Eukaryotic genome size data are important both as the basis for comparative research into genome evolution and as estimators of the cost and difficulty of genome sequencing programs for non-model organisms. In this st...Eukaryotic genome size data are important both as the basis for comparative research into genome evolution and as estimators of the cost and difficulty of genome sequencing programs for non-model organisms. In this study, the genome size of 14 species of fireflies (Lampyridae) (two genera in Lampyrinae, three genera in Luciolinae, and one genus in subfamily incertae sedis) were estimated by propidium iodide (PI)-based flow cytometry. The haploid genome sizes of Lampyridae ranged from 0.42 to 1.31 pg, a 3.1-fold span. Genome sizes of the fireflies varied within the tested subfamilies and genera. Lamprigera and Pyrocoelia species had large and small genome sizes, respectively. No correlation was found between genome size and morphological traits such as body length, body width, eye width, and antennal length. Our data provide additional information on genome size estimation of the firefly family Lampyridae. Furthermore, this study will help clarify the cost and difficulty of genome sequencing programs for non-model organisms and will help promote studies on firefly genome evolution.展开更多
This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical image...The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest.展开更多
In this paper, a system of fractional differential equations that model the synchronized bioluminescence behavior of a set of fireflies put on two spatial arrangements is presented; the alternative representation of t...In this paper, a system of fractional differential equations that model the synchronized bioluminescence behavior of a set of fireflies put on two spatial arrangements is presented; the alternative representation of these equations contains fractional operators of IAouvillc-Caputo type. The objective of the model is to qualitatively recover synchronization and show that it is persistent. It is shown that the effort made by each firefly glow changes with respect to the number of male competitors and the distance between them. The conditions on biological parameters are interpreted.展开更多
Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)...Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)is proposed to acquire more accurate solutions with less finite element analysis.The full attraction model of firefly algorithm(FA)is analyzed,and the factors that affect its computational efficiency and accuracy are revealed.A modified FA with simplified attraction model and adaptive parameter of sine cosine algorithm(SCA)is proposed to reduce the computational complexity and enhance the convergence rate.Then,the population is classified,and different populations are updated by modified FA and SCA respectively.Besides,the random search strategy based on Lévy flight is adopted to update the stagnant or infeasible solutions to enhance the population diversity.Elitist selection technique is applied to save the promising solutions and further improve the convergence rate.Moreover,the adaptive penalty function is employed to deal with the constraints.Finally,the performance of HSCFA is demonstrated through the numerical examples with nonstructural masses and frequency constraints.The results show that HSCFA is an efficient and competitive tool for shape and size optimization problems with frequency constraints.展开更多
Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuri...Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuristic techniques were employed to search for radiation source parameters that provide the maximum likelihood by using a network of sensors.Hence,the time consumption of MLE would be effectively reduced.First,the radiation source was detected using the k-sigma method.Subsequently,the MLE was applied for parameter estimation using the readings and positions of the detectors that have detected the radiation source.A comparative study was performed in which the estimation accuracy and time consump-tion of the MLE were evaluated for traditional methods and heuristic techniques.The traditional MLE was performed via a grid search method using fixed and multiple resolutions.Additionally,four commonly used heuristic algorithms were applied:the firefly algorithm(FFA),particle swarm optimization(PSO),ant colony optimization(ACO),and artificial bee colony(ABC).The experiment was conducted using real data collected by the Low Scatter Irradiator facility at the Savannah River National Laboratory as part of the Intelligent Radiation Sensing System program.The comparative study showed that the estimation time was 3.27 s using fixed resolution MLE and 0.59 s using multi-resolution MLE.The time consumption for the heuristic-based MLE was 0.75,0.03,0.02,and 0.059 s for FFA,PSO,ACO,and ABC,respectively.The location estimation error was approximately 0.4 m using either the grid search-based MLE or the heuristic-based MLE.Hence,heuristic-based MLE can provide comparable estimation accuracy through a less time-consuming process than traditional MLE.展开更多
This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits ...This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits of fuzzy and firefly.It automatically adjusts its behavior or converges depending on the information gathered during the search process and objective function.It works for 3-tier architecture,including cloudlet and public cloud.As cloudlets have limited resources,fuzzy logic is used for cloudlet selection using capacity and waiting time as input.Fuzzy provides human-like decisions without using any mathematical model.Firefly is a powerful meta-heuristic optimization technique to balance diversification and solution speed.It balances the load on cloud and cloudlet while minimizing makespan and execution time.However,it may trap in local optimum;levy flight can handle it.Hybridization of fuzzy fireflywith levy flight is a novel technique that provides reduced makespan,execution time,and Degree of imbalance while balancing the load.Simulation has been carried out on the Cloud Analyst platform with National Aeronautics and Space Administration(NASA)and Clarknet datasets.Results show that the proposed algorithm outperforms Ant Colony Optimization Queue Decision Maker(ACOQDM),Distributed Scheduling Optimization Algorithm(DSOA),andUtility-based Firefly Algorithm(UFA)when compared in terms of makespan,Degree of imbalance,and Figure of Merit.展开更多
There are several ethical issues that have arisen in recent years due to the ubiquity of the Internet and the popularity of social media and community platforms.Among them is cyberbullying,which is defined as any viol...There are several ethical issues that have arisen in recent years due to the ubiquity of the Internet and the popularity of social media and community platforms.Among them is cyberbullying,which is defined as any violent intentional action that is repeatedly conducted by individuals or groups using online channels against victims who are not able to react effectively.An alarmingly high percentage of people,especially teenagers,have reported being cyberbullied in recent years.A variety of approaches have been developed to detect cyberbullying,but they require time-consuming feature extraction and selection processes.Moreover,no approach to date has examined the meanings of words and the semantics involved in cyberbullying.In past work,we proposed an algorithm called Cyberbullying Detection Based on Deep Learning(CDDL)to bridge this gap.It eliminates the need for feature engineering and generates better predictions than traditional approaches for detecting cyberbullying.This was accomplished by incorporating deep learning—specifically,a convolutional neural network(CNN)—into the detection process.Although this algorithm shows remarkable improvement in performance over traditional detection mechanisms,one problem with it persists:CDDL requires that many parameters(filters,kernels,pool size,and number of neurons)be set prior to classification.These parameters play a major role in the quality of predictions,but a method for finding a suitable combination of their values remains elusive.To address this issue,we propose an algorithm called firefly-CDDL that incorporates a firefly optimisation algorithm into CDDL to automate the hitherto-manual trial-and-error hyperparameter setting.The proposed method does not require features for its predictions and its detection of cyberbullying is fully automated.The firefly-CDDL outperformed prevalent methods for detecting cyberbullying in experiments and recorded an accuracy of 98%within acceptable polynomial time.展开更多
Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa l...Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa logo at the corner or diagonal text in the background. However, this formof visible watermarking is not suitable for a large class of applications. In allsuch cases, a hidden watermark is embedded inside the original image as proofof ownership. A large number of techniques and algorithms are proposedby researchers for invisible watermarking. In this paper, we focus on issuesthat are critical for security aspects in the most common domains like digitalphotography copyrighting, online image stores, etc. The requirements of thisclass of application include robustness (resistance to attack), blindness (directextraction without original image), high embedding capacity, high Peak Signalto Noise Ratio (PSNR), and high Structural Similarity Matrix (SSIM). Mostof these requirements are conflicting, which means that an attempt to maximizeone requirement harms the other. In this paper, a blind type of imagewatermarking scheme is proposed using Lifting Wavelet Transform (LWT)as the baseline. Using this technique, custom binary watermarks in the formof a binary string can be embedded. Hu’s Invariant moments’ coefficientsare used as a key to extract the watermark. A Stochastic variant of theFirefly algorithm (FA) is used for the optimization of the technique. Undera prespecified size of embedding data, high PSNR and SSIM are obtainedusing the Stochastic Gradient variant of the Firefly technique. The simulationis done using Matrix Laboratory (MATLAB) tool and it is shown that theproposed technique outperforms the benchmark techniques of watermarkingconsidering PSNR and SSIM as quality metrics.展开更多
Fog computing is an emergent and powerful computing paradigm to serve latency-sensitive applications by executing internet of things(IoT)appli-cations in the proximity of the network.Fog computing offers computational...Fog computing is an emergent and powerful computing paradigm to serve latency-sensitive applications by executing internet of things(IoT)appli-cations in the proximity of the network.Fog computing offers computational and storage services between cloud and terminal devices.However,an efficient resource allocation to execute the IoT applications in a fog environment is still challenging due to limited resource availability and low delay requirement of services.A large number of heterogeneous shareable resources makes fog computing a complex environment.In the sight of these issues,this paper has proposed an efficient levy flight firefly-based resource allocation technique.The levy flight algorithm is a metaheuristic algorithm.It offers high efficiency and success rate because of its longer step length and fast convergence rate.Thus,it treats global optimization problems more efficiently and naturally.A system framework for fog computing is presented,followed by the proposed resource allocation scheme in the fog computing environment.Experimental evaluation and comparison with the firefly algorithm(FA),particle swarm optimization(PSO),genetic algorithm(GA)and hybrid algorithm using GA and PSO(GAPSO)have been conducted to validate the effectiveness and efficiency of the proposed algorithm.Simulation results show that the proposed algorithm performs efficient resource allocation and improves the quality of service(QoS).The proposed algorithm reduces average waiting time,average execution time,average turnaround time,processing cost and energy consumption and increases resource utilization and task success rate compared to FA,GAPSO,PSO and GA.展开更多
The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fi...The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results.展开更多
The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Face...The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Facebook and Twitter.The goal of opinion mining,commonly referred to as sentiment analysis,is to categorise and forecast a target’s opinion.Depending on if they provide a positive or negative perspective on a given topic,text documents or sentences can be classified.When compared to sentiment analysis,text categorization may appear to be a simple process,but number of challenges have prompted numerous studies in this area.A feature selection-based classification algorithm in conjunction with the firefly with levy and multilayer perceptron(MLP)techniques has been proposed as a way to automate sentiment analysis(SA).In this study,online product reviews can be enhanced by integrating classification and feature election.The firefly(FF)algorithm was used to extract features from online product reviews,and a multi-layer perceptron was used to classify sentiment(MLP).The experiment employs two datasets,and the results are assessed using a variety of criteria.On account of these tests,it is possible to conclude that the FFL-MLP algorithm has the better classification performance for Canon(98%accuracy)and iPod(99%accuracy).展开更多
Software systems have grown significantly and in complexity.As a result of these qualities,preventing software faults is extremely difficult.Software defect prediction(SDP)can assist developers in finding potential bu...Software systems have grown significantly and in complexity.As a result of these qualities,preventing software faults is extremely difficult.Software defect prediction(SDP)can assist developers in finding potential bugs and reducing maintenance costs.When it comes to lowering software costs and assuring software quality,SDP plays a critical role in software development.As a result,automatically forecasting the number of errors in software modules is important,and it may assist developers in allocating limited resources more efficiently.Several methods for detecting and addressing such flaws at a low cost have been offered.These approaches,on the other hand,need to be significantly improved in terms of performance.Therefore in this paper,two deep learning(DL)models Multilayer preceptor(MLP)and deep neural network(DNN)are proposed.The proposed approaches combine the newly established Whale optimization algorithm(WOA)with the complementary Firefly algorithm(FA)to establish the emphasized metaheuristic search EMWS algorithm,which selects fewer but closely related representative features.To find the best-implemented classifier in terms of prediction achievement measurement factor,classifiers were applied to five PROMISE repository datasets.When compared to existing methods,the proposed technique for SDP outperforms,with 0.91%for the JM1 dataset,0.98%accuracy for the KC2 dataset,0.91%accuracy for the PC1 dataset,0.93%accuracy for the MC2 dataset,and 0.92%accuracy for KC3.展开更多
In Mobile ad hoc Networks(MANETs),the packet scheduling process is considered the major challenge because of error-prone connectivity among mobile nodes that introduces intolerable delay and insufficient throughput wi...In Mobile ad hoc Networks(MANETs),the packet scheduling process is considered the major challenge because of error-prone connectivity among mobile nodes that introduces intolerable delay and insufficient throughput with high packet loss.In this paper,a Modified Firefly Optimization Algorithm improved Fuzzy Scheduler-based Packet Scheduling(MFPA-FSPS)Mechanism is proposed for sustaining Quality of Service(QoS)in the network.This MFPA-FSPS mechanism included a Fuzzy-based priority scheduler by inheriting the merits of the Sugeno Fuzzy inference system that potentially and adaptively estimated packets’priority for guaranteeing optimal network performance.It further used the modified Firefly Optimization Algorithm to optimize the rules uti-lized by the fuzzy inference engine to achieve the potential packet scheduling pro-cess.This adoption of a fuzzy inference engine used dynamic optimization that guaranteed excellent scheduling of the necessitated packets at an appropriate time with minimized waiting time.The statistical validation of the proposed MFPA-FSPS conducted using a one-way Analysis of Variance(ANOVA)test confirmed its predominance over the benchmarked schemes used for investigation.展开更多
CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferrin...CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferring information.A dynamic strategy,DevMLOps(Development Machine Learning Operations)used in automatic selections and tunings of MLTs result in significant performance differences.But,the scheme has many disadvantages including continuity in training,more samples and training time in feature selections and increased classification execution times.RFEs(Recursive Feature Eliminations)are computationally very expensive in its operations as it traverses through each feature without considering correlations between them.This problem can be overcome by the use of Wrappers as they select better features by accounting for test and train datasets.The aim of this paper is to use DevQLMLOps for automated tuning and selections based on orchestrations and messaging between containers.The proposed AKFA(Adaptive Kernel Firefly Algorithm)is for selecting features for CNM(Cloud Network Monitoring)operations.AKFA methodology is demonstrated using CNSD(Cloud Network Security Dataset)with satisfactory results in the performance metrics like precision,recall,F-measure and accuracy used.展开更多
Night tourism often involves a large number of lighting facilities,which consume a large amount of energy.Therefore,one of the unique low energy consumption natural ecological tourism activities—firefly night tour ha...Night tourism often involves a large number of lighting facilities,which consume a large amount of energy.Therefore,one of the unique low energy consumption natural ecological tourism activities—firefly night tour has attracted attention and become an important breakthrough point for night tourism in tourist destinations.In this paper,Guangzhou firefly night tour project is taken as the research object.Based on the comprehensive economic,environmental,and socio-cultural benefits brought by the development of firefly night tour,the resources distribution,current development status,and existing problems of firefly night tour in Guangzhou are analyzed,and its high-quality development paths are proposed from three levels:government,industry,and tourist.The aim is to explore a new model for the economic development of Guangzhou night tour,boosting the transformation and upgrading of the night tourism economy,while also providing reference ideas and value for the development of night tourism economy in other tourist destinations.展开更多
To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is ex...To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.展开更多
Diaphanes is the fourth largest genus in Lampyridae, but no luciferase gene from this genus has been reported. In this paper, by PCR amplification of the genomic DNA, the luciferase gene of Diaphanes pectinealis, whic...Diaphanes is the fourth largest genus in Lampyridae, but no luciferase gene from this genus has been reported. In this paper, by PCR amplification of the genomic DNA, the luciferase gene of Diaphanes pectinealis, which is the first case from Diaphanes, was identified and sequenced. The luciferase gene from D. pectinealis spans 1958 base pairs (bp) from the start to the stop codon, including seven exons separated by six introns, and encoding a 547-residuelong polypeptide. Its deduced amino acid sequence showed high protein similarity to those of the Lampyrini tribe (93 - 94% ) and the Cratomorphini tribe (92%), while low similarity was found with the North American firefly Photinus pyralis (83%) of the Photinini tribe within the same subfamily Lampyrinae. The phylogenetic analysis performed with the deduced amino acid sequences of the luciferase gene further confirms that D. pectinealis, Pyrocoelia, Lampyris, Cratomorphus, and Photinus belong to the same subfamily Lampyrinae, and Diaphanes is closely related to Pyrocoelia, Lampyris, and Cratomorphus. Furthemore, the phylogenetic analysis based on the nucleotide sequences of the luciferase gene indicates Diaphanes is a sister to Lampyris. The phylogenetic analyses are partly consistent with morphological (Branham & Wenzel, 2003) and mitochondrial DNA analyses (Li et al, 2006).展开更多
Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity pro...Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.展开更多
The cDNA encoding the luciferase from lantern mRNA of one diurnal firefly Pyrocoelia pygidialis Pic, 1926 has been cloned, sequenced and functionally expressed. The cDNA sequence of P pygidialis luciferase is 1647 bas...The cDNA encoding the luciferase from lantern mRNA of one diurnal firefly Pyrocoelia pygidialis Pic, 1926 has been cloned, sequenced and functionally expressed. The cDNA sequence of P pygidialis luciferase is 1647 base pairs in length, coding a protein of 548 amino acid residues. Sequence analysis of the deduced amino acid sequence showed that this luciferase had 97.8% resemblance to luciferases from the fireflies Lampyris noctiluca, Lampyris turkestanicus and Nyctophila cf. caucasica. Phylogenetic analysis using deduced amino acid sequence showed that P pygidialis located at the base of Lampyris+Nyctophila clade with robust support (BP=97%); but did not show a monophyletic relationship with its congeneric species P pectoralis, P tufa and P miyako, all three are strong luminous and nocturnal species. The expression worked in recombinant Escherichia coli. Expression product had a 70kDa band and emitted yellow-green luminescence in the presence of luciferin. Five loops in the P pygidialis luciferase, L1 (NI98-G208), L2 (T240-G247), L3 (G317-K322), L4 (L343-I350) and L5 (G522-D532), were found from the structure modeling analysis in the cleft, where it was considered the active site for the substrate compound entering and binding. Different amino acid residues between the luciferases of P. pygidialis and the three other known strong luminous species can not explain the situation of weak or strong luminescence. Future study of these loops, residues or crystal structure analysis may be helpful in understanding the real differences between the luciferases between diurnal and nocturnal species.展开更多
基金supported by grants from the National Natural Science Foundation of China(No.31472035)Yunnan Provincial Science and Technology Department(No.2014FB179)to LXY
文摘Eukaryotic genome size data are important both as the basis for comparative research into genome evolution and as estimators of the cost and difficulty of genome sequencing programs for non-model organisms. In this study, the genome size of 14 species of fireflies (Lampyridae) (two genera in Lampyrinae, three genera in Luciolinae, and one genus in subfamily incertae sedis) were estimated by propidium iodide (PI)-based flow cytometry. The haploid genome sizes of Lampyridae ranged from 0.42 to 1.31 pg, a 3.1-fold span. Genome sizes of the fireflies varied within the tested subfamilies and genera. Lamprigera and Pyrocoelia species had large and small genome sizes, respectively. No correlation was found between genome size and morphological traits such as body length, body width, eye width, and antennal length. Our data provide additional information on genome size estimation of the firefly family Lampyridae. Furthermore, this study will help clarify the cost and difficulty of genome sequencing programs for non-model organisms and will help promote studies on firefly genome evolution.
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.
基金the Researchers Supporting Project(RSP2023R395),King Saud University,Riyadh,Saudi Arabia.
文摘The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest.
文摘In this paper, a system of fractional differential equations that model the synchronized bioluminescence behavior of a set of fireflies put on two spatial arrangements is presented; the alternative representation of these equations contains fractional operators of IAouvillc-Caputo type. The objective of the model is to qualitatively recover synchronization and show that it is persistent. It is shown that the effort made by each firefly glow changes with respect to the number of male competitors and the distance between them. The conditions on biological parameters are interpreted.
基金supported by the NationalNatural Science Foundation of China(No.11672098).
文摘Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)is proposed to acquire more accurate solutions with less finite element analysis.The full attraction model of firefly algorithm(FA)is analyzed,and the factors that affect its computational efficiency and accuracy are revealed.A modified FA with simplified attraction model and adaptive parameter of sine cosine algorithm(SCA)is proposed to reduce the computational complexity and enhance the convergence rate.Then,the population is classified,and different populations are updated by modified FA and SCA respectively.Besides,the random search strategy based on Lévy flight is adopted to update the stagnant or infeasible solutions to enhance the population diversity.Elitist selection technique is applied to save the promising solutions and further improve the convergence rate.Moreover,the adaptive penalty function is employed to deal with the constraints.Finally,the performance of HSCFA is demonstrated through the numerical examples with nonstructural masses and frequency constraints.The results show that HSCFA is an efficient and competitive tool for shape and size optimization problems with frequency constraints.
文摘Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuristic techniques were employed to search for radiation source parameters that provide the maximum likelihood by using a network of sensors.Hence,the time consumption of MLE would be effectively reduced.First,the radiation source was detected using the k-sigma method.Subsequently,the MLE was applied for parameter estimation using the readings and positions of the detectors that have detected the radiation source.A comparative study was performed in which the estimation accuracy and time consump-tion of the MLE were evaluated for traditional methods and heuristic techniques.The traditional MLE was performed via a grid search method using fixed and multiple resolutions.Additionally,four commonly used heuristic algorithms were applied:the firefly algorithm(FFA),particle swarm optimization(PSO),ant colony optimization(ACO),and artificial bee colony(ABC).The experiment was conducted using real data collected by the Low Scatter Irradiator facility at the Savannah River National Laboratory as part of the Intelligent Radiation Sensing System program.The comparative study showed that the estimation time was 3.27 s using fixed resolution MLE and 0.59 s using multi-resolution MLE.The time consumption for the heuristic-based MLE was 0.75,0.03,0.02,and 0.059 s for FFA,PSO,ACO,and ABC,respectively.The location estimation error was approximately 0.4 m using either the grid search-based MLE or the heuristic-based MLE.Hence,heuristic-based MLE can provide comparable estimation accuracy through a less time-consuming process than traditional MLE.
基金funded by University Grant Commission with UGC-Ref.No.:3364/(NET-JUNE 2015).
文摘This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits of fuzzy and firefly.It automatically adjusts its behavior or converges depending on the information gathered during the search process and objective function.It works for 3-tier architecture,including cloudlet and public cloud.As cloudlets have limited resources,fuzzy logic is used for cloudlet selection using capacity and waiting time as input.Fuzzy provides human-like decisions without using any mathematical model.Firefly is a powerful meta-heuristic optimization technique to balance diversification and solution speed.It balances the load on cloud and cloudlet while minimizing makespan and execution time.However,it may trap in local optimum;levy flight can handle it.Hybridization of fuzzy fireflywith levy flight is a novel technique that provides reduced makespan,execution time,and Degree of imbalance while balancing the load.Simulation has been carried out on the Cloud Analyst platform with National Aeronautics and Space Administration(NASA)and Clarknet datasets.Results show that the proposed algorithm outperforms Ant Colony Optimization Queue Decision Maker(ACOQDM),Distributed Scheduling Optimization Algorithm(DSOA),andUtility-based Firefly Algorithm(UFA)when compared in terms of makespan,Degree of imbalance,and Figure of Merit.
文摘There are several ethical issues that have arisen in recent years due to the ubiquity of the Internet and the popularity of social media and community platforms.Among them is cyberbullying,which is defined as any violent intentional action that is repeatedly conducted by individuals or groups using online channels against victims who are not able to react effectively.An alarmingly high percentage of people,especially teenagers,have reported being cyberbullied in recent years.A variety of approaches have been developed to detect cyberbullying,but they require time-consuming feature extraction and selection processes.Moreover,no approach to date has examined the meanings of words and the semantics involved in cyberbullying.In past work,we proposed an algorithm called Cyberbullying Detection Based on Deep Learning(CDDL)to bridge this gap.It eliminates the need for feature engineering and generates better predictions than traditional approaches for detecting cyberbullying.This was accomplished by incorporating deep learning—specifically,a convolutional neural network(CNN)—into the detection process.Although this algorithm shows remarkable improvement in performance over traditional detection mechanisms,one problem with it persists:CDDL requires that many parameters(filters,kernels,pool size,and number of neurons)be set prior to classification.These parameters play a major role in the quality of predictions,but a method for finding a suitable combination of their values remains elusive.To address this issue,we propose an algorithm called firefly-CDDL that incorporates a firefly optimisation algorithm into CDDL to automate the hitherto-manual trial-and-error hyperparameter setting.The proposed method does not require features for its predictions and its detection of cyberbullying is fully automated.The firefly-CDDL outperformed prevalent methods for detecting cyberbullying in experiments and recorded an accuracy of 98%within acceptable polynomial time.
基金funded by Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R235)Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa logo at the corner or diagonal text in the background. However, this formof visible watermarking is not suitable for a large class of applications. In allsuch cases, a hidden watermark is embedded inside the original image as proofof ownership. A large number of techniques and algorithms are proposedby researchers for invisible watermarking. In this paper, we focus on issuesthat are critical for security aspects in the most common domains like digitalphotography copyrighting, online image stores, etc. The requirements of thisclass of application include robustness (resistance to attack), blindness (directextraction without original image), high embedding capacity, high Peak Signalto Noise Ratio (PSNR), and high Structural Similarity Matrix (SSIM). Mostof these requirements are conflicting, which means that an attempt to maximizeone requirement harms the other. In this paper, a blind type of imagewatermarking scheme is proposed using Lifting Wavelet Transform (LWT)as the baseline. Using this technique, custom binary watermarks in the formof a binary string can be embedded. Hu’s Invariant moments’ coefficientsare used as a key to extract the watermark. A Stochastic variant of theFirefly algorithm (FA) is used for the optimization of the technique. Undera prespecified size of embedding data, high PSNR and SSIM are obtainedusing the Stochastic Gradient variant of the Firefly technique. The simulationis done using Matrix Laboratory (MATLAB) tool and it is shown that theproposed technique outperforms the benchmark techniques of watermarkingconsidering PSNR and SSIM as quality metrics.
文摘Fog computing is an emergent and powerful computing paradigm to serve latency-sensitive applications by executing internet of things(IoT)appli-cations in the proximity of the network.Fog computing offers computational and storage services between cloud and terminal devices.However,an efficient resource allocation to execute the IoT applications in a fog environment is still challenging due to limited resource availability and low delay requirement of services.A large number of heterogeneous shareable resources makes fog computing a complex environment.In the sight of these issues,this paper has proposed an efficient levy flight firefly-based resource allocation technique.The levy flight algorithm is a metaheuristic algorithm.It offers high efficiency and success rate because of its longer step length and fast convergence rate.Thus,it treats global optimization problems more efficiently and naturally.A system framework for fog computing is presented,followed by the proposed resource allocation scheme in the fog computing environment.Experimental evaluation and comparison with the firefly algorithm(FA),particle swarm optimization(PSO),genetic algorithm(GA)and hybrid algorithm using GA and PSO(GAPSO)have been conducted to validate the effectiveness and efficiency of the proposed algorithm.Simulation results show that the proposed algorithm performs efficient resource allocation and improves the quality of service(QoS).The proposed algorithm reduces average waiting time,average execution time,average turnaround time,processing cost and energy consumption and increases resource utilization and task success rate compared to FA,GAPSO,PSO and GA.
基金funded by King Saud University,Riyadh,Saudi Arabia.Researchers Supporting Proiect Number(RSP2023R167)King Saud University,Riyadh,Saudi Arabia.
文摘The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results.
文摘The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Facebook and Twitter.The goal of opinion mining,commonly referred to as sentiment analysis,is to categorise and forecast a target’s opinion.Depending on if they provide a positive or negative perspective on a given topic,text documents or sentences can be classified.When compared to sentiment analysis,text categorization may appear to be a simple process,but number of challenges have prompted numerous studies in this area.A feature selection-based classification algorithm in conjunction with the firefly with levy and multilayer perceptron(MLP)techniques has been proposed as a way to automate sentiment analysis(SA).In this study,online product reviews can be enhanced by integrating classification and feature election.The firefly(FF)algorithm was used to extract features from online product reviews,and a multi-layer perceptron was used to classify sentiment(MLP).The experiment employs two datasets,and the results are assessed using a variety of criteria.On account of these tests,it is possible to conclude that the FFL-MLP algorithm has the better classification performance for Canon(98%accuracy)and iPod(99%accuracy).
文摘Software systems have grown significantly and in complexity.As a result of these qualities,preventing software faults is extremely difficult.Software defect prediction(SDP)can assist developers in finding potential bugs and reducing maintenance costs.When it comes to lowering software costs and assuring software quality,SDP plays a critical role in software development.As a result,automatically forecasting the number of errors in software modules is important,and it may assist developers in allocating limited resources more efficiently.Several methods for detecting and addressing such flaws at a low cost have been offered.These approaches,on the other hand,need to be significantly improved in terms of performance.Therefore in this paper,two deep learning(DL)models Multilayer preceptor(MLP)and deep neural network(DNN)are proposed.The proposed approaches combine the newly established Whale optimization algorithm(WOA)with the complementary Firefly algorithm(FA)to establish the emphasized metaheuristic search EMWS algorithm,which selects fewer but closely related representative features.To find the best-implemented classifier in terms of prediction achievement measurement factor,classifiers were applied to five PROMISE repository datasets.When compared to existing methods,the proposed technique for SDP outperforms,with 0.91%for the JM1 dataset,0.98%accuracy for the KC2 dataset,0.91%accuracy for the PC1 dataset,0.93%accuracy for the MC2 dataset,and 0.92%accuracy for KC3.
文摘In Mobile ad hoc Networks(MANETs),the packet scheduling process is considered the major challenge because of error-prone connectivity among mobile nodes that introduces intolerable delay and insufficient throughput with high packet loss.In this paper,a Modified Firefly Optimization Algorithm improved Fuzzy Scheduler-based Packet Scheduling(MFPA-FSPS)Mechanism is proposed for sustaining Quality of Service(QoS)in the network.This MFPA-FSPS mechanism included a Fuzzy-based priority scheduler by inheriting the merits of the Sugeno Fuzzy inference system that potentially and adaptively estimated packets’priority for guaranteeing optimal network performance.It further used the modified Firefly Optimization Algorithm to optimize the rules uti-lized by the fuzzy inference engine to achieve the potential packet scheduling pro-cess.This adoption of a fuzzy inference engine used dynamic optimization that guaranteed excellent scheduling of the necessitated packets at an appropriate time with minimized waiting time.The statistical validation of the proposed MFPA-FSPS conducted using a one-way Analysis of Variance(ANOVA)test confirmed its predominance over the benchmarked schemes used for investigation.
文摘CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferring information.A dynamic strategy,DevMLOps(Development Machine Learning Operations)used in automatic selections and tunings of MLTs result in significant performance differences.But,the scheme has many disadvantages including continuity in training,more samples and training time in feature selections and increased classification execution times.RFEs(Recursive Feature Eliminations)are computationally very expensive in its operations as it traverses through each feature without considering correlations between them.This problem can be overcome by the use of Wrappers as they select better features by accounting for test and train datasets.The aim of this paper is to use DevQLMLOps for automated tuning and selections based on orchestrations and messaging between containers.The proposed AKFA(Adaptive Kernel Firefly Algorithm)is for selecting features for CNM(Cloud Network Monitoring)operations.AKFA methodology is demonstrated using CNSD(Cloud Network Security Dataset)with satisfactory results in the performance metrics like precision,recall,F-measure and accuracy used.
基金the 14th Five-year Plan Project for the Development of Philosophy and Social Sciences of Guangzhou(2023GZGJ83)the 2021 General University Key Scientific Research Project of Department of Education of Guangdong Province(2021ZDZX4104)+1 种基金Project of Guangdong Provincial Department of Education(2021GDJG600,2021ZQXY45)the Guangdong Ploytechnic of Industry and Commerce Project(2023-SKJ-20).
文摘Night tourism often involves a large number of lighting facilities,which consume a large amount of energy.Therefore,one of the unique low energy consumption natural ecological tourism activities—firefly night tour has attracted attention and become an important breakthrough point for night tourism in tourist destinations.In this paper,Guangzhou firefly night tour project is taken as the research object.Based on the comprehensive economic,environmental,and socio-cultural benefits brought by the development of firefly night tour,the resources distribution,current development status,and existing problems of firefly night tour in Guangzhou are analyzed,and its high-quality development paths are proposed from three levels:government,industry,and tourist.The aim is to explore a new model for the economic development of Guangzhou night tour,boosting the transformation and upgrading of the night tourism economy,while also providing reference ideas and value for the development of night tourism economy in other tourist destinations.
基金The National Natural Science Foundation of China(No.50805023)the Science and Technology Support Program of Jiangsu Province(No.BE2008081)+1 种基金the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2010093)the Program for Special Talent in Six Fields of Jiangsu Province(No.2008144)
文摘To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.
文摘Diaphanes is the fourth largest genus in Lampyridae, but no luciferase gene from this genus has been reported. In this paper, by PCR amplification of the genomic DNA, the luciferase gene of Diaphanes pectinealis, which is the first case from Diaphanes, was identified and sequenced. The luciferase gene from D. pectinealis spans 1958 base pairs (bp) from the start to the stop codon, including seven exons separated by six introns, and encoding a 547-residuelong polypeptide. Its deduced amino acid sequence showed high protein similarity to those of the Lampyrini tribe (93 - 94% ) and the Cratomorphini tribe (92%), while low similarity was found with the North American firefly Photinus pyralis (83%) of the Photinini tribe within the same subfamily Lampyrinae. The phylogenetic analysis performed with the deduced amino acid sequences of the luciferase gene further confirms that D. pectinealis, Pyrocoelia, Lampyris, Cratomorphus, and Photinus belong to the same subfamily Lampyrinae, and Diaphanes is closely related to Pyrocoelia, Lampyris, and Cratomorphus. Furthemore, the phylogenetic analysis based on the nucleotide sequences of the luciferase gene indicates Diaphanes is a sister to Lampyris. The phylogenetic analyses are partly consistent with morphological (Branham & Wenzel, 2003) and mitochondrial DNA analyses (Li et al, 2006).
基金supported by the National Basic Research Program of China(No.2013CB228602)the National Science and Technology Major Project of China(No.2011ZX05004-003)the National High Technology Research Program of China(No.2013AA064202)
文摘Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.
基金the Natural Foundation of Sciences of Yunnan Province (2006C0046Q)Partly by the Chinese Academy of Sciences (O706551141)
文摘The cDNA encoding the luciferase from lantern mRNA of one diurnal firefly Pyrocoelia pygidialis Pic, 1926 has been cloned, sequenced and functionally expressed. The cDNA sequence of P pygidialis luciferase is 1647 base pairs in length, coding a protein of 548 amino acid residues. Sequence analysis of the deduced amino acid sequence showed that this luciferase had 97.8% resemblance to luciferases from the fireflies Lampyris noctiluca, Lampyris turkestanicus and Nyctophila cf. caucasica. Phylogenetic analysis using deduced amino acid sequence showed that P pygidialis located at the base of Lampyris+Nyctophila clade with robust support (BP=97%); but did not show a monophyletic relationship with its congeneric species P pectoralis, P tufa and P miyako, all three are strong luminous and nocturnal species. The expression worked in recombinant Escherichia coli. Expression product had a 70kDa band and emitted yellow-green luminescence in the presence of luciferin. Five loops in the P pygidialis luciferase, L1 (NI98-G208), L2 (T240-G247), L3 (G317-K322), L4 (L343-I350) and L5 (G522-D532), were found from the structure modeling analysis in the cleft, where it was considered the active site for the substrate compound entering and binding. Different amino acid residues between the luciferases of P. pygidialis and the three other known strong luminous species can not explain the situation of weak or strong luminescence. Future study of these loops, residues or crystal structure analysis may be helpful in understanding the real differences between the luciferases between diurnal and nocturnal species.