The increasing use of petrodiesel-biodiesel fuel blends throughout the world requires fast, economic and efficient analytical techniques that can be used for the quality control of these fuels. In this work, we develo...The increasing use of petrodiesel-biodiesel fuel blends throughout the world requires fast, economic and efficient analytical techniques that can be used for the quality control of these fuels. In this work, we developed an analytical method for determining the concentration of African palm biodiesel in blends with petrodiesel;the method is based on infrared spectroscopy (FTIR-ATR). To build a prediction model, nineteen petrodiesel-biodiesel blends were prepared in triplicate with biodiesel concentrations for 0%-100% by weight. The blends were analyzed using Fourier transform infrared spectroscopy, the spectral fingerprint data were used to build a prediction model through PLS regression. The optimal number of principal components (PCs), the standard error of calibration (SEC), the standard validation error (SEV), the correlation coefficient of calibration (r Cal) and the validation correlation coefficient (r Val) were used to validate the predictive ability of the model. The results show that the model obtained in this work has a good ability for determining the concentration of African palm biodiesel in petrodiesel-biodiesel blends.展开更多
Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy was employed to characterize rapeseed oils. The spectral features of rapeseed oils were first investigated. Spectral data was processed...Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy was employed to characterize rapeseed oils. The spectral features of rapeseed oils were first investigated. Spectral data was processed using principal component analysis (PCA) and linear discriminant analysis (LDA) to discriminate the oils from three cultivars of rapeseeds. As a result, 100% discrimination accuracy was obtained by LDA. Furthermore, the applicability of FTIR-ATR spectroscopy to characterize the changes of rapeseed oils caused by thermal treatment was studied. The rapeseed oil at 60 ℃ was regularly subjected to spectral measurement, and the spectral changes induced by thermal treatment were analyzed and discussed. This study had demonstrated the good performance of FTIR-ATR spectroscopy in characterizing rapeseed oils.展开更多
Nowadays, biomedicine development is caused by the necessity of fast premalignant and malignant diagnosis. In the case of cancer, it is important to identify degree of tumor’s malice. We investigated the differences ...Nowadays, biomedicine development is caused by the necessity of fast premalignant and malignant diagnosis. In the case of cancer, it is important to identify degree of tumor’s malice. We investigated the differences of Fourier Transform Infrared-Attenuated Total Reflection (FTIR-ATR) and FT-Raman spectroscopy between leukoplakia, oral cancer and normal tissues. Human tissue contains many compounds with known absorption spectra in the range of Near Infrared (NIR) spectroscopy. These compounds have a fingerprint region, which permits their characterization. FTIR spectroscopy is a promising diagnostic tool. There is ability to detect skin, cervix, prostate, breast, esophagus, stomach, bladder and oral cancers [1]. Imaging using FTIR microscope allows analysis of biochemical compounds in microregions of biological materials. FTIR microspectroscopy is the perfect technique for tissues and individual cells analysis [1]. It delivers information about biochemistry of cell or tissue samples and has been applied in many areas of medical research [2]. IR absorption spectra of abnormal tissues and normal tissues are compared by lipid (2800 - 3000 cm–1), protein (1500 - 1700 cm–1), and nucleic acids (1000 - 1250 cm–1) regions [2]. One of the mucous membrane lesions of the mouth is leukoplakia. This change has a “fingerprint region” in the range of 900 - 1800 cm–1 [3]. Raman spectroscopy has high potential of medical diagnosis. This method is a molecular specific technique that can be used to develop a fundamental biochemical understanding of tissue physiology and pathology. Both methods are dedicated to screening of preneoplastic and neoplastic tissues and have a potential to reduce morbidity of leucoplakia and oral cancers. Obtained data suggested that these infrared techniques are applicable to biomedical and clinical diagnostics.展开更多
文摘The increasing use of petrodiesel-biodiesel fuel blends throughout the world requires fast, economic and efficient analytical techniques that can be used for the quality control of these fuels. In this work, we developed an analytical method for determining the concentration of African palm biodiesel in blends with petrodiesel;the method is based on infrared spectroscopy (FTIR-ATR). To build a prediction model, nineteen petrodiesel-biodiesel blends were prepared in triplicate with biodiesel concentrations for 0%-100% by weight. The blends were analyzed using Fourier transform infrared spectroscopy, the spectral fingerprint data were used to build a prediction model through PLS regression. The optimal number of principal components (PCs), the standard error of calibration (SEC), the standard validation error (SEV), the correlation coefficient of calibration (r Cal) and the validation correlation coefficient (r Val) were used to validate the predictive ability of the model. The results show that the model obtained in this work has a good ability for determining the concentration of African palm biodiesel in petrodiesel-biodiesel blends.
文摘Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy was employed to characterize rapeseed oils. The spectral features of rapeseed oils were first investigated. Spectral data was processed using principal component analysis (PCA) and linear discriminant analysis (LDA) to discriminate the oils from three cultivars of rapeseeds. As a result, 100% discrimination accuracy was obtained by LDA. Furthermore, the applicability of FTIR-ATR spectroscopy to characterize the changes of rapeseed oils caused by thermal treatment was studied. The rapeseed oil at 60 ℃ was regularly subjected to spectral measurement, and the spectral changes induced by thermal treatment were analyzed and discussed. This study had demonstrated the good performance of FTIR-ATR spectroscopy in characterizing rapeseed oils.
文摘Nowadays, biomedicine development is caused by the necessity of fast premalignant and malignant diagnosis. In the case of cancer, it is important to identify degree of tumor’s malice. We investigated the differences of Fourier Transform Infrared-Attenuated Total Reflection (FTIR-ATR) and FT-Raman spectroscopy between leukoplakia, oral cancer and normal tissues. Human tissue contains many compounds with known absorption spectra in the range of Near Infrared (NIR) spectroscopy. These compounds have a fingerprint region, which permits their characterization. FTIR spectroscopy is a promising diagnostic tool. There is ability to detect skin, cervix, prostate, breast, esophagus, stomach, bladder and oral cancers [1]. Imaging using FTIR microscope allows analysis of biochemical compounds in microregions of biological materials. FTIR microspectroscopy is the perfect technique for tissues and individual cells analysis [1]. It delivers information about biochemistry of cell or tissue samples and has been applied in many areas of medical research [2]. IR absorption spectra of abnormal tissues and normal tissues are compared by lipid (2800 - 3000 cm–1), protein (1500 - 1700 cm–1), and nucleic acids (1000 - 1250 cm–1) regions [2]. One of the mucous membrane lesions of the mouth is leukoplakia. This change has a “fingerprint region” in the range of 900 - 1800 cm–1 [3]. Raman spectroscopy has high potential of medical diagnosis. This method is a molecular specific technique that can be used to develop a fundamental biochemical understanding of tissue physiology and pathology. Both methods are dedicated to screening of preneoplastic and neoplastic tissues and have a potential to reduce morbidity of leucoplakia and oral cancers. Obtained data suggested that these infrared techniques are applicable to biomedical and clinical diagnostics.