In this study,the effects of pre-strain-induced tensile twins(TTWs)and controlled heat treatment on the formability behavior of AZX311 Mg alloy sheets were investigated.A 4%compressive strain was applied to pre-strain...In this study,the effects of pre-strain-induced tensile twins(TTWs)and controlled heat treatment on the formability behavior of AZX311 Mg alloy sheets were investigated.A 4%compressive strain was applied to pre-strain the sheets using the in-plane compression(IPC)technique along the rolling direction(RD)to introduce TTWs.The pre-strained(PS)samples were subsequently heat-treated at 250℃,350℃,and 400℃ independently for 1 hr,and are termed as PSA1,PSA2,and PSA3,respectively.Erichsen cupping tests were conducted to assess the formability of the sheet samples under different initial conditions.The results showed that the PS sample heat-treated at 250℃ for 1hr exhibited a decrease in the Erichsen index(IE)compared to the as-rolled sample,whereas PSA2 and PSA3 samples showed an increase in IE values.Microtexture analysis revealed that most of the TTWs generated through pre-twinning were stable at 250℃;however,the twin volume fraction reduced to 41%at 350℃ compared to the PS samples due to enhanced thermal activity at that temperature.Furthermore,PSA2 samples showed severe grain coarsening in some areas of the sample,and the fraction of such grains increased in the PSA3 samples.The stretch formability(IE value)of PSA2 samples showed a 32.3%increase compared to the as-rolled specimens.Additionally,the analysis of the deformed specimen at failure under the Erichsen test indicated that considerable detwinning occurs in the PS and PSA1 samples,whereas dislocation slip activity dominates in the PSA2 and PSA3 samples during stretch forming.Apart from detwinning and dislocation slip,deformation twins were also observed in all samples after the Erichsen test.Thus,this work highlights the importance of texture control and its underlying mechanisms via pre-twinning followed by heat treatment and their impact on the room temperature(RT)stretch formability of AZX311 Mg alloy sheets.展开更多
The influences of strength coefficient K, work hardening exponent n and thickness t of the overlapping sheet on bulging process are analyzed based on hardening material model. Also, bulging experiments are carried out...The influences of strength coefficient K, work hardening exponent n and thickness t of the overlapping sheet on bulging process are analyzed based on hardening material model. Also, bulging experiments are carried out by taking the aluminum alloy LF21 as formed sheet metal, and selecting overlapping sheet with different thicknesses and material properties, by which accuracy of the above analysis result is verified in the aspects of geometric shape, thickness distribution and limit bulging height. The results show that higher strength coefficient K, larger work hardening exponent n and proper thickness of the overlapping sheet are helpful to improve the formability and forming uniformity of formed sheet metal.展开更多
The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstruc...The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstructure: grain coarsening and weakening of the texture. The sheet that underwent RUB and was annealed at 300 ℃exhibits the best formability owing to the reduction of the (0002) basal texture intensity, which results in low yield strength, large fracture elongation, small Lankford value (r-value) and large strain hardening exponent (n-value). Compared with the as-received sheet, the coarse-grain sheet produced by RUB and annealing at 400 ℃ exhibits lower tensile properties but higher formability. The phenomenon is because the deformation twin enhanced by grain coarsening can accommodate the strain of thickness.展开更多
The effects of strain rate on microstructure and formability of AZ31B magnesium alloy sheets were investigated through uniaxial tensile tests and hemispherical punch tests with strain rates of 10^-4, 10^-3, 10^-2, 10^...The effects of strain rate on microstructure and formability of AZ31B magnesium alloy sheets were investigated through uniaxial tensile tests and hemispherical punch tests with strain rates of 10^-4, 10^-3, 10^-2, 10^-1 s^-1 at 200℃. The results show that the volume fraction of dynamic recrystallization grains increases and the original grains are gradually replaced by recrystallization grains with the strain rate decreasing. A larger elongation and a smaller r-value are obtained at a lower strain rate, moreover the erichsen values become larger with the strain rate reducing, so the formability improves. This problem arises in part from the enhanced softening and the coordination of recrystallization grains during deformation.展开更多
Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Fa...Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.展开更多
Ring hoop tension test and tube bulging test were carried out at elevated temperatures up to 480 ℃to evaluate the formability of AZ31B extruded tube for internal high pressure forming (IHPF) process. The total elon...Ring hoop tension test and tube bulging test were carried out at elevated temperatures up to 480 ℃to evaluate the formability of AZ31B extruded tube for internal high pressure forming (IHPF) process. The total elongation along hoop direction and the maximum expansion ratio (MER) of the tube were obtained. The fracture surface after bursting was also analyzed. The results show that the total elongation along hoop direction and the MER value have a similar changing tendency as the testing temperature increases, which is quite different from the total elongation along axial direction. Both the total elongation along hoop direction and the MER value increase to a peak value at about 160 ℃. After that, they begin to decrease quickly until a certain rebounding temperature is reached. From the rebounding temperature, they begin to increase rapidly again. Burnt structure appears on the fracture surface when tested at temperatures higher than 420 ℃. Therefore, the forming temperature of the tested tube should be lower than 420 ℃, even though bigger formability can be achieved at higher temperature.展开更多
The formability of AA5052/polyethylene/AA5052 sandwich sheets was experimentally studied. Three kinds of AA5052/polyethylene/AA5052 sandwich specimens with different thicknesses of core materials were prepared by the ...The formability of AA5052/polyethylene/AA5052 sandwich sheets was experimentally studied. Three kinds of AA5052/polyethylene/AA5052 sandwich specimens with different thicknesses of core materials were prepared by the hot pressing adhesive method. Then, the uniaxial tensile tests were conducted to investigate the mechanical properties of AA5052/polyethylene/ AA5052 sandwich sheets, and the stretching tests were carried out to investigate the influences of polymer core thickness on the limit dome height of the sandwich sheet. The forming limit curves for three kinds of sandwich sheets were obtained. The experimental results show that the forming limit of the AA5052/polyethylene/AA5052 sandwich sheet is higher than that of the monolithic AA5052 sheet, and it increases with increasing the thickness of polyethylene core.展开更多
Experimental study has been conducted for an interstitial free(IF) sheet steel on its surface roughness evolution and formability with respect to grain size and sheet thickness effect. The surface roughness of IF she...Experimental study has been conducted for an interstitial free(IF) sheet steel on its surface roughness evolution and formability with respect to grain size and sheet thickness effect. The surface roughness of IF sheet steel is proportional to effective strain, grain size and inversely proportional to sheet thickness; the larger grain reduces the formability by accelerating the surface roughening rate and enhance formability by raising the workhardening rate, while the latter effect plays the dominate role. The grain size effect on surface roughening and formability is more obvious when the sheets are thinner.展开更多
Mg and its alloys have continued to attract interest for several structural and super-sensitive applications because of their light weight and good combination of engineering properties.However for some of these appli...Mg and its alloys have continued to attract interest for several structural and super-sensitive applications because of their light weight and good combination of engineering properties.However for some of these applications,high plastic deformability is required to achieve desired component shapes and configurations;unfortunately,Mg and its alloys have low formability.Scientifically,the plastic behaviour of Mg and its alloys ranks among the most complex and difficult to reconcile in metallic material systems.But basically,the HCP crystal structure coupled with low stacking fault energies(SFE)are largely linked to the poor ductility exhibited by Mg alloys.These innate material characteristics have regrettably limited wide spread applicability of Mg and its alloys.Several research efforts aimed at exploring processing strategies to make these alloys more amenable for high formability–mediated engineering use have been reported and still ongoing.This paper reviews the structural metallurgy of Mg alloys and its influence on mechanical behaviour,specifically,plasticity characteristics.It also concisely presents various processing routes(Alloying,Traditional Forming and Severe Plastic Deformation(SPD))which have been explored to enhance plastic deformability in Mg and its alloys.Grain refinement and homogenising of phases,reducing CRSS between slip modes,twinning suppression to activate non-basal slip,and weakening and randomisation of the basal texture were observed as the formability enhancing strategies explored in the reviewed processes.While identifying the limitations of these strategies,further areas to be explored for enhancing plasticity of Mg alloys are highlighted.展开更多
This study is conducted to develop an innovative and attractive selective laser melting(SLM)method to produce 316 L stainless steel materials with excellent mechanical performance and complex part shape.In this work,t...This study is conducted to develop an innovative and attractive selective laser melting(SLM)method to produce 316 L stainless steel materials with excellent mechanical performance and complex part shape.In this work,the subregional manufacturing strategy,which separates the special parts from the components using an optimized process,was proposed.The results showed that produced 316 L materials exhibited superior strength of^755 MPa and good ductility.In the as-built parts,austenite with preferred orientation of the(220)plane,δ-ferrite,and a small amount of CrO phases were present.In addition,the crystal size was fine,which contributed to the enhancement of the parts’mechanical properties.The structural anisotropy mechanism of the materials was also investigated for a group of half-sized samples with variable inclination directions.This technique was used to fabricate a set of impellers with helical bevels and high-precision planetary gears,demonstrating its strong potential for use in practical applications.展开更多
AA 6061 alloy and interstitial-free(IF)steel plates were joined by the friction stir welding(FSW)method,and the microstructure,mechanical properties,and biaxial stretch formability of the friction stir welded(FSWed)pa...AA 6061 alloy and interstitial-free(IF)steel plates were joined by the friction stir welding(FSW)method,and the microstructure,mechanical properties,and biaxial stretch formability of the friction stir welded(FSWed)parts were investigated.The results indicate that the FSWed parts showed optimum tensile strength during FSW with the 0.4-mm offset position of the tool.The Fe4Al13 intermetallic compound formed in the defect-free intersection of AA 6061 and IF-steel plates during FSW.The hardness of the IF-steel part of the FSWed region increased almost 90%relative to its initial hardness of HV0.2 105.The tensile and yield strengths of FSWed regions were approximately 170 MPa and 145 MPa,respectively.According to the formability tests,the Erichsen Index(EI)of the IF-steel,AA 6061,and the FSWed samples were determined to be 2.9 mm,1.9 mm,and 2.1 mm,respectively.The EI of the FSWed sample was almost the same as that of the AA 6061 alloy.However,it decreased compared with that of the IF-steel.The force at EI(FEI)was approximately 1180 N for the FSWed condition.This value is approximately 70%higher than that of AA 6061 alloy.展开更多
To develop a new magnesium alloy with excellent formability at room temperature, the effect of Y, Ce, and Gd addition on texture and stretch formability of Mg-1.5Zn alloys was carried out. The result shows that Y, Ce,...To develop a new magnesium alloy with excellent formability at room temperature, the effect of Y, Ce, and Gd addition on texture and stretch formability of Mg-1.5Zn alloys was carried out. The result shows that Y, Ce, and Gd addition in Mg-1.5Zn alloys can effectively weaken and modify the basal plane texture, characterized by TD-split texture in which the position of basal is titled from normal direction (ND) toward transverse direction (TD). When Mg-1.5Zn alloy with Gd addition appears low texture intensity and TD-split texture, where the position of basal poles is tilted by about 4-35° from ND toward to TD, the largest Erichsen value of 7.0 and the elongation rate reaches 29.1% in TD direction. However, Y and Ce addition in Mg-1.5Zn alloys promote a large number of second phase particles, which cancel the contribution of the unique basal texture to stretch formability and ductility.展开更多
The AM50,AM50-0.1 Ca,AM50-0.3 Ca and AM50-0.5 Ca(wt.%) alloys were hot-rolled and their mechanical properties were determined for the purpose of investigating the effect of trace Ca addition on the texture and stretch...The AM50,AM50-0.1 Ca,AM50-0.3 Ca and AM50-0.5 Ca(wt.%) alloys were hot-rolled and their mechanical properties were determined for the purpose of investigating the effect of trace Ca addition on the texture and stretch formability of AM50 alloy.The results show that the addition of trace Ca can effectively modify the basal texture,which is characterized by the split of basal poles deviated from the normal direction(ND) after the hot rolling,while a broad spread of the basal planes toward the transverse direction(TD) after the annealing.Such change of the basal texture is related to the prior formation of massive compression twins and the decrease of the c/a ratio.Erichsen value increases from 2.25 to 4.21 mm with the increase of Ca content.The enhancement of stretch formability is ascribed to the weakened basal texture,which results in the increase of n-value and the decrease of r-value.展开更多
A VBHF(Variable Blank Holder Force) optimization strategy was employed to determine the optimal time-variable and spatial-variable BHF trajectories,aiming at improving the formability of automobile panels with aluminu...A VBHF(Variable Blank Holder Force) optimization strategy was employed to determine the optimal time-variable and spatial-variable BHF trajectories,aiming at improving the formability of automobile panels with aluminum alloy sheet.The strategy was implemented based on adaptive simulation to calculate the critical wrinkling BHF for each segmented binder of the Numisheet' 05 deck lid in a single round of simulation.The thickness comparison of the stamped part under optimal VBHF and constant BHF shows that the variance of the four sections is decreased by 70%,44%,64% and 61%,respectively,which indicates significant improvement in thickness distribution and variation control.The investigation through strain path comparison reveals the fundamental reason of formability improvement.The study proves the applicability of the new VBHF optimization strategy to complex parts with aluminum alloy sheet.展开更多
Continuous bending (CB) process along rolling direction was performed to improve the formability of AZ31 magnesium alloy sheets. The microstructure and texture evolutions were characterized by optical microscopy (OM) ...Continuous bending (CB) process along rolling direction was performed to improve the formability of AZ31 magnesium alloy sheets. The microstructure and texture evolutions were characterized by optical microscopy (OM) and electronic backscatter diffraction (EBSD). The results reveal that the basal texture intensity of continuously bent and annealed (CBA) sample is drastically weakened. A large number of twins are induced on the concave surface by the 1st pass bending and the density of twins obviously declines during the 2nd pass bending owing to the occurrence of detwinning. Due to the asymmetric tension?compression strain states between the outer and inner regions during V-bending, twinning and detwinning are generated alternatively during the CB process. The Erichsen value is 5.2 mm which increases by 41% compared with that of as-received sample. This obvious improvement of formability can be attributed to the weakened basal texture, which leads to a smaller plastic strain ratio (r-value)together with a larger strain-hardening exponent (n-value).展开更多
In order to broaden the application of wrought Mg alloy sheets in the automotive industry,the influence of Ca and Sm alloying on the texture evolution,mechanical properties,and formability of a hot-rolled Mg-2Zn-0.2Mn...In order to broaden the application of wrought Mg alloy sheets in the automotive industry,the influence of Ca and Sm alloying on the texture evolution,mechanical properties,and formability of a hot-rolled Mg-2Zn-0.2Mn alloy was investigated by OM,XRD,SEM,EBSD,tensile tests,and Erichsen test.The results showed that the average grain size and basal texture intensity of Mg-2Zn-0.2Mn alloys were remarkably decreased after Ca and Sm additions.0.64 wt.%Ca or 0.48 wt.%Sm addition significantly increased the tensile strength,ductility and formability.Moreover,the synergetic addition of Sm and Ca improved the ductility and formability of Mg-2Zn-0.2Mn alloy,which was due to the change of Ca distribution and further reduction of the size of Ca-containing particles by Sm addition.The results provided a possibility of replacing RE elements with Ca and Sm in Mg alloys which bring about outstanding mechanical properties and formability.展开更多
The stretching tests of the commercial AZ31 Mg alloy were conducted at 130 ℃, 170 ℃, 210 ℃, at the forming speeds of 10 mm/min and 50 mm/min, respectively. The formability of AZ31 sheets at high temperature was eva...The stretching tests of the commercial AZ31 Mg alloy were conducted at 130 ℃, 170 ℃, 210 ℃, at the forming speeds of 10 mm/min and 50 mm/min, respectively. The formability of AZ31 sheets at high temperature was evaluated by forming limit diagrams (FLD). The fracture morphologies were analyzed using a scanning electron microscope. The results show that the FLD of AZ31 Mg alloy is affected by the forming temperature, in another word, the formability increases with the increasing of the forming temperature. That may be because the non-basal slip system starts to move by thermal activation at high forming temperature. It is also demonstrated that the formability of the AZ31 Mg alloy is on the decline with the increasing of the forming speed. The slipping performs thoroughly to release the stress during the deformation if the forming speed decreases. In addition, the higher the forming temperature is, the more obvious the effect of the forming speed is. The forming temperature is the main dominating factor on the formability of AZ31 Mg alloy.展开更多
The microstructural characteristics and formability at the edges of low carbon pickled steel sheets have been investigated based on the generation of earing and cracking defects while drawing. The microstructure of th...The microstructural characteristics and formability at the edges of low carbon pickled steel sheets have been investigated based on the generation of earing and cracking defects while drawing. The microstructure of the edge features coarse grains and mixed sized grains. The strength of the sheet edge is slightly lower than that at the center. Besides, the formability is obviously worsened. The plastic strain ratios along the longitudinal and transverse orientations are 0.31 and 0.6, respectively, with distinct anisotropy. The plastic strain ratio at the edge is obviously lower than that at the middle of the steel sheet. The observed microstructural characteristics and mechanical properties at the edge of the steel sheet can be attributed to the lower rolling temperature in the two-phase region of pro-eutectoid ferrite and austenite. These differences in microstructure and mechanical properties at the edge of the steel sheet lead to the generation of earing and cracking defects while drawing. The microstructure and mechanical properties at the edge of low carbon pickled steel sheets can be improved via the optimization of the rolling process and the adjustment of chemical composition.展开更多
Aluminum alloy 5 A02 with low plasticity was used as target sheet, and stainless steel SUS304 with good plasticity was used as overlapping sheet to investigate the effect of interface friction on bulging formability a...Aluminum alloy 5 A02 with low plasticity was used as target sheet, and stainless steel SUS304 with good plasticity was used as overlapping sheet to investigate the effect of interface friction on bulging formability and microstructure of target sheet in overlapping sheets bulging process. Sheet sliding experiment was performed to measure interface friction coefficient of 5 A02/SUS304 in different lubricating conditions and normal pressure. Overlapping sheets bulging experiment of 5 A02/SUS304 was carried out to investigate the influence of interface friction on limit bulging height, wall thickness distribution, microstructure and fracture morphology of 5 A02 bulging specimens. The results showed that increase of the interface friction coefficient of 5 A02/SUS304 could effectively improve the limit bulging height and deformation uniformity of 5 A02. And the fracture style of 5 A02 transformed from toughness fracture of dimples-micropores gathered to fault slip separation fracture. Therefore, target sheet bulging formability is improved with the increase of interface friction coefficient.展开更多
Room-temperature(RT) formability is a key factor to broaden the applications of rolled Mg alloy sheets in the industry. However, rolled Mg alloy sheets generally form strong basal texture, where the(0001) poles align ...Room-temperature(RT) formability is a key factor to broaden the applications of rolled Mg alloy sheets in the industry. However, rolled Mg alloy sheets generally form strong basal texture, where the(0001) poles align parallel to the normal direction(ND). This hinders the activation of(0001) [1120] basal slip, limiting the RT formability. Therefore, texture weakening, i.e., the inclination of the(0001) poles from the ND, plays an important role to improve the RT formability. Recrystallization is crucial to control the textural development in Mg,and currently, the texture weakening is commonly achieved using static recrystallization(SRX). However, the type of slipping and twinning,which are activated during rolling, affect the textural features after SRX. It is also demonstrated that shear bands and preferential grain growth are important factors to tailor the texture during SRX. Indeed, dynamic recrystallization(DRX) easily occurs during rolling in Mg, which also affects the final rolling texture, while the effect of DRX on the textural formation is not extensively studied for the development of RT-formable Mg alloy sheets. Therefore, the effect of these factors on the textural development in rolled Mg is reviewed in this manuscript.Additionally, the ideal microstructure and texture for RT-formable Mg alloy sheets are still controversial. The RT-formability includes stretch forming(biaxial tension), bending(plane strain tension), and deep-drawing. In particular, the stretch forming is commonly used to evaluate the RT-formability of rolled Mg. Although the stretch formability has been improved by recent studies, the further improvement is necessary owing to the relatively low formability of rolled Mg compared with that of rolled Fe and Al. Based on the relationship between the microstructure/texture and stretch formability provided in the literature, the design guidance for high stretch formability is proposed in this review.展开更多
基金supported by the Science and Engineering Research Board(SERB),a statutory body of the Department of Science&Technology(DST),Government of India through the Start-up Research Grant(SRG)scheme(File No.SRG/2020/000341).
文摘In this study,the effects of pre-strain-induced tensile twins(TTWs)and controlled heat treatment on the formability behavior of AZX311 Mg alloy sheets were investigated.A 4%compressive strain was applied to pre-strain the sheets using the in-plane compression(IPC)technique along the rolling direction(RD)to introduce TTWs.The pre-strained(PS)samples were subsequently heat-treated at 250℃,350℃,and 400℃ independently for 1 hr,and are termed as PSA1,PSA2,and PSA3,respectively.Erichsen cupping tests were conducted to assess the formability of the sheet samples under different initial conditions.The results showed that the PS sample heat-treated at 250℃ for 1hr exhibited a decrease in the Erichsen index(IE)compared to the as-rolled sample,whereas PSA2 and PSA3 samples showed an increase in IE values.Microtexture analysis revealed that most of the TTWs generated through pre-twinning were stable at 250℃;however,the twin volume fraction reduced to 41%at 350℃ compared to the PS samples due to enhanced thermal activity at that temperature.Furthermore,PSA2 samples showed severe grain coarsening in some areas of the sample,and the fraction of such grains increased in the PSA3 samples.The stretch formability(IE value)of PSA2 samples showed a 32.3%increase compared to the as-rolled specimens.Additionally,the analysis of the deformed specimen at failure under the Erichsen test indicated that considerable detwinning occurs in the PS and PSA1 samples,whereas dislocation slip activity dominates in the PSA2 and PSA3 samples during stretch forming.Apart from detwinning and dislocation slip,deformation twins were also observed in all samples after the Erichsen test.Thus,this work highlights the importance of texture control and its underlying mechanisms via pre-twinning followed by heat treatment and their impact on the room temperature(RT)stretch formability of AZX311 Mg alloy sheets.
基金Project(51205260)supported by the National Natural Science Foundation of ChinaProject(L2012046)supported by the Liaoning Provincial Committee of Education,China
文摘The influences of strength coefficient K, work hardening exponent n and thickness t of the overlapping sheet on bulging process are analyzed based on hardening material model. Also, bulging experiments are carried out by taking the aluminum alloy LF21 as formed sheet metal, and selecting overlapping sheet with different thicknesses and material properties, by which accuracy of the above analysis result is verified in the aspects of geometric shape, thickness distribution and limit bulging height. The results show that higher strength coefficient K, larger work hardening exponent n and proper thickness of the overlapping sheet are helpful to improve the formability and forming uniformity of formed sheet metal.
基金Project(CSTC2010AA4035)supported by Scientific and Technological Project of Chongqing Science and Technology Commission,ChinaProject(50504019)supported by the National Natural Science Foundation of China+1 种基金Project(CDJZR11130008)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CDJXS10130001)supported by the Chongqing University Postgraduates'Science and Innovation Fund,China
文摘The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstructure: grain coarsening and weakening of the texture. The sheet that underwent RUB and was annealed at 300 ℃exhibits the best formability owing to the reduction of the (0002) basal texture intensity, which results in low yield strength, large fracture elongation, small Lankford value (r-value) and large strain hardening exponent (n-value). Compared with the as-received sheet, the coarse-grain sheet produced by RUB and annealing at 400 ℃ exhibits lower tensile properties but higher formability. The phenomenon is because the deformation twin enhanced by grain coarsening can accommodate the strain of thickness.
基金Project(CSTC2010AA4035) supported by Scientific and Technological Project of Chongqing Science and Technology Commission, ChinaProject(CDJZR11130008) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (2008DFR50040) supported by the Ministry of Science and Technology of China
文摘The effects of strain rate on microstructure and formability of AZ31B magnesium alloy sheets were investigated through uniaxial tensile tests and hemispherical punch tests with strain rates of 10^-4, 10^-3, 10^-2, 10^-1 s^-1 at 200℃. The results show that the volume fraction of dynamic recrystallization grains increases and the original grains are gradually replaced by recrystallization grains with the strain rate decreasing. A larger elongation and a smaller r-value are obtained at a lower strain rate, moreover the erichsen values become larger with the strain rate reducing, so the formability improves. This problem arises in part from the enhanced softening and the coordination of recrystallization grains during deformation.
基金Project (51275185) supported by the National Natural Science Foundation of China
文摘Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.
基金Project(50805033)supported by the National Natural Science Foundation of ChinaProject(E200804)supported by the Natural Science Foundation of Heilongjiang Province of China
文摘Ring hoop tension test and tube bulging test were carried out at elevated temperatures up to 480 ℃to evaluate the formability of AZ31B extruded tube for internal high pressure forming (IHPF) process. The total elongation along hoop direction and the maximum expansion ratio (MER) of the tube were obtained. The fracture surface after bursting was also analyzed. The results show that the total elongation along hoop direction and the MER value have a similar changing tendency as the testing temperature increases, which is quite different from the total elongation along axial direction. Both the total elongation along hoop direction and the MER value increase to a peak value at about 160 ℃. After that, they begin to decrease quickly until a certain rebounding temperature is reached. From the rebounding temperature, they begin to increase rapidly again. Burnt structure appears on the fracture surface when tested at temperatures higher than 420 ℃. Therefore, the forming temperature of the tested tube should be lower than 420 ℃, even though bigger formability can be achieved at higher temperature.
基金Project(HIT.NSRIF.2009033) supported by the Scientific Research Foundation of Harbin Institute of Technology,China
文摘The formability of AA5052/polyethylene/AA5052 sandwich sheets was experimentally studied. Three kinds of AA5052/polyethylene/AA5052 sandwich specimens with different thicknesses of core materials were prepared by the hot pressing adhesive method. Then, the uniaxial tensile tests were conducted to investigate the mechanical properties of AA5052/polyethylene/ AA5052 sandwich sheets, and the stretching tests were carried out to investigate the influences of polymer core thickness on the limit dome height of the sandwich sheet. The forming limit curves for three kinds of sandwich sheets were obtained. The experimental results show that the forming limit of the AA5052/polyethylene/AA5052 sandwich sheet is higher than that of the monolithic AA5052 sheet, and it increases with increasing the thickness of polyethylene core.
文摘Experimental study has been conducted for an interstitial free(IF) sheet steel on its surface roughness evolution and formability with respect to grain size and sheet thickness effect. The surface roughness of IF sheet steel is proportional to effective strain, grain size and inversely proportional to sheet thickness; the larger grain reduces the formability by accelerating the surface roughening rate and enhance formability by raising the workhardening rate, while the latter effect plays the dominate role. The grain size effect on surface roughening and formability is more obvious when the sheets are thinner.
文摘Mg and its alloys have continued to attract interest for several structural and super-sensitive applications because of their light weight and good combination of engineering properties.However for some of these applications,high plastic deformability is required to achieve desired component shapes and configurations;unfortunately,Mg and its alloys have low formability.Scientifically,the plastic behaviour of Mg and its alloys ranks among the most complex and difficult to reconcile in metallic material systems.But basically,the HCP crystal structure coupled with low stacking fault energies(SFE)are largely linked to the poor ductility exhibited by Mg alloys.These innate material characteristics have regrettably limited wide spread applicability of Mg and its alloys.Several research efforts aimed at exploring processing strategies to make these alloys more amenable for high formability–mediated engineering use have been reported and still ongoing.This paper reviews the structural metallurgy of Mg alloys and its influence on mechanical behaviour,specifically,plasticity characteristics.It also concisely presents various processing routes(Alloying,Traditional Forming and Severe Plastic Deformation(SPD))which have been explored to enhance plastic deformability in Mg and its alloys.Grain refinement and homogenising of phases,reducing CRSS between slip modes,twinning suppression to activate non-basal slip,and weakening and randomisation of the basal texture were observed as the formability enhancing strategies explored in the reviewed processes.While identifying the limitations of these strategies,further areas to be explored for enhancing plasticity of Mg alloys are highlighted.
基金supported by the Key R&D Programs of Sichuan Province of China (No. 2018GZ0145)the Science and Technology Planning Projects of Zigong of Sichuan Province (No. 2018CDZG-1)the Major Scientific and Technological Key Bidding Projects in Panzhihua Experimental Zone (No. 1640STC30166/01)
文摘This study is conducted to develop an innovative and attractive selective laser melting(SLM)method to produce 316 L stainless steel materials with excellent mechanical performance and complex part shape.In this work,the subregional manufacturing strategy,which separates the special parts from the components using an optimized process,was proposed.The results showed that produced 316 L materials exhibited superior strength of^755 MPa and good ductility.In the as-built parts,austenite with preferred orientation of the(220)plane,δ-ferrite,and a small amount of CrO phases were present.In addition,the crystal size was fine,which contributed to the enhancement of the parts’mechanical properties.The structural anisotropy mechanism of the materials was also investigated for a group of half-sized samples with variable inclination directions.This technique was used to fabricate a set of impellers with helical bevels and high-precision planetary gears,demonstrating its strong potential for use in practical applications.
基金supported by “The World Academy of Sciences(TWAS)under the Visiting Researchers program of TWAS-UNESCO Associateship Scheme(No.3240290077)”
文摘AA 6061 alloy and interstitial-free(IF)steel plates were joined by the friction stir welding(FSW)method,and the microstructure,mechanical properties,and biaxial stretch formability of the friction stir welded(FSWed)parts were investigated.The results indicate that the FSWed parts showed optimum tensile strength during FSW with the 0.4-mm offset position of the tool.The Fe4Al13 intermetallic compound formed in the defect-free intersection of AA 6061 and IF-steel plates during FSW.The hardness of the IF-steel part of the FSWed region increased almost 90%relative to its initial hardness of HV0.2 105.The tensile and yield strengths of FSWed regions were approximately 170 MPa and 145 MPa,respectively.According to the formability tests,the Erichsen Index(EI)of the IF-steel,AA 6061,and the FSWed samples were determined to be 2.9 mm,1.9 mm,and 2.1 mm,respectively.The EI of the FSWed sample was almost the same as that of the AA 6061 alloy.However,it decreased compared with that of the IF-steel.The force at EI(FEI)was approximately 1180 N for the FSWed condition.This value is approximately 70%higher than that of AA 6061 alloy.
基金supported by the Ministry of Science and Technology ‘‘Twelfth Five-Year’’ Plan for Science & Technology Support(No.2011BAE22B00)
文摘To develop a new magnesium alloy with excellent formability at room temperature, the effect of Y, Ce, and Gd addition on texture and stretch formability of Mg-1.5Zn alloys was carried out. The result shows that Y, Ce, and Gd addition in Mg-1.5Zn alloys can effectively weaken and modify the basal plane texture, characterized by TD-split texture in which the position of basal is titled from normal direction (ND) toward transverse direction (TD). When Mg-1.5Zn alloy with Gd addition appears low texture intensity and TD-split texture, where the position of basal poles is tilted by about 4-35° from ND toward to TD, the largest Erichsen value of 7.0 and the elongation rate reaches 29.1% in TD direction. However, Y and Ce addition in Mg-1.5Zn alloys promote a large number of second phase particles, which cancel the contribution of the unique basal texture to stretch formability and ductility.
基金Projects(51801186,51974281)supported by the National Natural Science Foundation of ChinaProject(SKLSP201814)supported by the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘The AM50,AM50-0.1 Ca,AM50-0.3 Ca and AM50-0.5 Ca(wt.%) alloys were hot-rolled and their mechanical properties were determined for the purpose of investigating the effect of trace Ca addition on the texture and stretch formability of AM50 alloy.The results show that the addition of trace Ca can effectively modify the basal texture,which is characterized by the split of basal poles deviated from the normal direction(ND) after the hot rolling,while a broad spread of the basal planes toward the transverse direction(TD) after the annealing.Such change of the basal texture is related to the prior formation of massive compression twins and the decrease of the c/a ratio.Erichsen value increases from 2.25 to 4.21 mm with the increase of Ca content.The enhancement of stretch formability is ascribed to the weakened basal texture,which results in the increase of n-value and the decrease of r-value.
基金Project(50934011) supported by the National Natural Science Foundation of ChinaProject(20080430085) supported by the China Postdoctoral Science Foundation
文摘A VBHF(Variable Blank Holder Force) optimization strategy was employed to determine the optimal time-variable and spatial-variable BHF trajectories,aiming at improving the formability of automobile panels with aluminum alloy sheet.The strategy was implemented based on adaptive simulation to calculate the critical wrinkling BHF for each segmented binder of the Numisheet' 05 deck lid in a single round of simulation.The thickness comparison of the stamped part under optimal VBHF and constant BHF shows that the variance of the four sections is decreased by 70%,44%,64% and 61%,respectively,which indicates significant improvement in thickness distribution and variation control.The investigation through strain path comparison reveals the fundamental reason of formability improvement.The study proves the applicability of the new VBHF optimization strategy to complex parts with aluminum alloy sheet.
基金Project(CDJZR13130081)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CSCT2014FAZKTJCSF50004)supported by the Chongqing Science and Technology Commission,China
文摘Continuous bending (CB) process along rolling direction was performed to improve the formability of AZ31 magnesium alloy sheets. The microstructure and texture evolutions were characterized by optical microscopy (OM) and electronic backscatter diffraction (EBSD). The results reveal that the basal texture intensity of continuously bent and annealed (CBA) sample is drastically weakened. A large number of twins are induced on the concave surface by the 1st pass bending and the density of twins obviously declines during the 2nd pass bending owing to the occurrence of detwinning. Due to the asymmetric tension?compression strain states between the outer and inner regions during V-bending, twinning and detwinning are generated alternatively during the CB process. The Erichsen value is 5.2 mm which increases by 41% compared with that of as-received sample. This obvious improvement of formability can be attributed to the weakened basal texture, which leads to a smaller plastic strain ratio (r-value)together with a larger strain-hardening exponent (n-value).
基金financially supported by the National Key Research and Development Program of China(Nos.2018YFA0702903,2016YFB0701204)the Fundamental Research Funds for the Central Universities,China(No.DUT20GF102)。
文摘In order to broaden the application of wrought Mg alloy sheets in the automotive industry,the influence of Ca and Sm alloying on the texture evolution,mechanical properties,and formability of a hot-rolled Mg-2Zn-0.2Mn alloy was investigated by OM,XRD,SEM,EBSD,tensile tests,and Erichsen test.The results showed that the average grain size and basal texture intensity of Mg-2Zn-0.2Mn alloys were remarkably decreased after Ca and Sm additions.0.64 wt.%Ca or 0.48 wt.%Sm addition significantly increased the tensile strength,ductility and formability.Moreover,the synergetic addition of Sm and Ca improved the ductility and formability of Mg-2Zn-0.2Mn alloy,which was due to the change of Ca distribution and further reduction of the size of Ca-containing particles by Sm addition.The results provided a possibility of replacing RE elements with Ca and Sm in Mg alloys which bring about outstanding mechanical properties and formability.
文摘The stretching tests of the commercial AZ31 Mg alloy were conducted at 130 ℃, 170 ℃, 210 ℃, at the forming speeds of 10 mm/min and 50 mm/min, respectively. The formability of AZ31 sheets at high temperature was evaluated by forming limit diagrams (FLD). The fracture morphologies were analyzed using a scanning electron microscope. The results show that the FLD of AZ31 Mg alloy is affected by the forming temperature, in another word, the formability increases with the increasing of the forming temperature. That may be because the non-basal slip system starts to move by thermal activation at high forming temperature. It is also demonstrated that the formability of the AZ31 Mg alloy is on the decline with the increasing of the forming speed. The slipping performs thoroughly to release the stress during the deformation if the forming speed decreases. In addition, the higher the forming temperature is, the more obvious the effect of the forming speed is. The forming temperature is the main dominating factor on the formability of AZ31 Mg alloy.
文摘The microstructural characteristics and formability at the edges of low carbon pickled steel sheets have been investigated based on the generation of earing and cracking defects while drawing. The microstructure of the edge features coarse grains and mixed sized grains. The strength of the sheet edge is slightly lower than that at the center. Besides, the formability is obviously worsened. The plastic strain ratios along the longitudinal and transverse orientations are 0.31 and 0.6, respectively, with distinct anisotropy. The plastic strain ratio at the edge is obviously lower than that at the middle of the steel sheet. The observed microstructural characteristics and mechanical properties at the edge of the steel sheet can be attributed to the lower rolling temperature in the two-phase region of pro-eutectoid ferrite and austenite. These differences in microstructure and mechanical properties at the edge of the steel sheet lead to the generation of earing and cracking defects while drawing. The microstructure and mechanical properties at the edge of low carbon pickled steel sheets can be improved via the optimization of the rolling process and the adjustment of chemical composition.
基金Funded by the National Natural Science Foundation of China(No.51575364)the Program for Liaoning Innovation Talents in University(No.LR2017069)the Shenyang Science and Technology Innovation Support Program for Young Talented People(No.RC180189)
文摘Aluminum alloy 5 A02 with low plasticity was used as target sheet, and stainless steel SUS304 with good plasticity was used as overlapping sheet to investigate the effect of interface friction on bulging formability and microstructure of target sheet in overlapping sheets bulging process. Sheet sliding experiment was performed to measure interface friction coefficient of 5 A02/SUS304 in different lubricating conditions and normal pressure. Overlapping sheets bulging experiment of 5 A02/SUS304 was carried out to investigate the influence of interface friction on limit bulging height, wall thickness distribution, microstructure and fracture morphology of 5 A02 bulging specimens. The results showed that increase of the interface friction coefficient of 5 A02/SUS304 could effectively improve the limit bulging height and deformation uniformity of 5 A02. And the fracture style of 5 A02 transformed from toughness fracture of dimples-micropores gathered to fault slip separation fracture. Therefore, target sheet bulging formability is improved with the increase of interface friction coefficient.
基金supported by JSPS KAKENHI Grant Numbers JP22H00259 and JP22K18900。
文摘Room-temperature(RT) formability is a key factor to broaden the applications of rolled Mg alloy sheets in the industry. However, rolled Mg alloy sheets generally form strong basal texture, where the(0001) poles align parallel to the normal direction(ND). This hinders the activation of(0001) [1120] basal slip, limiting the RT formability. Therefore, texture weakening, i.e., the inclination of the(0001) poles from the ND, plays an important role to improve the RT formability. Recrystallization is crucial to control the textural development in Mg,and currently, the texture weakening is commonly achieved using static recrystallization(SRX). However, the type of slipping and twinning,which are activated during rolling, affect the textural features after SRX. It is also demonstrated that shear bands and preferential grain growth are important factors to tailor the texture during SRX. Indeed, dynamic recrystallization(DRX) easily occurs during rolling in Mg, which also affects the final rolling texture, while the effect of DRX on the textural formation is not extensively studied for the development of RT-formable Mg alloy sheets. Therefore, the effect of these factors on the textural development in rolled Mg is reviewed in this manuscript.Additionally, the ideal microstructure and texture for RT-formable Mg alloy sheets are still controversial. The RT-formability includes stretch forming(biaxial tension), bending(plane strain tension), and deep-drawing. In particular, the stretch forming is commonly used to evaluate the RT-formability of rolled Mg. Although the stretch formability has been improved by recent studies, the further improvement is necessary owing to the relatively low formability of rolled Mg compared with that of rolled Fe and Al. Based on the relationship between the microstructure/texture and stretch formability provided in the literature, the design guidance for high stretch formability is proposed in this review.