期刊文献+
共找到4,202篇文章
< 1 2 211 >
每页显示 20 50 100
Dendroclimatological study of Sabina saltuaria and Abies faxoniana in the mixed forests of the Qionglai Mountains,eastern Tibetan Plateau 被引量:1
1
作者 Teng Li Jianfeng Peng +3 位作者 Tsun Fung Au Jingru Li Jinbao Li Yue Zhang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期72-82,共11页
Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-e... Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-exist-ing species reponded similarly to climate factors,although S.saltuaria was more sensitive than A.faxoniana.The strong-est correlation was between S.saltuaria chronology and regional mean temperatures from June to November.Based on this relationship,a regional mean temperature from June to November for the period 1605-2016 was constructed.Reconstruction explained 37.3%of the temperature variance during th period 1961-2016.Six major warm periods and five major cold periods were identified.Spectral analysis detected significant interannual and multi-decadal cycles.Reconstruction also revealed the influence of the Atlantic Multi-decadal Oscillation,confirming its importance on climate change on the eastern Tibetan Plateau. 展开更多
关键词 Tree-ring analysis Mixed forests DENDROCLIMATOLOGY Qionglai Mountains
下载PDF
Evolutionary fingerprint, phylogenetic and forest structure of tropical montane Atlantic cloud forests along an elevation gradient
2
作者 Ravi Fernandes MARIANO Vanessa Leite REZENDE +7 位作者 Cléber Rodrigo de SOUZA Patrícia Vieira POMPEU Rubens Manoel dos SANTOS Carolina Njaime MENDES Aloysio Souza de MOURA Felipe Santana MACHADO Warley Augusto Caldas CARVALHO Marco Aurélio Leite FONTES 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1259-1271,共13页
Environmental conditions can change markedly over geographical distances along elevation gradients,making them natural laboratories to study the processes that structure communities.This work aimed to assess the influ... Environmental conditions can change markedly over geographical distances along elevation gradients,making them natural laboratories to study the processes that structure communities.This work aimed to assess the influences of elevation on Tropical Montane Cloud Forest plant communities in the Brazilian Atlantic Forest,a historically neglected ecoregion.We evaluated the phylogenetic structure,forest structure(tree basal area and tree density)and species richness along an elevation gradient,as well as the evolutionary fingerprints of elevation-success on phylogenetic lineages from the tree communities.To do so,we assessed nine communities along an elevation gradient from 1210 to 2310 m a.s.l.without large elevation gaps.The relationships between elevation and phylogenetic structure,forest structure and species richness were investigated through Linear Models.The occurrence of evolutionary fingerprint on phylogenetic lineages was investigated by quantifying the extent of phylogenetic signal of elevation-success using a genus-level molecular phylogeny.Our results showed decreased species richness at higher elevations and independence between forest structure,phylogenetic structure and elevation.We also verified that there is a phylogenetic signal associated with elevation-success by lineages.We concluded that the elevation is associated with species richness and the occurrence of phylogenetic lineages in the tree communities evaluated in Mantiqueira Range.On the other hand,elevation is not associated with forest structure or phylogenetic structure.Furthermore,closely related taxa tend to have their higher ecological success in similar elevations.Finally,we highlight the fragility of the tropical montane cloud forests in the Mantiqueira Range in face of environmental changes(i.e.global warming)due to the occurrence of exclusive phylogenetic lineages evolutionarily adapted to environmental conditions(i.e.minimum temperature)associated with each elevation range. 展开更多
关键词 Atlantic Forest Cloud forest CONSERVATION Community ecology Montane forests Phylogenetic diversity Phylogenetic signal
下载PDF
Tree species identity and interaction determine vertical forest structure in young planted forests measured by terrestrial laser scanning
3
作者 Mengxi Wang Lander Baeten +7 位作者 Frieke Van Coillie Kim Calders Kris Verheyen Quentin Ponette Haben Blondeel Bart Muys John Armston Hans Verbeeck 《Forest Ecosystems》 SCIE CSCD 2024年第3期266-275,共10页
Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical fores... Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure. 展开更多
关键词 TreeDivNet FORBIO Stand structural complexity Terrestrial laser scanning Vertical forest structure Tree diversity Planted forests
下载PDF
Effects of site preparation methods on soil physical properties and outplanting success of coniferous seedlings in boreal forests
4
作者 Aleksey S.Ilintsev Elena N.Nakvasina Alexander P.Bogdanov 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期70-80,共11页
This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites ... This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites in taiga forests of the European part of Russia.A total of 54 plots were set up to assess seedling survival;root collar diameter,height,and heigh increment were measured for 240 seedlings to assess growth.In the rooting layer,240 soil samples were taken to determine physical properties.The study showed that soil treatment methods had no effect on bulk density and total porosity in Cladina sites.However,reduced soil moisture was noted,particularly in mounds,resulting in increased aeration.In Myrtillus sites,there were increased bulk density,reduced soil moisture,and total porosity in the mounds.Mounding treatment in Polytrichum sites resulted in reduced soil moisture and increased aeration porosity.In the Myrtillus and Polytrichum sites,patch scarification had no effects on physical properties.In Polytrichum sites,survival rates,heights,and heigh increments of bareroot Norway spruce seedlings in mounds were higher than in patches;however,the same did not apply to diameter.In Cladina and Myrtillus sites,there was no difference in growth for bareroot and containerised seedlings with different soil treatments.Growing conditions and soil types should be considered when applying different soil treatment methods to ensure high survival rates and successful seedling growth. 展开更多
关键词 Boreal forests Mechanical site preparation Patch scarification MOUNDING Soil properties Containerised seedlings Bareroot seedlings
下载PDF
Old Pinus massoniana forests benefit more from recent rapid warming in humid subtropical areas of central-southern China
5
作者 Wenxin Li Liangjun Zhu +4 位作者 Lianhua Zhu Mengdan Jing Censhi Qian Yu Zhu Paolo Cherubini 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期155-170,共16页
Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and... Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and management policies,limited knowledge exists regarding age-related effects on dendroclimatic relationships in key subtropical tree species.In this study,we employed a den-drochronological method to examine the impact of rapid warming on growth dynamics and climatic sensitivity of young(40–60 years)and old(100–180 years)Pinus mas-soniana forests across six sites in central-southern China.The normalized log basal area increment of trees in both age groups increased significantly following rapid warming in 1984.Trees in young forests further showed a distinct growth decline during a prolonged severe drought(2004–2013),whereas those in old forests maintained growth increases.Tree growth was more strongly influenced by temperature than by moisture,particularly in old forests.Spring tem-peratures strongly and positively impacted the growth of old trees but had a weaker effect on young ones.Old forests had a significantly lower resistance to extreme drought but faster recovery compared to young forests.The“divergence problem”was more pronounced in younger forests due to their heightened sensitivity to warming-induced drought and heat stress.With ongoing warming,young forests also may initially experience a growth decline due to their heightened sensitivity to winter drought.Our findings underscore the importance of considering age-dependent changes in forest/tree growth response to warming in subtropical forest man-agement,particularly in the context of achieving“Carbon Peak&Carbon Neutrality”goals in China. 展开更多
关键词 Tree rings Pinus massoniana Age effects Drought resilience Subtropical forests Rapid warming
下载PDF
Can urban forests provide acoustic refuges for birds?Investigating the influence of vegetation structure and anthropogenic noise on bird sound diversity
6
作者 Zezhou Hao Chengyun Zhang +8 位作者 Le Li Bing Sun Shuixing Luo Juyang Liao Qingfei Wang Ruichen Wu Xinhui Xu Christopher A.Lepczyk Nancai Pei 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期163-175,共13页
As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is... As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise. 展开更多
关键词 Anthropogenic noise Bird sounds Urban forests Vegetation structure
下载PDF
The storage and utilization of carbohydrates in response to elevation mediated by tree organs in subtropical evergreen broad-leaved forests
7
作者 Bin Xu Xueli Jiang +4 位作者 Yingying Zong G.Geoff Wang Fusheng Chen Zhenyu Zhao Xiangmin Fang 《Forest Ecosystems》 SCIE CSCD 2024年第1期52-61,共10页
Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate cl... Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems. 展开更多
关键词 Nonstructural carbohydrates Structural carbohydrates ELEVATION Subtropical evergreen broad-leaved forests Tree organs
下载PDF
Grouping tree species to estimate basal area increment in temperate multispecies forests in Durango,Mexico
8
作者 Jaime Roberto Padilla-Martínez Carola Paul +2 位作者 Kai Husmann Jose Javier Corral-Rivas Klaus von Gadow 《Forest Ecosystems》 SCIE CSCD 2024年第1期1-13,共13页
Multispecies forests have received increased scientific attention,driven by the hypothesis that biodiversity improves ecological resilience.However,a greater species diversity presents challenges for forest management... Multispecies forests have received increased scientific attention,driven by the hypothesis that biodiversity improves ecological resilience.However,a greater species diversity presents challenges for forest management and research.Our study aims to develop basal area growth models for tree species cohorts.The analysis is based on a dataset of 423 permanent plots(2,500 m^(2))located in temperate forests in Durango,Mexico.First,we define tree species cohorts based on individual and neighborhood-based variables using a combination of principal component and cluster analyses.Then,we estimate the basal area increment of each cohort through the generalized additive model to describe the effect of tree size,competition,stand density and site quality.The principal component and cluster analyses assign a total of 37 tree species to eight cohorts that differed primarily with regard to the distribution of tree size and vertical position within the community.The generalized additive models provide satisfactory estimates of tree growth for the species cohorts,explaining between 19 and 53 percent of the total variation of basal area increment,and highlight the following results:i)most cohorts show a"rise-and-fall"effect of tree size on tree growth;ii)surprisingly,the competition index"basal area of larger trees"had showed a positive effect in four of the eight cohorts;iii)stand density had a negative effect on basal area increment,though the effect was minor in medium-and high-density stands,and iv)basal area growth was positively correlated with site quality except for an oak cohort.The developed species cohorts and growth models provide insight into their particular ecological features and growth patterns that may support the development of sustainable management strategies for temperate multispecies forests. 展开更多
关键词 Temperate multispecies forests Cluster analysis Basal area increment Generalized additive models
下载PDF
Phosphorus limitation on CO_(2)fertilization effect in tropical forests informed by a coupled biogeochemical model
9
作者 Zhuonan Wang Hanqin Tian +5 位作者 Shufen Pan Hao Shi Jia Yang Naishen Liang Latif Kalin Christopher Anderson 《Forest Ecosystems》 SCIE CSCD 2024年第4期502-515,共14页
Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivi... Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests. 展开更多
关键词 Tropical forests Carbon-nitrogen-phosphorus model Phosphorus limitation CO_(2)fertilization effect Terrestfial ecosy stem model
下载PDF
Aboveground biomass stocks of species-rich natural forests in southern China are influenced by stand structural attributes,species richness and precipitation
10
作者 Wen-Hao Zeng Shi-Dan Zhu +3 位作者 Ying-Hua Luo Wei Shi Yong-Qiang Wang Kun-Fang Cao 《Plant Diversity》 SCIE CAS CSCD 2024年第4期530-536,共7页
Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biom... Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biomass,their influence on biomass stocks in species-rich forests in southern China,a biodiversity hotspot,has rarely been investigated.In this study,we characterized the effects of environmental factors,forest structure,and species diversity on aboveground biomass stocks of 30 plots(1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi,China.Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions.Furthermore,we found that aboveground biomass was positively correlated with stand age,mean annual precipitation,elevation,structural attributes and species richness,although not with species evenness.When we compared stands with the same basal area,we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height.These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China.Notably,many natural forests in southern China are not fully stocked.Therefore,their continued growth will increase their carbon storage over time. 展开更多
关键词 Subtropical forest Marginal tropical forest Aboveground biomass Species diversity Forest structural attribute Environment factor
下载PDF
Stand dynamics of old-growth hemlock forests in central Bhutan are shaped by natural disturbances
11
作者 Karma Tenzin Craig R.Nitschke +3 位作者 Kathryn J.Allen Raphael Trouve Thiet V.Nguyen Patrick J.Baker 《Forest Ecosystems》 SCIE CSCD 2024年第4期434-447,共14页
Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological metho... Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological methods were applied to uncover the disturbance history of old-growth hemlock-dominated forests in central Bhutan.Analysis of tree-ring samples from two old-growth hemlock stands,located in two different topographic settings,identified the importance of gap-phase dynamics in facilitating recruitment and growth releases and producing complex,multi-aged structure s over time.One site showed evidence of a near stand-replacing disturbance in the late 1700s,while the other showed no evide nce of high-severity disturbance at any time over the last 400 years.At both sites low-to medium-severity disturbances,some of which appear to be associated with cyclones originating in the Bay of Bengal,dominated the disturbance regime.The hemlock stands exhibited a significant positive association between cyclone occurrence and growth release events and between recruitment pulses and growth release events.From 1800 to 1970 there was an increase in recruitment of angiosperm tree species at most sites and a corresponding decline in conifer recruitment.Over the past 50 years there has been little new recruitment;this may be due to light limitation in the understory from shade-tolerant angiosperms and bamboo in the lower strata of these stands.Significant variations in disturbance dynamics and recruitment were observed across the study sites,suggesting that other factors,such as topography and climate,may be influencing long-term stand development patterns.This study highlights the complex interplay between historical disturbance regimes and tree recruitment in shaping the age and size structures of old-growth hemlock forests in central Bhutan.It also provides new insights into the dynamics of these forests that can be used to support effective forest conservation and management in the future. 展开更多
关键词 Forest structure Hemlock forest HIMALAYA Natural disturbance
下载PDF
Accuracy of tree mapping based on hand-held laser scanning comparing leaf-on and leaf-off conditions in mixed forests
12
作者 Frederico Tupinambá-Simões Adrián Pascual +3 位作者 Juan Guerra-Hernández Cristóbal Ordóñez Tiago de Conto Felipe Bravo 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期14-25,共12页
The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural par... The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural parameters using hand-held laser scanning(HLS),before operationalizing the method,confirming the data is crucial.We analyzed the per-formance of tree-level mapping based on HLS under differ-ent phenology conditions on a mixed forest in western Spain comprising Pinus pinaster and two deciduous species,Alnus glutinosa and Quercus pyrenaica.The area was surveyed twice during the growing season(July 2022)and once in the deciduous season(February 2022)using several scan-ning paths.Ground reference data(418 trees,15 snags)was used to calibrate the HLS data and to assess the influence of phenology when converting 3D data into tree-level attrib-utes(DBH,height and volume).The HLS-based workflow was robust at isolating tree positions and recognizing stems despite changes in phenology.Ninety-six percent of all pairs matched below 65 cm.For DBH,phenology barely altered estimates.We observed a strong agreement when comparing HLS-based tree height distributions.The values exceeded 2 m when comparing height measurements,confirming height data should be carefully used as reference in remote sensing-based inventories,especially for deciduous species.Tree volume was more precise for pines(r=0.95,and rela-tive RMSE=21.3–23.8%)compared to deciduous species(r=0.91–0.96,and relative RMSE=27.3–30.5%).HLS data and the forest structural complexity tool performed remark-ably,especially in tree positioning considering mixed forests and mixed phenology conditions. 展开更多
关键词 Precision forestry Forest monitoring Mobile laser scanning Forest inventory
下载PDF
Tree structure and diversity shape the biomass of primary temperate mountain forests
13
作者 Dheeraj Ralhan Ruffy Rodrigo +14 位作者 Heather Keith Annemiek Irene Stegehuis Jakob Pavlin Yumei Jiang Milos Rydval Juliana Nogueira Alexandre Fruleux Marek Svitok Martin Mikolas Daniel Kozak Martin Dusatko Pavel Janda Oleh Chaskovsky Catalin-Constantin Roibu Miroslav Svoboda 《Forest Ecosystems》 SCIE CSCD 2024年第4期568-579,共12页
Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of ... Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future. 展开更多
关键词 Biodiversity indicators Biomass carbon stock Ecosystem functioning Forest composition Primary forest structure Tree size distribution
下载PDF
Disentangling the effects of management and climate change on habitat suitability for saproxylic species in boreal forests
14
作者 Ellinoora Ekman María Triviño +3 位作者 Clemens Blattert Adriano Mazziotta Maria Potterf Kyle Eyvindson 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期121-133,共13页
Forest degradation induced by intensive forest management and temperature increase by climate change are resulting in biodiversity decline in boreal forests.Intensive forest management and high-end climate emission sc... Forest degradation induced by intensive forest management and temperature increase by climate change are resulting in biodiversity decline in boreal forests.Intensive forest management and high-end climate emission scenarios can further reduce the amount and diversity of deadwood,the limiting factor for habitats for saproxylic species in European boreal forests.The magnitude of their combined effects and how changes in forest management can affect deadwood diversity under a range of climate change scenarios are poorly understood.We used forest growth simulations to evaluate how forest management and climate change will individually and jointly affect habitats of red-listed saproxylic species in Finland.We simulated seven forest management regimes and three climate scenarios(reference,RCP4.5 and RCP8.5)over 100 years.Management regimes included set aside,continuous cover forestry,business-as-usual(BAU)and four modifications of BAU.Habitat suitability was assessed using a speciesspecific habitat suitability index,including 21 fungal and invertebrate species groups.“Winner”and“loser”species were identified based on the modelled impacts of forest management and climate change on their habitat suitability.We found that forest management had a major impact on habitat suitability of saproxylic species compared to climate change.Habitat suitability index varied by over 250%among management regimes,while overall change in habitat suitability index caused by climate change was on average only 2%.More species groups were identified as winners than losers from impacts of climate change(52%–95%were winners,depending on the climate change scenario and management regime).The largest increase in habitat suitability index was achieved under set aside(254%)and the climate scenario RCP8.5(>2%),while continuous cover forestry was the most suitable regime to increase habitat suitability of saproxylic species(up to+11%)across all climate change scenarios.Our results show that close-to-nature management regimes(e.g.,continuous cover forestry and set aside)can increase the habitat suitability of many saproxylic boreal species more than the basic business-as-usual regime.This suggests that biodiversity loss of many saproxylic species in boreal forests can be mitigated through improved forest management practices,even as climate change progresses. 展开更多
关键词 BIODIVERSITY Simulations FINLAND Forest planning Habitat suitability DEADWOOD
下载PDF
Fire and retention island remnants have similar deadwood carbon stock a decade after disturbances in boreal forests of Alberta
15
作者 Richard Osei Lance P.Moore +3 位作者 Rosanise A.Odell Marcel Schneider Tanvir Ahmed Shovon Charles A.Nock 《Forest Ecosystems》 SCIE CSCD 2024年第5期677-684,共8页
In an attempt to reconcile wood extraction and forest biodiversity in managed boreal forests,ecosystem-based forest management(EBM)has become the de facto management approach.Retention forestry represents one prominen... In an attempt to reconcile wood extraction and forest biodiversity in managed boreal forests,ecosystem-based forest management(EBM)has become the de facto management approach.Retention forestry represents one prominent way that EBM is implemented in many parts of the world.Retention patches commonly left after harvesting serve as analogues of fire island remnants,which are patches of unburned forests in the burned forest matrix.Although the persistence of retention patches has been questioned,few studies have attempted to quantitatively compare forest attributes in both burned and harvested forests.As part of a larger program examining multiple aspects of ecosystem function in fire and harvest island remnants,we investigated the impact of disturbance type(fire/harvest)and forest edges on C stock in snags and coarse woody debris(CWD)found in island remnants in mixedwood boreal forests of Alberta,Canada.Total C stock(in snags and CWD)was similar between the two disturbance types and edge plots had similar total deadwood C stocks to interiors.The edges of island remnants had about two-fold more snag C stock than their interiors in both disturbance types,but C stock in CWD was unaffected by edge effects and disturbance type.Our results suggest that deadwood C dynamics in island remnants in fire and harvest disturbed boreal forests were similar,thus lending support for the continued implementation of retention forestry in Alberta. 展开更多
关键词 Retention forestry DEADWOOD Ecosystem-based management WILDFIRES Boreal forest
下载PDF
Life forms affect beta-diversity patterns of larch forests in China
16
作者 Wenjing Fang Qiong Cai +3 位作者 Chengjun Ji Jiangling Zhu Zhiyao Tang Jingyun Fang 《Plant Diversity》 SCIE CAS CSCD 2024年第1期49-58,共10页
Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch(Larix) forests, which are coniferou... Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch(Larix) forests, which are coniferous forests widely distributed in the mountainous and plateau areas in North and Southwest China, are critical for maintaining the environmental conditions and species diversity. Few studies of larch forests have examined the beta-diversity and its constituent components(species turnover and nestedness-resultant components). Here, we used 483 larch forest plots to determine the total betadiversity and its components in different life forms(i.e., tree, shrub, and herb) of larch forests in China and to evaluate the main drivers that underlie this beta-diversity. We found that total betadiversity of larch forests was mainly dependent on the species turnover component. In all life forms,total beta-diversity and the species turnover component increased with increasing geographic, elevational, current climatic, and paleoclimatic distances. In contrast, the nestedness-resultant component decreased across these same distances. Geographic and environmental factors explained 20%-25% of total beta-diversity, 18%-27% of species turnover component, and 4%-16% of nestedness-resultant component. Larch forest types significantly affected total beta-diversity and species turnover component. Taken together, our results indicate that life forms affect beta-diversity patterns of larch forests in China, and that beta-diversity is driven by both niche differentiation and dispersal limitation. Our findings help to greatly understand the mechanisms of community assemblies of larch forests in China. 展开更多
关键词 BETA-DIVERSITY Species turnover Nestedness-resultant Geographic distance Climatic distance Larch forest
下载PDF
The rate of deadwood decomposition processes in tree stand gaps resulting from bark beetle infestation spots in mountain forests
17
作者 Ewa Błonska Adam Gorski Jarosław Lasota 《Forest Ecosystems》 SCIE CSCD 2024年第3期339-346,共8页
Decaying wood is an essential element of forest ecosystems and it affects its other components.The aim of our research was to determine the decomposition rate of deadwood in various humidity and thermal conditions in ... Decaying wood is an essential element of forest ecosystems and it affects its other components.The aim of our research was to determine the decomposition rate of deadwood in various humidity and thermal conditions in the gaps formed in the montane forest stands.The research was carried out in the Babiog orski National Park.The research plots were marked out in the gaps of the stands,which were formed as a result of bark beetle gradation.Control plots were located in undisturbed stands.The research covered wood of two species–spruce and beech in the form of cubes with dimensions of 50 mm×50 mm×22 mm.Wood samples were placed directly on the soil surface and subjected to laboratory analysis after 36 months.A significant influence of the wood species and the study plot type on the physicochemical properties of the tested wood samples was found.Wood characteristics strongly correlated with soil moisture.A significantly higher mass decline of wood samples was recorded on the reference study plots,which were characterized by more stable moisture conditions.Poorer decomposition of wood in the gaps regardless of the species is related to lower moisture.The wood species covered by the study differed in the decomposition rate.Spruce wood samples were characterized by a significantly higher decomposition rate compared to beech wood samples.Our research has confirmed that disturbances that lead to the formation of gaps have a direct impact on the decomposition process of deadwood. 展开更多
关键词 Bark beetle BEECH Decomposition rate Forest ecosystem Mass decline SPRUCE Woody debris
下载PDF
Soil bacterial and fungal communities resilience to long-term nitrogen addition in subtropical forests in China
18
作者 Xinlei Fu Yunze Dai +3 位作者 Jun Cui Pengfei Deng Wei Fan Xiaoniu Xu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期95-108,共14页
Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have no... Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition. 展开更多
关键词 Long-term nitrogen addition Old-growth subtropical forest METAGENOMICS Beneficial microorganisms Co-occurrence network
下载PDF
Assessing the effect of invasive organisms on forests under information uncertainty: The case of pine wood nematode in continental Europe
19
作者 Nick Schafstall Laura Dobor +4 位作者 Marco Baldo Andrew MLiebhold Werner Rammer Juha Honkaniemi Tomás Hlásny 《Forest Ecosystems》 SCIE CSCD 2024年第5期685-696,共12页
Forests worldwide are experiencing increasingly intense biotic disturbances;however,assessing impacts of these disturbances is challenging due to the diverse range of organisms involved and the complex interactions am... Forests worldwide are experiencing increasingly intense biotic disturbances;however,assessing impacts of these disturbances is challenging due to the diverse range of organisms involved and the complex interactions among them.This particularly applies to invasive species,which can greatly alter ecological processes in their invaded territories.Here we focus on the pine wood nematode(PWN,Bursaphelenchus xylophilus),an invasive pathogen that has caused extensive mortality of pines in East Asia and more recently has invaded southern Europe.It is expected to expand its range into continental Europe with heavy impacts possible.Given the unknown dynamics of PWN in continental Europe,we reviewed laboratory and field experiments conducted in Asia and southern Europe to parameterize the main components of PWN biology and host-pathogen interactions in the Biotic Disturbance Engine(BITE),a model designed to implement a variety of forest biotic agents,from fungi to large herbivores.To simulate dynamically changing host availability and conditions,BITE was coupled with the forest landscape model iLand.The potential impacts of introducing PWN were assessed in a Central European forest landscape(40,928ha),likely within PWN’s reach in future decades.A parameter sensitivity analysis indicated a substantial influence of factors related to dispersal,colonization,and vegetation impact,whereas parameters related to population growth manifested a minor effect.Selection of different assumptions about biological processes resulted in differential timing and size of the main mortality wave,eliminating 40%–95%of pine trees within 100 years post-introduction,with a maximum annual carbon loss between 1.3%and 4.2%.PWN-induced tree mortality reduced the Gross Primary Productivity,increased heterotrophic respiration,and generated a distinct legacy sink effect in the recovery period.This assessment has corroborated the ecological plausibility of the simulated dynamics and highlighted the need for new strategies to navigate the substantial uncertainty in the agent’s biology and population dynamics. 展开更多
关键词 Biological invasions Process-based modelling Forest ecosystems Model parameters
下载PDF
Aboveground carbon sequestration of Cunninghamia lanceolata forests:Magnitude and drivers
20
作者 Chen Wang Shuguang Liu +3 位作者 Yu Zhu Andrew R.Smith Ying Ning Deming Deng 《Forest Ecosystems》 SCIE CSCD 2024年第1期32-41,共10页
Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management optio... Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management options.How carbon density and sequestration in various Cunninghamia lanceolata forests,extensively cultivated for timber production in subtropical China,vary with biodiversity,forest structure,environment,and cultural factors remain poorly explored,presenting a critical knowledge gap for realizing carbon sequestration supply potential through management.Based on a large-scale database of 449 permanent forest inventory plots,we quantified the spatial-temporal heterogeneity of aboveground carbon densities and carbon accumulation rates in Cunninghamia lanceolate forests in Hunan Province,China,and attributed the contributions of stand structure,environmental,and management factors to the heterogeneity using quantile age-sequence analysis,partial least squares path modeling(PLS-PM),and hot-spot analysis.The results showed lower values of carbon density and sequestration on average,in comparison with other forests in the same climate zone(i.e.,subtropics),with pronounced spatial and temporal variability.Specifically,quantile regression analysis using carbon accumulation rates along an age sequence showed large differences in carbon sequestration rates among underperformed and outperformed forests(0.50 and 1.80 Mg·ha^(-1)·yr^(-1)).PLS-PM demonstrated that maximum DBH and stand density were the main crucial drivers of aboveground carbon density from young to mature forests.Furthermore,species diversity and geotopographic factors were the significant factors causing the large discrepancy in aboveground carbon density change between low-and high-carbon-bearing forests.Hotspot analysis revealed the importance of culture attributes in shaping the geospatial patterns of carbon sequestration.Our work highlighted that retaining largesized DBH trees and increasing shade-tolerant tree species were important to enhance carbon sequestration in C.lanceolate forests. 展开更多
关键词 Carbon density Carbon accumulation rate Forest age Spatial variation Cultural influence
下载PDF
上一页 1 2 211 下一页 到第
使用帮助 返回顶部