectric materials self-powered photodetector material recognition
下载PDF
Ferroelectricity Induced by Oxygen Vacancies in Rhombohedral ZrO_(2) Thin Films
7
作者 Veniero Lenzi José P.B.Silva +5 位作者 Břetislav Šmíd Vladimir Matoín Cosmin M.Istrate Corneliu Ghica Judith L.MacManus-Driscoll Luís Marques 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期229-237,共9页
Rhombohedral phase Hf_(x)Zr_(1.x)O_(2)(HZO,x from 0 to 1)films are promising for achieving robust ferroelectric polarization without the need for an initial wake-up pre-cycling,as is normally the case for the more com... Rhombohedral phase Hf_(x)Zr_(1.x)O_(2)(HZO,x from 0 to 1)films are promising for achieving robust ferroelectric polarization without the need for an initial wake-up pre-cycling,as is normally the case for the more commonly studied orthorhombic phase.However,a large spontaneous polarization observed in rhombohedral films is not fully understood,and there are also large discrepancies between experimental and theoretical predictions.In this work,in rhombohedral ZrO_(2)thin films,we show that oxygen vacancies are not only a key factor for stabilizing the phase,but they are also a source of ferroelectric polarization in the films.This is shown experimentally through the investigation of the structural properties,chemical composition and the ferroelectric properties of the films before and after an annealing at moderate temperature(400℃)in an oxygen environment to reduce the V_(o)concentration compared.The experimental work is supported by density functional theory(DFT)calculations which show that the rhombohedral phase is the most stable one in highly oxygen defective ZrO_(2)films.The DFT calculations also show that V_(o)contribute to the ferroelectric polarization.Our findings reveal the importance of V_(o)for stabilizing rhombohedral ZrO_(2)thin films with superior ferroelectric properties. 展开更多
关键词 charged defects ferroelectric polarization rhombohedral phase stability ZIRCONIA
下载PDF
Structure,ferroelectric,and enhanced fatigue properties of sol–gel-processed new Bi-based perovskite thin films of Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)
8
作者 宋伟宾 席国强 +10 位作者 潘昭 刘锦 叶旭斌 刘哲宏 王潇 单鹏飞 张林兴 鲁年鹏 樊龙龙 秦晓梅 龙有文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期608-615,共8页
Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT... Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT) are deposited on Pt(111)/Ti/SiO_(2)/Si substrates in the present study by the traditional sol–gel method.Their structures and related ferroelectric and fatigue characteristics are studied in-depth.The BCT–PT thin films exhibit good crystallization within the phase-pure perovskite structure,besides,they have a predominant(100) orientation together with a dense and homogeneous microstructure.The remnant polarization(2P_(r)) values at 30 μC/cm^(2) and 16 μC/cm^(2) are observed in 0.1BCT–0.9PT and 0.2BCT–0.8PT thin films,respectively.More intriguingly,although the polarization values are not so high,0.2BCT–0.8PT thin films show outstanding polarization fatigue properties,with a high switchable polarization of 93.6% of the starting values after 10^(8) cycles,indicating promising applications in ferroelectric memories. 展开更多
关键词 ferroelectric thin films PEROVSKITE PbTiO_(3)-BiMeO_(3)
下载PDF
Optimal parameter space for stabilizing the ferroelectric phase of Hf_(0.5)Zr_(0.5)O_(2) thin films under strain and electric fields
9
作者 王侣锦 王聪 +4 位作者 周霖蔚 周谐宇 潘宇浩 吴幸 季威 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期509-517,共9页
Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is fe... Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is ferroelectric but metastable in its bulk form under ambient conditions, which poses a considerable challenge to maintaining the operation performance of HZO-based ferroelectric devices. Here, we theoretically addressed this issue that provides parameter spaces for stabilizing the O-phase of HZO thin-films under various conditions. Three mechanisms were found to be capable of lowering the relative energy of the O-phase, namely, more significant surface-bulk portion of(111) surfaces, compressive c-axis strain,and positive electric fields. Considering these mechanisms, we plotted two ternary phase diagrams for HZO thin-films where the strain was applied along the in-plane uniaxial and biaxial, respectively. These diagrams indicate the O-phase could be stabilized by solely shrinking the film-thickness below 12.26 nm, ascribed to its lower surface energies. All these results shed considerable light on designing more robust and higher-performance ferroelectric devices. 展开更多
关键词 Hf_(0.5)Zr_(0.5)O_(2) orthorhombic phase ferroelectric films phase stability thickness-dependent ternary phase diagrams
下载PDF
Robust and Tunable Ferroelectricity in Ba/Co Codoped (K_(0.5)Na_(0.5))NbO_(3) Ceramics
10
作者 刘佳讯 查节林 +5 位作者 杨玉龙 吕笑梅 胡雪莉 阎朔 吴子敬 黄凤珍 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第7期152-160,共9页
The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sa... The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sample,the slowly cooled (SC) sample possesses superior dielectric and ferroelectric properties,and an 11 K higher ferroelectricparaelectric phase transition temperature,which can be attributed to the structural characteristics such as the grain size and the degree of anisotropy.Heat treatment can reversibly modulate the content of the oxygen vacancies,and in turn the ferroelectric hysteresis loops of the samples.Finally,robust and tunable ferroelectric property is achieved in SC samples with good structural integrity. 展开更多
关键词 CERAMICS ferroelectric treatment
下载PDF
Structural and Ferroelectric Transition in Few-Layer HfO_(2) Films by First Principles Calculations
11
作者 Ruiling Gao Chao Liu +9 位作者 Bowen Shi Yongchang Li Bing Luo Rui Chen Wenbin Ouyang Heng Gao Shunbo Hu Yin Wang Dongdong Li Wei Ren 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第8期94-106,共13页
The discovery of ferroelectricity in HfO_(2)-based materials with high dielectric constant has inspired tremendous research interest for next-generation electronic devices.Importantly,films structure and strain are ke... The discovery of ferroelectricity in HfO_(2)-based materials with high dielectric constant has inspired tremendous research interest for next-generation electronic devices.Importantly,films structure and strain are key factors in exploration of ferroelectricity in fluorite-type oxide HfO_(2) films.Here we investigate the structures and straininduced ferroelectric transition in different phases of few-layer HfO_(2) films(layer number𝑁=1–5).It is found that HfO_(2) films for all phases are more stable with increasing films thickness.Among them,the Pmn2_(1)(110)-oriented film is most stable,and the films of𝑁=4,5 occur with a𝑃21 ferroelectric transition under tensile strain,resulting in polarization about 11.8μC/cm^(2) along in-plane𝑎-axis.The ferroelectric transition is caused by the strain,which induces the displacement of Hf and O atoms on the surface to non-centrosymmetric positions away from the original paraelectric positions,accompanied by the change of surface Hf–O bond lengths.More importantly,three new stable HfO_(2)2D structures are discovered,together with analyses of computed electronic structures,mechanical,and dielectric properties.This work provides guidance for theoretical and experimental study of the new structures and strain-tuned ferroelectricity in freestanding HfO_(2) films. 展开更多
关键词 properties ferroelectric POSITIONS
下载PDF
Hole-Doped Nonvolatile and Electrically Controllable Magnetism in van der Waals Ferroelectric Heterostructures
12
作者 姜新新 王智宽 +5 位作者 李冲 孙雪莲 杨磊 李冬梅 崔彬 刘德胜 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期107-119,共13页
Electrical control of magnetism in van der Waals semiconductors is a promising step towards development of two-dimensional spintronic devices with ultralow power consumption for processing and storing information.Here... Electrical control of magnetism in van der Waals semiconductors is a promising step towards development of two-dimensional spintronic devices with ultralow power consumption for processing and storing information.Here, we propose a design for two-dimensional van der Waals heterostructures(vdWHs) that can host ferroelectricity and ferromagnetism simultaneously under hole doping. By contacting an In Se monolayer and forming an InSe/In_(2)Se_(3) vd WH, the switchable built-in electric field from the reversible out-of-plane polarization enables robust control of the band alignment. Furthermore, switching between the two ferroelectric states(P_↑ and P_↓)of hole-doped In_(2)Se_(3) with an external electric field can interchange the ON and OFF states of the nonvolatile magnetism. More interestingly, doping concentration and strain can effectively tune the magnetic moment and polarization energy. Therefore, this provides a platform for realizing multiferroics in ferroelectric heterostructures,showing great potential for use in nonvolatile memories and ferroelectric field-effect transistors. 展开更多
关键词 polarization ferroelectric DOPING
下载PDF
New‑Generation Ferroelectric AlScN Materials
13
作者 Yalong Zhang Qiuxiang Zhu +1 位作者 Bobo Tian Chungang Duan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期88-118,共31页
Ferroelectrics have great potential in the field of nonvolatile memory due to programmable polarization states by external electric field in nonvolatile manner.However,complementary metal oxide semiconductor compatibi... Ferroelectrics have great potential in the field of nonvolatile memory due to programmable polarization states by external electric field in nonvolatile manner.However,complementary metal oxide semiconductor compatibility and uniformity of ferroelectric performance after size scaling have always been two thorny issues hindering practical application of ferroelectric memory devices.The emerging ferroelectricity of wurtzite structure nitride offers opportunities to circumvent the dilemma.This review covers the mechanism of ferroelectricity and domain dynamics in ferroelectric AlScN films.The performance optimization of AlScN films grown by different techniques is summarized and their applications for memories and emerging in-memory computing are illustrated.Finally,the challenges and perspectives regarding the commercial avenue of ferroelectric AlScN are discussed. 展开更多
关键词 AlScN ferroelectricS Nonvolatile memory In-memory computing
下载PDF
Single-atom catalysts based on polarization switching of ferroelectric In_(2)Se_(3) for N_(2) reduction
14
作者 Nan Mu Tingting Bo +3 位作者 Yugao Hu Ruixin Xu Yanyu Liu Wei Zhou 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期244-257,共14页
The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal a... The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes. 展开更多
关键词 In_(2)Se_(3) monolayer Density functional theory ferroelectric switching Single atom catalysts Nitrogen reduction reaction Machine learning
下载PDF
Large and nonlinear electric field response in a two-dimensional ferroelectric Rashba material
15
作者 Li Sheng Xiaomin Fu +2 位作者 Chao Jia Xingxing Li Qunxiang Li 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期8-11,21,I0009,共6页
The achievement of electrical spin control is highly desirable.One promising strategy involves electrically mod-ulating the Rashba spin orbital coupling effect in materials.A semiconductor with high sensitivity in its... The achievement of electrical spin control is highly desirable.One promising strategy involves electrically mod-ulating the Rashba spin orbital coupling effect in materials.A semiconductor with high sensitivity in its Rashba constant to external electric fields holds great potential for short channel lengths in spin field-effect transistors,which is crucial for preserving spin coherence and enhancing integration density.Hence,two-dimensional(2D)Rashba semiconductors with large Rashba constants and significant electric field responses are highly desirable.Herein,by employing first-principles calculations,we design a thermodynamically stable 2D Rashba semiconductor,YSbTe_(3),which possesses an indirect band gap of 1.04 eV,a large Rashba constant of 1.54 eV·Åand a strong electric field response of up to 4.80 e·Å^(2).In particular,the Rashba constant dependence on the electric field shows an unusual nonlinear relationship.At the same time,YSbTe_(3)has been identified as a 2D ferroelectric material with a moderate polarization switching energy barrier(~0.33 eV per formula).By changing the electric polarization direction,the Rashba spin texture of YSbTe_(3)can be reversed.These out-standing properties make the ferroelectric Rashba semiconductor YSbTe_(3)quite promising for spintronic applications. 展开更多
关键词 computational chemistry Rashba effect ferroelectricS SPINTRONICS
下载PDF
Reliable ferroelectricity down to cryogenic temperature in wakeup free Hf_(0.5)Zr_(0.5)O_(2)thin films by thermal atomic layer deposition
16
作者 Shuyu Wu Rongrong Cao +6 位作者 Hao Jiang Yu Li Xumeng Zhang Yang Yang Yan Wang Yingfen Wei Qi Liu 《Journal of Semiconductors》 EI CAS CSCD 2024年第3期33-37,共5页
The performance and reliability of ferroelectric thin films at temperatures around a few Kelvin are critical for their application in cryo-electronics.In this work,TiN/Hf_(0.5)Zr_(0.5)O_(2)/TiN capacitors that are fre... The performance and reliability of ferroelectric thin films at temperatures around a few Kelvin are critical for their application in cryo-electronics.In this work,TiN/Hf_(0.5)Zr_(0.5)O_(2)/TiN capacitors that are free from the wake-up effect are investigated systematically from room temperature(300 K)to cryogenic temperature(30 K).We observe a consistent decrease in permittivity(εr)and a progressive increase in coercive electric field(Ec)as temperatures decrease.Our investigation reveals exceptional stability in the double remnant polarization(2P_(r))of our ferroelectric thin films across a wide temperature range.Specifically,at 30 K,a 2P_(r)of 36μC/cm^(2)under an applied electric field of 3.0 MV/cm is achieved.Moreover,we observed a reduced fatigue effect at 30 K in comparison to 300 K.The stable ferroelectric properties and endurance characteristics demonstrate the feasibility of utilizing HfO_(2)based ferroelectric thin films for cryo-electronics applications. 展开更多
关键词 hafnia-zirconia solid solution ferroelectricITY cryogenic temperature wake-up effect
下载PDF
Interfacial stress engineering toward enhancement of ferroelectricity in Al doped HfO_(2) thin films
17
作者 S X Chen M M Chen +2 位作者 Y Liu D W Cao G J Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期637-643,共7页
Ferroelectric HfO_(2)has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor(CMOS)technology.However,... Ferroelectric HfO_(2)has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor(CMOS)technology.However,the crystallization of polar orthorhombic phase(o-phase)HfO_(2)is less competitive,which greatly limits the ferroelectricity of the as-obtained ferroelectric HfO_(2)thin films.Fortunately,the crystallization of o-phase HfO_(2)can be thermodynamically modulated via interfacial stress engineering.In this paper,the growth of improved ferroelectric Al doped HfO_(2)(HfO_(2):Al)thin films on(111)-oriented Si substrate has been reported.Structural analysis has suggested that nonpolar monoclinic HfO_(2):Al grown on(111)-oriented Si substrate suffered from a strong compressive strain,which promoted the crystallization of(111)-oriented o-phase HfO_(2)in the as-grown HfO_(2):Al thin films.In addition,the in-plane lattice of(111)-oriented Si substrate matches well with that of(111)-oriented o-phase HfO_(2),which further thermally stabilizes the o-phase HfO_(2).Accordingly,an improved ferroelectricity with a remnant polarization(2P_(r))of 26.7C/cm^(2) has been obtained.The results shown in this work provide a simple way toward the preparation of improved ferroelectric HfO_(2)thin films. 展开更多
关键词 improved ferroelectricity interfacial stress engineering compressive strain HfO_(2)
下载PDF
Symmetric Ferroelectric Switching in Ferroelectric Vinylidene Fluoride and Trifluoroethylene Copolymer Films
18
作者 朱国栋 罗晓雅 +1 位作者 张吉皓 严学俭 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第4期425-430,I0001,共7页
We report the observation of asymmetric switching dual peaks in ferroelectric copolymer films. These dual peaks occurs when the poling electric field is just below the coercive field and can be removed by continuous a... We report the observation of asymmetric switching dual peaks in ferroelectric copolymer films. These dual peaks occurs when the poling electric field is just below the coercive field and can be removed by continuous application of high enough switching voltage. Our experimental observations can be explained by the injection and the redistribution of space charges in ferroelectric films. 展开更多
关键词 ferroelectric polymer ferroelectric switching Poly(vinylidene fluoride)
下载PDF
Recent advances, perspectives, and challenges inferroelectric synapses 被引量:2
19
作者 Bo-Bo Tian Ni Zhong Chun-Gang Duan 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第9期15-30,共16页
The multiple ferroelectric polarization tuned by external electric field could be used to simulate the biological synaptic weight. Ferroelectric synaptic devices have two advantages compared with other reported ones: ... The multiple ferroelectric polarization tuned by external electric field could be used to simulate the biological synaptic weight. Ferroelectric synaptic devices have two advantages compared with other reported ones: One is that the intrinsic switching of ferroelectric domains without invoking of defect migration as in resistive oxides, contributes reliable performance in these ferroelectric synapses. Another tremendous advantage is the extremely low energy consumption because the ferroelectric polarization is manipulated by electric field which eliminates the Joule heating by current as in magnetic and phase change memories. Ferroelectric synapses have potential for the construction of low-energy and effective brain-like intelligent networks. Here we summarize recent pioneering work of ferroelectric synapses involving the structure of ferroelectric tunnel junctions (FTJs), ferroelectric diodes (FDs), and ferroelectric field effect transistors (FeFETs), respectively, and shed light on future work needed to accelerate their application for efficient neural network. 展开更多
关键词 ferroelectric SYNAPSE ferroelectric tunnel junctions ferroelectric field effect transistors
下载PDF
Circuit-Level Analysis on Opto-Electronic Characteristics of Ferroelectric Liquid Crystal 被引量:1
20
作者 朱思奇 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第10期1523-1526,共4页
We propose an electronic model in Spice, instead of traditional mathematical analysis, for analyzing the performance of ferroelectric liquid crystal (FLC) under various working conditions. Using this equivalent circ... We propose an electronic model in Spice, instead of traditional mathematical analysis, for analyzing the performance of ferroelectric liquid crystal (FLC) under various working conditions. Using this equivalent circuit model,it is easy to simulate and analyze the behavior of an FLC layer in three different typical parameters,including temperature, input light wavelength, and the frequency of driving voltage. We conclude that the response velocity drops as the wavelength increases in the range of visible light, and for the parameter of temperature, the velocity reaches its lowest value when the temperature reaches a certain degree,meanwhile,the frequency of driving voltage exerts important effects on the response velocity only when the frequency is beyond a critical value. Excellent agreement is achieved between simulation and experimental results. 展开更多
关键词 ferroelectric liquid crystal circuit-level analysis response characteristics typical parameters
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部