The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne...The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.展开更多
Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv...Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is the most common subtype of liver cancer.The primary treatment strategies for HCC currently include liver transplantation and surgical resection.However,these methods often yi...BACKGROUND Hepatocellular carcinoma(HCC)is the most common subtype of liver cancer.The primary treatment strategies for HCC currently include liver transplantation and surgical resection.However,these methods often yield unsatisfactory outcomes,leading to a poor prognosis for many patients.This underscores the urgent need to identify and evaluate novel therapeutic targets that can improve the prognosis and survival rate of HCC patients.AIM To construct a radiomics model that can accurately predict the EZH2 expression in HCC.METHODS Gene expression,clinical parameters,HCC-related radiomics,and fibroblastrelated genes were acquired from public databases.A gene model was developed,and its clinical efficacy was assessed statistically.Drug sensitivity analysis was conducted with identified hub genes.Radiomics features were extracted and machine learning algorithms were employed to generate a radiomics model related to the hub genes.A nomogram was used to illustrate the prognostic significance of the computed Radscore and the hub genes in the context of HCC patient outcomes.RESULTS EZH2 and NRAS were independent predictors for prognosis of HCC and were utilized to construct a predictive gene model.This model demonstrated robust performance in diagnosing HCC and predicted an unfavorable prognosis.A negative correlation was observed between EZH2 expression and drug sensitivity.Elevated EZH2 expression was linked to poorer prognosis,and its diagnostic value in HCC surpassed that of the risk model.A radiomics model,developed using a logistic algorithm,also showed superior efficiency in predicting EZH2 expression.The Radscore was higher in the group with high EZH2 expression.A nomogram was constructed to visually demonstrate the significant roles of the radiomics model and EZH2 expression in predicting the overall survival of HCC patients.CONCLUSION EZH2 plays significant roles in diagnosing HCC and therapeutic efficacy.A radiomics model,developed using a logistic algorithm,efficiently predicted EZH2 expression and exhibited strong correlation with HCC prognosis.展开更多
Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported t...Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.展开更多
Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and ...Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and type 2 diabetes(90%-95%of diabetic cases)are the main types of diabetes in the clinic.Accumulating evidence shows that the fibroblast growth factor(FGF)family plays important roles in many metabolic disorders,including type 1 and type 2 diabetes.FGF consists of 23 family members(FGF-1-23)in humans.Here,we review current findings of FGFs in the treatment of diabetes and management of diabetic complications.Some FGFs(e.g.,FGF-15,FGF-19,and FGF-21)have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes,and their therapeutic roles in diabetes are currently under investigation in clinical trials.Overall,the roles of FGFs in diabetes and diabetic complications are involved in numerous processes.First,FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production.Second,modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components,promote diabetic wound healing process and bone repair,and inhibit cancer cell proliferation and migration.Finally,FGFs can regulate the activation of glucoseexcited neurons and the expression of thermogenic genes.展开更多
Finding biomarkers for immunotherapy is an urgent issue in cancer treatment.Cellular retinoic acid-binding protein 2(CRABP2)is a controversial factor in the occurrence and development of human tumors.However,there is ...Finding biomarkers for immunotherapy is an urgent issue in cancer treatment.Cellular retinoic acid-binding protein 2(CRABP2)is a controversial factor in the occurrence and development of human tumors.However,there is limited research on the relationship between CRABP2 and immunotherapy response.This study found that negative correlations of CRABP2 and immune checkpoint markers(PD-1,PD-L1,and CTLA-4)were observed in breast invasive carcinoma(BRCA),skin cutaneous melanoma(SKCM),stomach adenocarcinoma(STAD)and testicular germ cell tumors(TGCT).In particular,in SKCM patients who were treated with PD-1 inhibitors,high levels of CRABP2 predicted poor prognosis.Additionally,CRABP2 expression was elevated in cancer-associated fibroblasts(CAFs)at the single-cell level.The expression of CRABP2 was positively correlated with markers of CAFs,such as MFAP5,PDPN,ITGA11,PDGFRα/βand THY1 in SKCM.To validate the tumor-promoting effect of CRABP2 in vivo,SKCM xenograft mice models with CRABP2 overexpression have been constructed.These models showed an increase in tumor weight and volume.Enrichment analysis indicated that CRABP2 may be involved in immunerelated pathways of SKCM,such as extracellular matrix(ECM)receptor interaction and epithelial-mesenchymal transition(EMT).The study suggests that CRABP2 may regulate immunotherapy in SKCM patients by influencing infiltration of CAFs.In conclusion,this study provides new insights into the role of CRABP2 in immunotherapy response.The findings suggest that CRABP2 may be a promising biomarker for PD-1 inhibitors in SKCM patients.Further research is needed to confirm these findings and to explore the clinical implications of CRABP2 in immunotherapy.展开更多
Interfering with the ferroptosis pathway is a new strategy for the treatment of spinal cord injury.Fibroblast growth factor 21 can inhibit ferro ptosis and promote neurofunctional recovery,while heme oxygenase-1 is a ...Interfering with the ferroptosis pathway is a new strategy for the treatment of spinal cord injury.Fibroblast growth factor 21 can inhibit ferro ptosis and promote neurofunctional recovery,while heme oxygenase-1 is a regulator of iron and reactive oxygen species homeostasis.The relationship between heme oxygenase-1and ferroptosis remains controve rsial.In this study,we used a spinal co rd injury rat model to show that the levels of fibroblast growth factor 21 in spinal co rd tissue decreased after spinal cord injury.In addition,there was a significant aggravation of ferroptosis and a rapid increase in heme oxygenase-1 expression after spinal cord injury.Furthe r,heme oxygenase-1 aggravated fe rroptosis after spinal cord injury,while fibroblast growth factor 21 inhibited fe rroptosis by downregulating heme oxygenase-1.Thus,the activation of fibroblast growth factor 21 may provide a potential treatment for spinal co rd injury.These findings could provide a new potential mechanistic explanation for fibroblast growth factor 21 in the treatment of spinal cord injury.展开更多
Background:A differential gene,triggering receptor expressed on myeloid cells 1(TREM1),was identified in blood sequencing datasets from myocardial infarction patients and healthy controls.Myocardialfibrosis following my...Background:A differential gene,triggering receptor expressed on myeloid cells 1(TREM1),was identified in blood sequencing datasets from myocardial infarction patients and healthy controls.Myocardialfibrosis following myocardial infarction significantly contributes to cardiac dysfunction.Objectives:This study aimed to unveil the intrinsic regulatory mechanism of TREM1 in myocardialfibrosis.Methods:Mimicking pathology by angiotensin II(Ang II)treatment of human cardiacfibroblasts(HCFs),the impacts of TREM1 knockdown on its proliferation,migration,and secretion of the pro-fibrotic matrix were identified.Using the Human Transcription Factor Database(HumanTFDB)website,lysine-specific demethylase 5B(KDM5B)was found to bind to the TREM1 promoter,which was further validated through luciferase reporter and chromatin immunoprecipitation(ChIP).By promoting KDM5B overexpression,its effect on the regulation of TREM1 was examined.Results:TREM1 knockdown suppressed the proliferation,migration,and secretion of the pro-fibrotic matrix in HCFs upon Ang II treatment.KDM5B bound to the TREM1 promoter and upregulated its transcriptional expression.Furthermore,KDM5B overexpression reversed the regulation of the above cellular phenotypes by TREM1 knockdown.Conclusion:This study sheds light on the positive regulation of TREM1 by KDM5B,demonstrating their role in promoting myocardialfibrosis.Thisfinding provides a theoretical foundation for understanding disease pathology and potentially advancing the development of new targeted therapies.展开更多
BACKGROUND Pancreatic cancer,a formidable gastrointestinal neoplasm,is characterized by its insidious onset,rapid progression,and resistance to treatment,which often lead to a grim prognosis.While the complex pathogen...BACKGROUND Pancreatic cancer,a formidable gastrointestinal neoplasm,is characterized by its insidious onset,rapid progression,and resistance to treatment,which often lead to a grim prognosis.While the complex pathogenesis of pancreatic cancer is well recognized,recent attention has focused on the oncogenic roles of senescent tumor-associated fibroblasts.However,their precise role in pancreatic cancer remains unknown.Resveratrol is a natural polyphenol known for its multifaceted biological actions,including antioxidative and neuroprotective properties,as well as its potential to inhibit tumor proliferation and migration.Our current investigation builds on prior research and reveals the remarkable ability of resveratrol to inhibit pancreatic cancer proliferation and metastasis.AIM To explore the potential of resveratrol in inhibiting pancreatic cancer by targeting senescent tumor-associated fibroblasts.METHODS Immunofluorescence staining of pancreatic cancer tissues revealed prominent coexpression ofα-SMA and p16.HP-1 expression was determined using immunohistochemistry.Cells were treated with the senescence-inducing factors known as 3CKs.Long-term growth assays confirmed that 3CKs significantly decreased the CAF growth rate.Western blotting was conducted to assess the expression levels of p16 and p21.Immunofluorescence was performed to assess LaminB1 expression.Quantitative real-time polymerase chain reaction was used to measure the levels of several senescence-associated secretory phenotype factors,including IL-4,IL-6,IL-8,IL-13,MMP-2,MMP-9,CXCL1,and CXCL12.A scratch assay was used to assess the migratory capacity of the cells,whereas Transwell assays were used to evaluate their invasive potential.RESULTS Specifically,we identified the presence of senescent tumor-associated fibroblasts within pancreatic cancer tissues,linking their abundance to cancer progression.Intriguingly,Resveratrol effectively eradicated these fibroblasts and hindered their senescence,which consequently impeded pancreatic cancer progression.CONCLUSION This groundbreaking discovery reinforces Resveratrol's stature as a potential antitumor agent and positions senescent tumor-associated fibroblasts as pivotal contenders in future therapeutic strategies against pancreatic cancer.展开更多
BACKGROUND Inflammatory myofibroblastic tumors(IMTs)are exceptionally rare neoplasms with intermediate malignant potential.Surgery is the accepted treatment option,aiming for complete resection with clear margins.CASE...BACKGROUND Inflammatory myofibroblastic tumors(IMTs)are exceptionally rare neoplasms with intermediate malignant potential.Surgery is the accepted treatment option,aiming for complete resection with clear margins.CASE SUMMARY A 39-year-old woman presented with a growing solitary pulmonary nodule measuring 2.0 cm in the right upper lobe(RUL)of the lung.The patient underwent a RUL anterior segmentectomy using uniportal video-assisted thoracoscopy.A preliminary tissue diagnosis indicated malignancy;however,it was later revised to an IMTs.Due to the absence of a minor fissure between the right upper and middle lobes,an alternative resection approach was necessary.Therefore,we utilized indocyanine green injection to aid in delineating the intersegmental plane.Following an uneventful recovery,the patient was discharged on the third postoperative day.Thereafter,annual chest tomography scans were scheduled to monitor for potential local recurrence.CONCLUSION This case underscores the challenges in diagnosing and managing IMTs,showing the importance of accurate pathologic assessments and tailored surgical strategies.展开更多
Introduction: Collagen is the primary structural protein fibroblasts produce in the skin’s extracellular matrix. Infiltration of neutrophils into the epidermis and dermis by exposure to UV causes collagen damage and ...Introduction: Collagen is the primary structural protein fibroblasts produce in the skin’s extracellular matrix. Infiltration of neutrophils into the epidermis and dermis by exposure to UV causes collagen damage and contributes to photoaging. Methods: To study the combined effect of Lumenato and ceramide in preventing collagen-1 damage induced by phagocytes, we used co-cultures of normal human dermal fibroblasts (fibroblasts) and activated human neutrophils. The present study aimed to determine the protective effect of the combination of Lumenato and ceramide on fibroblast collagen-1 damage induced by neutrophils. Results: Lumenato (in the range of 6.5 - 208 μg/ml) or ceramide (in the range of 0.1 - 50 μM) inhibited the production of superoxides and MPO by TNFα-stimulated neutrophils, as well as the production of NO by LPS-stimulated macrophages in a dose-dependent manner. The combinations of Lumenato and ceramide, in low concentrations, caused synergistic prevention of fibroblasts’ collagen-1 damage induced by TNFα-activated neutrophils, detected by fluorescence immunostaining and WB analysis. MPO activity in the supernatants of the co-cultures was also synergistically inhibited. Adding Lumenato or ceramide singly or in combinations in these low concentrations to the fibroblast cultures did not affect the expression of collagen-1. The combinations of Lumenato or ceramide in these concentrations also caused a synergistic inhibition of NO production by activated macrophages. Conclusions: The results suggest that combining low concentrations of Lumenato and ceramide results in synergistic protection against fibroblasts’ collagen-1 damage induced by neutrophils, thus indicating their possible potential for enhanced skin health.展开更多
BACKGROUND Pelvic organ prolapse(POP)involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity,and vaginal structure is an essential factor.In POP,the vaginal walls exhibit abnormal collagen d...BACKGROUND Pelvic organ prolapse(POP)involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity,and vaginal structure is an essential factor.In POP,the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions.The intricate etiology of POP and the prohibition of trans-vaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development.Human umbilical cord mesenchymal stromal cells(hucMSCs)present limitations,but their exosomes(hucMSC-Exo)are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling.suppressed inflammation in POP group fibroblasts,stimulated primary fibroblast growth,and elevated collagen I(Col1)production in vitro.High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11(MMP11)expression.CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro.Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression.HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.展开更多
Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associ...Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associated with a better prognosis.This reaction generates excessive connective tissue,in which cancer-associated fibroblasts(CAFs)are critical cells that form a part of the tumor microenvironment.CAFs are directly involved in tumorigenesis through different mechanisms.However,their role in immunosuppression in CRC is not well understood,and the precise role of signal transducers and activators of transcription(STATs)in mediating CAF activity in CRC remains unclear.Among the myriad chemical and biological factors that affect CAFs,different cytokines mediate their function by activating STAT signaling pathways.Thus,the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors.Here,we analyze the impact of different STATs on CAF activity and their immunoregulatory role.展开更多
Mitochondrial organelle transplantation (MOT) is an innovative strategy for the treatment of mitochondrial dysfunction such as cardiac ischemic reperfusion injuries, traumatic brain and spinal cord injuries, cerebral ...Mitochondrial organelle transplantation (MOT) is an innovative strategy for the treatment of mitochondrial dysfunction such as cardiac ischemic reperfusion injuries, traumatic brain and spinal cord injuries, cerebral stroke, and neurodegenerative diseases. The earlier MOT results in better efficacy in animal models of urgent diseases such as ischemic stroke, and traumatic brain and spinal cord injuries. There is no long-term method to preserve mitochondria. Routine MOT procedure from cell growth to mitochondrial injection often takes serval weeks and is not satisfactory for urgent use cases. Hypothesis: Cryopreserved cells might be mitochondrial donors for MOT. Methods: We isolated mitochondria from cryopreserved human fibroblasts and mesenchymal stem cells (MSCs) in cell banks and compared the mitochondrial viability and transplantation with the mitochondria from fresh cells. Key findings: We found that mitochondria from fresh and cryopreserved cells are comparable in mitochondrial viability and transplantation. We also obtained data showing that mitochondria of fibroblasts and MSCs had similar membrane potential and transfer ability, but MSC’s mitochondria had higher ATP content than fibroblast’s mitochondria. In addition, oxygen consumption rates (OCRs) were higher in MSC’s mitochondria compared to fibroblast’s mitochondria and did not change between fresh and frozen cells. Conclusion: Cryopreserved fibroblasts and MSCs are alternative mitochondrial donors for MOT to fresh cells. MSCs could provide higher ATP-produced mitochondria than fibroblasts.展开更多
This study aims to evaluate the effect of serum concentration, synchronization time, and confluence degree on the synchronisation efficiency of goat fibroblast cycle. The results indicated that there was no difference...This study aims to evaluate the effect of serum concentration, synchronization time, and confluence degree on the synchronisation efficiency of goat fibroblast cycle. The results indicated that there was no difference in the percentage of nucleated fibroblasts in the G0/G1 stage between serum concentrations of 0.3% and 0.4% (83.89% and 82.69%, respectively, P > 0.05) as well as between serum concentrations of 0.2% and 0.5% (76.95% and 75.46%, respectively, P > 0.05). The percentage of nucleated fibroblasts in the G0/G1 stage was highest at the concentration of 0.3% and lowest in the control group (83.89% vs. 62.67%, P 0.05). The beneficial effect of high confluence was confirmed by the large percentage of nucleated fibroblasts at the G0/G1 stage. The 60% confluency was significantly lower than the 80% and 100% confluency (73.44%, 86.63%, and 87.17%, respectively, P < 0.05). The results indicate that the goat fibroblast cycle synchronization is the most effective at the serum concentration of 0.3%, 72 hours of synchronization and 100% confluency.展开更多
[Objectives]To study the effect and mechanism of baicalin on the activation of NLRP3 inflammasome in human fibroblast like synoviocytes of rheumatoid arthritis(HFLS-RA).[Methods]To confirm that baicalin alleviated the...[Objectives]To study the effect and mechanism of baicalin on the activation of NLRP3 inflammasome in human fibroblast like synoviocytes of rheumatoid arthritis(HFLS-RA).[Methods]To confirm that baicalin alleviated the activation of NLRP3 inflammasome in HFLS-RA,the expression of NLRP3 before and after baicalin treatment was observed by immunofluorescence.Western blot was used to detect the protein expression of p-PI3K,p-Akt,NF-κB p65,NLRP3,ASC and caspase-1 after baicalin treatment for 48 h,and the contents of IL-1 and IL-18 in the supernatents were detected by ELISA.In order to explore the mechanism of baicalin alleviating the activation of NLRP3 inflammasome,the corresponding relationship between let-7i-3p and PIK3CA was verified by double luciferin and Westen blot analysis.The expression of let-7i-3p and PI3K before and after baicalin intervention was detected by RT-qPCR.let-7i-3p interference was used to verify whether baicalin mitigated the activation of enhanced NLRP3 inflammasome.[Results]Baicalin(50 and 100 mg/L)significantly reduced the activation of NLRP3 inflammasome,inhibited the protein expressions of p-PI3K,p-Akt,NF-κB p65,NLRP3,ASC and caspase-1,and the secretion of IL-1 and IL-18.let-7i-3p and PIK3CA had a targeted correspondence,and baicalin up-regulated the expression of let-7i-3p and down-regulated the expression of PIK3CA.Baicalin attenuated the activation of NLRP3 inflammasome enhanced by let-7i-3p interference.[Conclusions]Baicalin can up-regulate let-7i-3p expression,inhibit PI3K/Akt/NF-κB signal transduction,and thus reduce the activation of NLRP3 inflammasome in HFLS-RA.展开更多
Objective:To evaluate the therapeutic effect of recombinant bovine basic fibroblast growth factor(rbFGF)eye gel combined with tobramycin-dexamethasone(TOB-Dex)eye drops on dry eye syndrome(DES)after cataract surgery.M...Objective:To evaluate the therapeutic effect of recombinant bovine basic fibroblast growth factor(rbFGF)eye gel combined with tobramycin-dexamethasone(TOB-Dex)eye drops on dry eye syndrome(DES)after cataract surgery.Methods:86 patients with DES after cataract surgery,admitted from November 2021 to November 2023,were randomly divided into groups.The observation group included 43 patients treated with rbFGF eye gel combined with TOB-Dex eye drops.The reference group included 43 patients treated with TOB-Dex eye drops alone.Multiple indicators,including total effective rate and clinical symptom scores,were compared between the two groups.Results:The total effective rate in the observation group was higher than in the reference group(P<0.05).Before treatment,there were no differences in clinical symptom scores,serum factors,or disease severity scores between the two groups(P>0.05).Three weeks after treatment,the observation group had lower clinical symptom scores,serum factors,and disease severity scores compared to the reference group(P<0.05).The adverse reaction rate in the observation group was lower than in the reference group(P<0.05).Conclusion:rbFGF eye gel combined with TOB-Dex eye drops can improve the clinical efficacy for patients with DES after cataract surgery,alleviate disease symptoms,reduce inflammatory responses,and have fewer adverse reactions.展开更多
[Objective] The aim of this study was to establish the in vitro culture system of chicken fibroblasts.[Method] Tissue explant method and enzymatic digestion method were used to separate and culture chicken skin fibrob...[Objective] The aim of this study was to establish the in vitro culture system of chicken fibroblasts.[Method] Tissue explant method and enzymatic digestion method were used to separate and culture chicken skin fibroblasts respectively.The rate of cell growth,cryopreservation and recovery were compared.[Result] The primary chicken fibroblasts prepared by enzymatic digestion grew faster and converged together to form monolayer on 5 d post preparation;the passage cells prepared by these 2 methods grew at similar speed and formed monolayer within 2-3 d;homogeneous fibroblasts could be obtained by trypsin digestion and repeated attachment for 3-4 passages;there were 75%-80% of cells survived after cryopreservation and recovery;the growth curves of embryonic fibroblasts and skin fibroblasts were all normal and the two kind of cells still retained the normal number of chromosomes even at the twelfth passage.[Conclusion] The feeder layer cells needed for establishing ES cell lines could be obtained by culturing chicken fibroblasts through both tissue explant method and enzymatic digestion method.This study provided a basis for the successful establishment of ES cell lines.展开更多
[Objective]The aim was to study the differential expression ofAPOEgene in different generations of porcine fetal fibroblasts cells.[Method]The first,tenth,fifteenth,twentieth,twenty-fifth,fiftieth generations of porci...[Objective]The aim was to study the differential expression ofAPOEgene in different generations of porcine fetal fibroblasts cells.[Method]The first,tenth,fifteenth,twentieth,twenty-fifth,fiftieth generations of porcine fetal fibroblast cells,which were normally grown and passed,were collected before total RNA was extracted respectively.The expression ofAPOEgene in different generations of porcine fetal fibro-blast cells was detected by RT-PCR technique.[Result]The expression level of porcine APOE mRNA in the first generation of porcine fetal fi-broblast cells was the highest,and then it gradually decreased with the increase of cell generations and was the lowest in the fiftieth generation.[Conclusion]The expression ofAPOEgene had the selective trend in different generations of porcine fetal fibroblast cells.展开更多
AIM: To examine fibroblast activation protein (FAP) expression in pancreatic ductal adenocarcinoma (PDAC) and to analyze its relationship with the clinicopathology of PDAC. METHODS: FAP expression was examined in 134 ...AIM: To examine fibroblast activation protein (FAP) expression in pancreatic ductal adenocarcinoma (PDAC) and to analyze its relationship with the clinicopathology of PDAC. METHODS: FAP expression was examined in 134 PDAC specimens by immunohistochemistry, and in four pancreatic cancer cell lines (SW1990, Miapaca-2, AsPC-1 and BxPC-3) by Western blotting assay. We also analyzed the association between FAP expression in PDAC cells and the clinicopathology of PDAC patients. RESULTS: The results showed that the FAP was expressed in both stromal fibroblast cells (98/134, 73.1%) and carcinoma cells (102/134, 76.1%). All 4 pancreatic cancer cell lines expressed FAP protein at different levels. Protein bands corresponding to the proteolytically active 170-kDa seprase dimer and its88-kDa seprase subunit were identif ied. Higher FAP expression in carcinoma cells was associated with tumor size (P < 0.001), fi brotic focus (P = 0.003), perineural invasion (P = 0.009) and worse clinical outcome (P = 0.0085). CONCLUSION: FAP is highly expressed in carcinoma cells and f ibroblasts in PDAC tissues, and its expression is associated with desmoplasia and worse prognosis.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82272171(to ZY),82271403(to XL),81941011(to XL),31971279(to ZY),31730030(to XL)the Natural Science Foundation of Beijing,No.7222004(to HD).
文摘The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
基金supported by the National Natural Science Foundation of China,Nos.81941011(to XL),31771053(to HD),31730030(to XL),31971279(to ZY),31900749(to PH),31650001(to XL),31320103903(to XL),31670988(to ZY)the Natural Science Foundation of Beijing,Nos.7222004(to HD)+1 种基金a grant from Ministry of Science and Technology of China,Nos.2017YFC1104002(to ZY),2017YFC1104001(to XL)a grant from Beihang University,No.JKF-YG-22-B001(to FH)。
文摘Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is the most common subtype of liver cancer.The primary treatment strategies for HCC currently include liver transplantation and surgical resection.However,these methods often yield unsatisfactory outcomes,leading to a poor prognosis for many patients.This underscores the urgent need to identify and evaluate novel therapeutic targets that can improve the prognosis and survival rate of HCC patients.AIM To construct a radiomics model that can accurately predict the EZH2 expression in HCC.METHODS Gene expression,clinical parameters,HCC-related radiomics,and fibroblastrelated genes were acquired from public databases.A gene model was developed,and its clinical efficacy was assessed statistically.Drug sensitivity analysis was conducted with identified hub genes.Radiomics features were extracted and machine learning algorithms were employed to generate a radiomics model related to the hub genes.A nomogram was used to illustrate the prognostic significance of the computed Radscore and the hub genes in the context of HCC patient outcomes.RESULTS EZH2 and NRAS were independent predictors for prognosis of HCC and were utilized to construct a predictive gene model.This model demonstrated robust performance in diagnosing HCC and predicted an unfavorable prognosis.A negative correlation was observed between EZH2 expression and drug sensitivity.Elevated EZH2 expression was linked to poorer prognosis,and its diagnostic value in HCC surpassed that of the risk model.A radiomics model,developed using a logistic algorithm,also showed superior efficiency in predicting EZH2 expression.The Radscore was higher in the group with high EZH2 expression.A nomogram was constructed to visually demonstrate the significant roles of the radiomics model and EZH2 expression in predicting the overall survival of HCC patients.CONCLUSION EZH2 plays significant roles in diagnosing HCC and therapeutic efficacy.A radiomics model,developed using a logistic algorithm,efficiently predicted EZH2 expression and exhibited strong correlation with HCC prognosis.
基金supported by the National Natural Science Foundation of China,No.81870975(to SZ)。
文摘Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.
文摘Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and type 2 diabetes(90%-95%of diabetic cases)are the main types of diabetes in the clinic.Accumulating evidence shows that the fibroblast growth factor(FGF)family plays important roles in many metabolic disorders,including type 1 and type 2 diabetes.FGF consists of 23 family members(FGF-1-23)in humans.Here,we review current findings of FGFs in the treatment of diabetes and management of diabetic complications.Some FGFs(e.g.,FGF-15,FGF-19,and FGF-21)have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes,and their therapeutic roles in diabetes are currently under investigation in clinical trials.Overall,the roles of FGFs in diabetes and diabetic complications are involved in numerous processes.First,FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production.Second,modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components,promote diabetic wound healing process and bone repair,and inhibit cancer cell proliferation and migration.Finally,FGFs can regulate the activation of glucoseexcited neurons and the expression of thermogenic genes.
基金supported by grants from the Natural Science Foundation of Hunan Province(2022JJ80044)the Youth Science Foundation of Xiangya Hospital(2019Q13).
文摘Finding biomarkers for immunotherapy is an urgent issue in cancer treatment.Cellular retinoic acid-binding protein 2(CRABP2)is a controversial factor in the occurrence and development of human tumors.However,there is limited research on the relationship between CRABP2 and immunotherapy response.This study found that negative correlations of CRABP2 and immune checkpoint markers(PD-1,PD-L1,and CTLA-4)were observed in breast invasive carcinoma(BRCA),skin cutaneous melanoma(SKCM),stomach adenocarcinoma(STAD)and testicular germ cell tumors(TGCT).In particular,in SKCM patients who were treated with PD-1 inhibitors,high levels of CRABP2 predicted poor prognosis.Additionally,CRABP2 expression was elevated in cancer-associated fibroblasts(CAFs)at the single-cell level.The expression of CRABP2 was positively correlated with markers of CAFs,such as MFAP5,PDPN,ITGA11,PDGFRα/βand THY1 in SKCM.To validate the tumor-promoting effect of CRABP2 in vivo,SKCM xenograft mice models with CRABP2 overexpression have been constructed.These models showed an increase in tumor weight and volume.Enrichment analysis indicated that CRABP2 may be involved in immunerelated pathways of SKCM,such as extracellular matrix(ECM)receptor interaction and epithelial-mesenchymal transition(EMT).The study suggests that CRABP2 may regulate immunotherapy in SKCM patients by influencing infiltration of CAFs.In conclusion,this study provides new insights into the role of CRABP2 in immunotherapy response.The findings suggest that CRABP2 may be a promising biomarker for PD-1 inhibitors in SKCM patients.Further research is needed to confirm these findings and to explore the clinical implications of CRABP2 in immunotherapy.
基金supported by grants from Jiangsu Commission of Health,No.Z2021086(to XL)Science and Technology Program of Suzhou,Nos.SYSD2020008(to XL),SKYD2022012(to XL)+1 种基金Suzhou Municipal Health Commission,No.KJXW2020058(to XL)Science and Technology Program of Zhangjiagang,No.ZKS2018(to XL)。
文摘Interfering with the ferroptosis pathway is a new strategy for the treatment of spinal cord injury.Fibroblast growth factor 21 can inhibit ferro ptosis and promote neurofunctional recovery,while heme oxygenase-1 is a regulator of iron and reactive oxygen species homeostasis.The relationship between heme oxygenase-1and ferroptosis remains controve rsial.In this study,we used a spinal co rd injury rat model to show that the levels of fibroblast growth factor 21 in spinal co rd tissue decreased after spinal cord injury.In addition,there was a significant aggravation of ferroptosis and a rapid increase in heme oxygenase-1 expression after spinal cord injury.Furthe r,heme oxygenase-1 aggravated fe rroptosis after spinal cord injury,while fibroblast growth factor 21 inhibited fe rroptosis by downregulating heme oxygenase-1.Thus,the activation of fibroblast growth factor 21 may provide a potential treatment for spinal co rd injury.These findings could provide a new potential mechanistic explanation for fibroblast growth factor 21 in the treatment of spinal cord injury.
文摘Background:A differential gene,triggering receptor expressed on myeloid cells 1(TREM1),was identified in blood sequencing datasets from myocardial infarction patients and healthy controls.Myocardialfibrosis following myocardial infarction significantly contributes to cardiac dysfunction.Objectives:This study aimed to unveil the intrinsic regulatory mechanism of TREM1 in myocardialfibrosis.Methods:Mimicking pathology by angiotensin II(Ang II)treatment of human cardiacfibroblasts(HCFs),the impacts of TREM1 knockdown on its proliferation,migration,and secretion of the pro-fibrotic matrix were identified.Using the Human Transcription Factor Database(HumanTFDB)website,lysine-specific demethylase 5B(KDM5B)was found to bind to the TREM1 promoter,which was further validated through luciferase reporter and chromatin immunoprecipitation(ChIP).By promoting KDM5B overexpression,its effect on the regulation of TREM1 was examined.Results:TREM1 knockdown suppressed the proliferation,migration,and secretion of the pro-fibrotic matrix in HCFs upon Ang II treatment.KDM5B bound to the TREM1 promoter and upregulated its transcriptional expression.Furthermore,KDM5B overexpression reversed the regulation of the above cellular phenotypes by TREM1 knockdown.Conclusion:This study sheds light on the positive regulation of TREM1 by KDM5B,demonstrating their role in promoting myocardialfibrosis.Thisfinding provides a theoretical foundation for understanding disease pathology and potentially advancing the development of new targeted therapies.
文摘BACKGROUND Pancreatic cancer,a formidable gastrointestinal neoplasm,is characterized by its insidious onset,rapid progression,and resistance to treatment,which often lead to a grim prognosis.While the complex pathogenesis of pancreatic cancer is well recognized,recent attention has focused on the oncogenic roles of senescent tumor-associated fibroblasts.However,their precise role in pancreatic cancer remains unknown.Resveratrol is a natural polyphenol known for its multifaceted biological actions,including antioxidative and neuroprotective properties,as well as its potential to inhibit tumor proliferation and migration.Our current investigation builds on prior research and reveals the remarkable ability of resveratrol to inhibit pancreatic cancer proliferation and metastasis.AIM To explore the potential of resveratrol in inhibiting pancreatic cancer by targeting senescent tumor-associated fibroblasts.METHODS Immunofluorescence staining of pancreatic cancer tissues revealed prominent coexpression ofα-SMA and p16.HP-1 expression was determined using immunohistochemistry.Cells were treated with the senescence-inducing factors known as 3CKs.Long-term growth assays confirmed that 3CKs significantly decreased the CAF growth rate.Western blotting was conducted to assess the expression levels of p16 and p21.Immunofluorescence was performed to assess LaminB1 expression.Quantitative real-time polymerase chain reaction was used to measure the levels of several senescence-associated secretory phenotype factors,including IL-4,IL-6,IL-8,IL-13,MMP-2,MMP-9,CXCL1,and CXCL12.A scratch assay was used to assess the migratory capacity of the cells,whereas Transwell assays were used to evaluate their invasive potential.RESULTS Specifically,we identified the presence of senescent tumor-associated fibroblasts within pancreatic cancer tissues,linking their abundance to cancer progression.Intriguingly,Resveratrol effectively eradicated these fibroblasts and hindered their senescence,which consequently impeded pancreatic cancer progression.CONCLUSION This groundbreaking discovery reinforces Resveratrol's stature as a potential antitumor agent and positions senescent tumor-associated fibroblasts as pivotal contenders in future therapeutic strategies against pancreatic cancer.
文摘BACKGROUND Inflammatory myofibroblastic tumors(IMTs)are exceptionally rare neoplasms with intermediate malignant potential.Surgery is the accepted treatment option,aiming for complete resection with clear margins.CASE SUMMARY A 39-year-old woman presented with a growing solitary pulmonary nodule measuring 2.0 cm in the right upper lobe(RUL)of the lung.The patient underwent a RUL anterior segmentectomy using uniportal video-assisted thoracoscopy.A preliminary tissue diagnosis indicated malignancy;however,it was later revised to an IMTs.Due to the absence of a minor fissure between the right upper and middle lobes,an alternative resection approach was necessary.Therefore,we utilized indocyanine green injection to aid in delineating the intersegmental plane.Following an uneventful recovery,the patient was discharged on the third postoperative day.Thereafter,annual chest tomography scans were scheduled to monitor for potential local recurrence.CONCLUSION This case underscores the challenges in diagnosing and managing IMTs,showing the importance of accurate pathologic assessments and tailored surgical strategies.
文摘Introduction: Collagen is the primary structural protein fibroblasts produce in the skin’s extracellular matrix. Infiltration of neutrophils into the epidermis and dermis by exposure to UV causes collagen damage and contributes to photoaging. Methods: To study the combined effect of Lumenato and ceramide in preventing collagen-1 damage induced by phagocytes, we used co-cultures of normal human dermal fibroblasts (fibroblasts) and activated human neutrophils. The present study aimed to determine the protective effect of the combination of Lumenato and ceramide on fibroblast collagen-1 damage induced by neutrophils. Results: Lumenato (in the range of 6.5 - 208 μg/ml) or ceramide (in the range of 0.1 - 50 μM) inhibited the production of superoxides and MPO by TNFα-stimulated neutrophils, as well as the production of NO by LPS-stimulated macrophages in a dose-dependent manner. The combinations of Lumenato and ceramide, in low concentrations, caused synergistic prevention of fibroblasts’ collagen-1 damage induced by TNFα-activated neutrophils, detected by fluorescence immunostaining and WB analysis. MPO activity in the supernatants of the co-cultures was also synergistically inhibited. Adding Lumenato or ceramide singly or in combinations in these low concentrations to the fibroblast cultures did not affect the expression of collagen-1. The combinations of Lumenato or ceramide in these concentrations also caused a synergistic inhibition of NO production by activated macrophages. Conclusions: The results suggest that combining low concentrations of Lumenato and ceramide results in synergistic protection against fibroblasts’ collagen-1 damage induced by neutrophils, thus indicating their possible potential for enhanced skin health.
基金Supported by the National Natural Science Foundation of China,No.81671439the Science and Technology Commission of Shanghai Municipality,No.21Y11906700 and No.20Y11907300the Medical Innovation Research Project of the Science and Technology Commission of Shanghai Municipality,No.22Y11906500。
文摘BACKGROUND Pelvic organ prolapse(POP)involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity,and vaginal structure is an essential factor.In POP,the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions.The intricate etiology of POP and the prohibition of trans-vaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development.Human umbilical cord mesenchymal stromal cells(hucMSCs)present limitations,but their exosomes(hucMSC-Exo)are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling.suppressed inflammation in POP group fibroblasts,stimulated primary fibroblast growth,and elevated collagen I(Col1)production in vitro.High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11(MMP11)expression.CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro.Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression.HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.
基金Supported by the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica(PAPIIT)de la Dirección General de Asuntos de Personal Académico,No.IN212722 and No.IA208424Consejo Mexiquense de Ciencia y Tecnología,No.CS000132Consejo Nacional de Humanidades,Ciencia y Tecnología,No.CF-2023-I-563.
文摘Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associated with a better prognosis.This reaction generates excessive connective tissue,in which cancer-associated fibroblasts(CAFs)are critical cells that form a part of the tumor microenvironment.CAFs are directly involved in tumorigenesis through different mechanisms.However,their role in immunosuppression in CRC is not well understood,and the precise role of signal transducers and activators of transcription(STATs)in mediating CAF activity in CRC remains unclear.Among the myriad chemical and biological factors that affect CAFs,different cytokines mediate their function by activating STAT signaling pathways.Thus,the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors.Here,we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
文摘Mitochondrial organelle transplantation (MOT) is an innovative strategy for the treatment of mitochondrial dysfunction such as cardiac ischemic reperfusion injuries, traumatic brain and spinal cord injuries, cerebral stroke, and neurodegenerative diseases. The earlier MOT results in better efficacy in animal models of urgent diseases such as ischemic stroke, and traumatic brain and spinal cord injuries. There is no long-term method to preserve mitochondria. Routine MOT procedure from cell growth to mitochondrial injection often takes serval weeks and is not satisfactory for urgent use cases. Hypothesis: Cryopreserved cells might be mitochondrial donors for MOT. Methods: We isolated mitochondria from cryopreserved human fibroblasts and mesenchymal stem cells (MSCs) in cell banks and compared the mitochondrial viability and transplantation with the mitochondria from fresh cells. Key findings: We found that mitochondria from fresh and cryopreserved cells are comparable in mitochondrial viability and transplantation. We also obtained data showing that mitochondria of fibroblasts and MSCs had similar membrane potential and transfer ability, but MSC’s mitochondria had higher ATP content than fibroblast’s mitochondria. In addition, oxygen consumption rates (OCRs) were higher in MSC’s mitochondria compared to fibroblast’s mitochondria and did not change between fresh and frozen cells. Conclusion: Cryopreserved fibroblasts and MSCs are alternative mitochondrial donors for MOT to fresh cells. MSCs could provide higher ATP-produced mitochondria than fibroblasts.
文摘This study aims to evaluate the effect of serum concentration, synchronization time, and confluence degree on the synchronisation efficiency of goat fibroblast cycle. The results indicated that there was no difference in the percentage of nucleated fibroblasts in the G0/G1 stage between serum concentrations of 0.3% and 0.4% (83.89% and 82.69%, respectively, P > 0.05) as well as between serum concentrations of 0.2% and 0.5% (76.95% and 75.46%, respectively, P > 0.05). The percentage of nucleated fibroblasts in the G0/G1 stage was highest at the concentration of 0.3% and lowest in the control group (83.89% vs. 62.67%, P 0.05). The beneficial effect of high confluence was confirmed by the large percentage of nucleated fibroblasts at the G0/G1 stage. The 60% confluency was significantly lower than the 80% and 100% confluency (73.44%, 86.63%, and 87.17%, respectively, P < 0.05). The results indicate that the goat fibroblast cycle synchronization is the most effective at the serum concentration of 0.3%, 72 hours of synchronization and 100% confluency.
基金Supported by the National Natural Science Foundation of China(82360802):the Natural Science Foundation of Ningxia Province,China(2022AAC 03152).
文摘[Objectives]To study the effect and mechanism of baicalin on the activation of NLRP3 inflammasome in human fibroblast like synoviocytes of rheumatoid arthritis(HFLS-RA).[Methods]To confirm that baicalin alleviated the activation of NLRP3 inflammasome in HFLS-RA,the expression of NLRP3 before and after baicalin treatment was observed by immunofluorescence.Western blot was used to detect the protein expression of p-PI3K,p-Akt,NF-κB p65,NLRP3,ASC and caspase-1 after baicalin treatment for 48 h,and the contents of IL-1 and IL-18 in the supernatents were detected by ELISA.In order to explore the mechanism of baicalin alleviating the activation of NLRP3 inflammasome,the corresponding relationship between let-7i-3p and PIK3CA was verified by double luciferin and Westen blot analysis.The expression of let-7i-3p and PI3K before and after baicalin intervention was detected by RT-qPCR.let-7i-3p interference was used to verify whether baicalin mitigated the activation of enhanced NLRP3 inflammasome.[Results]Baicalin(50 and 100 mg/L)significantly reduced the activation of NLRP3 inflammasome,inhibited the protein expressions of p-PI3K,p-Akt,NF-κB p65,NLRP3,ASC and caspase-1,and the secretion of IL-1 and IL-18.let-7i-3p and PIK3CA had a targeted correspondence,and baicalin up-regulated the expression of let-7i-3p and down-regulated the expression of PIK3CA.Baicalin attenuated the activation of NLRP3 inflammasome enhanced by let-7i-3p interference.[Conclusions]Baicalin can up-regulate let-7i-3p expression,inhibit PI3K/Akt/NF-κB signal transduction,and thus reduce the activation of NLRP3 inflammasome in HFLS-RA.
文摘Objective:To evaluate the therapeutic effect of recombinant bovine basic fibroblast growth factor(rbFGF)eye gel combined with tobramycin-dexamethasone(TOB-Dex)eye drops on dry eye syndrome(DES)after cataract surgery.Methods:86 patients with DES after cataract surgery,admitted from November 2021 to November 2023,were randomly divided into groups.The observation group included 43 patients treated with rbFGF eye gel combined with TOB-Dex eye drops.The reference group included 43 patients treated with TOB-Dex eye drops alone.Multiple indicators,including total effective rate and clinical symptom scores,were compared between the two groups.Results:The total effective rate in the observation group was higher than in the reference group(P<0.05).Before treatment,there were no differences in clinical symptom scores,serum factors,or disease severity scores between the two groups(P>0.05).Three weeks after treatment,the observation group had lower clinical symptom scores,serum factors,and disease severity scores compared to the reference group(P<0.05).The adverse reaction rate in the observation group was lower than in the reference group(P<0.05).Conclusion:rbFGF eye gel combined with TOB-Dex eye drops can improve the clinical efficacy for patients with DES after cataract surgery,alleviate disease symptoms,reduce inflammatory responses,and have fewer adverse reactions.
基金Supported by National Natural Science Foundation of China(30801353)Shandong Education Department Foundation Project(G08LG53)~~
文摘[Objective] The aim of this study was to establish the in vitro culture system of chicken fibroblasts.[Method] Tissue explant method and enzymatic digestion method were used to separate and culture chicken skin fibroblasts respectively.The rate of cell growth,cryopreservation and recovery were compared.[Result] The primary chicken fibroblasts prepared by enzymatic digestion grew faster and converged together to form monolayer on 5 d post preparation;the passage cells prepared by these 2 methods grew at similar speed and formed monolayer within 2-3 d;homogeneous fibroblasts could be obtained by trypsin digestion and repeated attachment for 3-4 passages;there were 75%-80% of cells survived after cryopreservation and recovery;the growth curves of embryonic fibroblasts and skin fibroblasts were all normal and the two kind of cells still retained the normal number of chromosomes even at the twelfth passage.[Conclusion] The feeder layer cells needed for establishing ES cell lines could be obtained by culturing chicken fibroblasts through both tissue explant method and enzymatic digestion method.This study provided a basis for the successful establishment of ES cell lines.
基金Supported by 863 Program of China(2007AA10Z161)National Natural Science Foundation of China(30771545)~~
文摘[Objective]The aim was to study the differential expression ofAPOEgene in different generations of porcine fetal fibroblasts cells.[Method]The first,tenth,fifteenth,twentieth,twenty-fifth,fiftieth generations of porcine fetal fibroblast cells,which were normally grown and passed,were collected before total RNA was extracted respectively.The expression ofAPOEgene in different generations of porcine fetal fibro-blast cells was detected by RT-PCR technique.[Result]The expression level of porcine APOE mRNA in the first generation of porcine fetal fi-broblast cells was the highest,and then it gradually decreased with the increase of cell generations and was the lowest in the fiftieth generation.[Conclusion]The expression ofAPOEgene had the selective trend in different generations of porcine fetal fibroblast cells.
基金Supported by The National Key Project of Scientific and Technical Supporting Programs of China, No. 2006BAI02A14National Natural Science Foundation of China, No. 30770996 and No. 81172310
文摘AIM: To examine fibroblast activation protein (FAP) expression in pancreatic ductal adenocarcinoma (PDAC) and to analyze its relationship with the clinicopathology of PDAC. METHODS: FAP expression was examined in 134 PDAC specimens by immunohistochemistry, and in four pancreatic cancer cell lines (SW1990, Miapaca-2, AsPC-1 and BxPC-3) by Western blotting assay. We also analyzed the association between FAP expression in PDAC cells and the clinicopathology of PDAC patients. RESULTS: The results showed that the FAP was expressed in both stromal fibroblast cells (98/134, 73.1%) and carcinoma cells (102/134, 76.1%). All 4 pancreatic cancer cell lines expressed FAP protein at different levels. Protein bands corresponding to the proteolytically active 170-kDa seprase dimer and its88-kDa seprase subunit were identif ied. Higher FAP expression in carcinoma cells was associated with tumor size (P < 0.001), fi brotic focus (P = 0.003), perineural invasion (P = 0.009) and worse clinical outcome (P = 0.0085). CONCLUSION: FAP is highly expressed in carcinoma cells and f ibroblasts in PDAC tissues, and its expression is associated with desmoplasia and worse prognosis.