We fabricate flexible conductive and transparent graphene films on position-emission-tomography substrates and prepare large area graphene films by graphite oxide sheets with the new technical process. The multi-layer...We fabricate flexible conductive and transparent graphene films on position-emission-tomography substrates and prepare large area graphene films by graphite oxide sheets with the new technical process. The multi-layer graphene oxide sheets can be chemically reduced by HNO3 and HI to form a highly conductive graphene film on a substrate at lower temperature. The reduced graphene oxide sheets show a high conductivity sheet with resistance of 476Ω/sq and transmittance of 76% at 550nm (6 layers). The technique used to produce the transparent conductive graphene thin film is facile, inexpensive, and can be tunable for a large area production applied for electronics or touch screens.展开更多
The coronavirus disease 2019(COVID-19)pandemic has led to a great demand on the personal protection products such as reusable masks.As a key raw material for masks,meltblown fabrics play an important role in rejection...The coronavirus disease 2019(COVID-19)pandemic has led to a great demand on the personal protection products such as reusable masks.As a key raw material for masks,meltblown fabrics play an important role in rejection of aerosols.However,the electrostatic dominated aerosol rejection mechanism of meltblown fabrics prevents the mask from maintaining the desired protective effect after the static charge degradation.Herein,novel reusable masks with high aerosols rejection efficiency were fabricated by the introduction of spider-web bionic nanofiber membrane(nano cobweb-biomimetic membrane).The reuse stability of meltblown and nanofiber membrane mask was separately evaluated by infiltrating water,75%alcohol solution,and exposing under ultraviolet(UV)light.After the water immersion test,the filtration efficiency of meltblown mask was decreased to about 79%,while the nanofiber membrane was maintained at 99%.The same phenomenon could be observed after the 75%alcohol treatment,a high filtration efficiency of 99%was maintained in nanofiber membrane,but obvious negative effect was observed in meltblown mask,which decreased to about 50%.In addition,after long-term expose under UV light,no filtration efficiency decrease was observed in nanofiber membrane,which provide a suitable way to disinfect the potential carried virus.This work successfully achieved the daily disinfection and reuse of masks,which effectively alleviate the shortage of masks during this special period.展开更多
There was a long history of releasing various monocrystalline semiconductor structures from their hosting substrates to form“freestanding”structures,in order to change the substrates and for other special purposes.T...There was a long history of releasing various monocrystalline semiconductor structures from their hosting substrates to form“freestanding”structures,in order to change the substrates and for other special purposes.The release was achieved by breaking the bonds between the film and the substrate,through methods such as forming interfacial gas bubbles(“smart-cut”technology for fabricating semiconductor-on-insulator wafers)or chemical etching(selectively etching epitaxial AlAs underlayer for fabricating GaAs-on-silicon photonic devices).The exfoliation of layered van der Waals materials in recent decades also produced another class of freestanding monocrystalline materials—twodimensional(2D)materials.In addition to changeable substrates,being freestanding also allowed unique methods to manipulate the 2D materials;for example,transferring them on flexible substrates and directly stretching them controls the strain in their lattice,as well as their strain-dependent physical properties.展开更多
Various yarn-shaped flexible strain sensors have recently been developed.However,research is lacking on additive manufacturing for smart clothing for integrating yarn sensors with commercial garments.Herein,a strain-s...Various yarn-shaped flexible strain sensors have recently been developed.However,research is lacking on additive manufacturing for smart clothing for integrating yarn sensors with commercial garments.Herein,a strain-sensing yarn is sewn into a piece of fabric through a novel stitching technique,and the influence of the stitching method and needle pitch on the sensing performance is investigated using finite element analysis(FEA).The sensing performance could be improved when the sensing yarn is self-locked in the fabric at the needle eyes,and the needle pitch was reduced to 0.5 cm,which is attributed to the enhanced stress and strain concentration.Meanwhile,the composite sensing fabric featured outstanding performance,including a low detection limit(0.1%),rapid response(280 ms),excellent durability(10000 cycles),and high stability(negligible drift and frequency independence).In addition,the remarkable wear resistance,washability,and anti-interference to ambient humidity and perspiration were obtained.Therein,the optimal stitch trace lengths of sensing yarn for detecting elbow motion,breathing,and heartbeats are discussed.Finally,a smart clothing system composed of smart clothing,data acquisition unit,and mobile APP was developed to simultaneously detect human movement and physiological signals.This work provides a reference to produce intelligent garments based on yarn sensors for health monitoring.展开更多
To reduce the cost and achieve high diffraction efficiency, a modified moir@ technique for fabricating a large- aperture multi-level Fresnel membrane optic by a novel design of alignment marks is proposed. The modifie...To reduce the cost and achieve high diffraction efficiency, a modified moir@ technique for fabricating a large- aperture multi-level Fresnel membrane optic by a novel design of alignment marks is proposed. The modified moire fringes vary more sensitively with the actual misalignment. Hence, the alignment accuracy is significantly improved. Using the proposed method, a 20 μm thick, four-level Fresnel diffractive polyimide membrane optic with a 200 mm diameter is made, which exhibits over 62% diffraction efficiency into the +1 order, and an efficiency root mean square of 0.051.展开更多
The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of mana...The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.展开更多
In this paper,a lifted Haar transform(LHT)image compression optical chip has been researched to achieve rapid image compression.The chip comprises 32 same image compression optical circuits,and each circuit contains a...In this paper,a lifted Haar transform(LHT)image compression optical chip has been researched to achieve rapid image compression.The chip comprises 32 same image compression optical circuits,and each circuit contains a 2×2 multimode interference(MMI)coupler and aπ/2 delay line phase shifter as the key components.The chip uses highly borosilicate glass as the substrate,Su8 negative photoresist as the core layer,and air as the cladding layer.Its horizontal and longitudinal dimensions are 8011μm×10000μm.Simulation results present that the designed optical circuit has a coupling ratio(CR)of 0:100 and an insertion loss(IL)of 0.001548 d B.Then the chip is fabricated by femtosecond laser and testing results illustrate that the chip has a CR of 6:94 and an IL of 0.518 d B.So,the prepared chip possesses good image compression performance.展开更多
Three-dimensional(3D)printing,also known as additive manufacturing(AM),has undergone a phase of rapid development in the fabrication of customizable and high-precision parts.Thanks to the advancements in 3D printing t...Three-dimensional(3D)printing,also known as additive manufacturing(AM),has undergone a phase of rapid development in the fabrication of customizable and high-precision parts.Thanks to the advancements in 3D printing technologies,it is now a reality to print cells,growth factors,and various biocompatible materials altogether into arbitrarily complex 3D scaffolds with high degree of structural and functional similarities to the native tissue environment.Additionally,with overpowering advantages in molding efficiency,resolution,and a wide selection of applicable materials,optical 3D printing methods have undoubtedly become the most suitable approach for scaffold fabrication in tissue engineering(TE).In this paper,we first provide a comprehensive and up-to-date review of current optical 3D printing methods for scaffold fabrication,including traditional extrusion-based processes,selective laser sintering,stereolithography,and two-photon polymerization etc.Specifically,we review the optical design,materials,and representative applications,followed by fabrication performance comparison.Important metrics include fabrication precision,rate,materials,and application scenarios.Finally,we summarize and compare the advantages and disadvantages of each technique to guide readers in the optics and TE communities to select the most fitting printing approach under different application scenarios.展开更多
A method for fabricating three-dimensional (3D) photonic crystals (PhCs) easily and simply, by using a visible light (- 532 nm) to pass one triangular pyramid to form non-coplanar multi-beam interference, named ...A method for fabricating three-dimensional (3D) photonic crystals (PhCs) easily and simply, by using a visible light (- 532 nm) to pass one triangular pyramid to form non-coplanar multi-beam interference, named laser interference etching technique, is reported. In the experiment, we exposed a 9-μm-thick photo- resist on the silicon substrate with exposure intensities of 150, 180, and 220 mJ/cm^2, and produced the periodical nanostructures. Through varying a common angle in the triangular pyramid, other interference patterns can be obtained to fabricate various PhCs.展开更多
Controllable fabrication of surface micro/nano structures is the key to realizing surface functionalization for various applications.As a versatile approach,ultrafast laser ablation has been widely studied for surface...Controllable fabrication of surface micro/nano structures is the key to realizing surface functionalization for various applications.As a versatile approach,ultrafast laser ablation has been widely studied for surface micro/nano structuring.Increasing research eforts in this feld have been devoted to gaining more control over the fabrication processes to meet the increasing need for creation of complex structures.In this paper,we focus on the in-situ deposition process following the plasma formation under ultrafast laser ablation.From an overview perspective,we frstly summarize the diferent roles that plasma plumes,from pulsed laser ablation of solids,play in diferent laser processing approaches.Then,the distinctive in-situ deposition process within surface micro/nano structuring is highlighted.Our experimental work demonstrated that the in-situ deposition during ultrafast laser surface structuring can be controlled as a localized micro-additive process to pile up secondary ordered structures,through which a unique kind of hierarchical structure with fort-like bodies sitting on top of micro cone arrays were fabricated as a showcase.The revealed laser-matter interaction mechanism can be inspiring for the development of new ultrafast laser fabrication approaches,adding a new dimension and more fexibility in controlling the fabrication of functional surface micro/nano structures.展开更多
随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向...随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向块内冲突的方案缺乏高效的冲突检测和避免方法,同时现有研究往往忽略区块间冲突对吞吐量的不利影响.提出了一种Fabric的优化方案Fabric-HT(fabric with high throughput),从区块内和区块间2方面入手,有效降低事务间并发冲突和提高系统吞吐量.针对区块内事务冲突,提出了一种事务调度机制,根据块内冲突事务集定义了一种高效数据结构——依赖关系链,识别具有“危险结构”的事务并提前中止,合理调度事务和消除冲突;针对区块间事务冲突,将冲突事务检测提前至排序节点完成,建立以“推送-匹配”为核心的冲突事务早期避免机制.在多场景下开展大量实验,结果表明Fabric-HT在吞吐量、事务中止率、事务平均执行时间、无效事务空间占用率等方面均优于对比方案.Fabric-HT吞吐量最高可达Fabric的9.51倍,是最新优化方案FabricSharp的1.18倍;空间利用率上相比FabricSharp提升了14%.此外,Fabric-HT也表现出较好的鲁棒性和抗攻击能力.展开更多
We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequ...We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves.展开更多
The traditional von Neumann computing architecture has relatively-low information processing speed and high power consumption,making it difficult to meet the computing needs of artificial intelligence(AI).Neuromorphic...The traditional von Neumann computing architecture has relatively-low information processing speed and high power consumption,making it difficult to meet the computing needs of artificial intelligence(AI).Neuromorphic computing systems,with massively parallel computing capability and low power consumption,have been considered as an ideal option for data storage and AI computing in the future.Memristor,as the fourth basic electronic component besides resistance,capacitance and inductance,is one of the most competitive candidates for neuromorphic computing systems benefiting from the simple structure,continuously adjustable conductivity state,ultra-low power consumption,high switching speed and compatibility with existing CMOS technology.The memristors with applying MXene-based hybrids have attracted significant attention in recent years.Here,we introduce the latest progress in the synthesis of MXene-based hybrids and summarize their potential applications in memristor devices and neuromorphological intelligence.We explore the development trend of memristors constructed by combining MXenes with other functional materials and emphatically discuss the potential mechanism of MXenes-based memristor devices.Finally,the future prospects and directions of MXene-based memristors are briefly described.展开更多
Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes a...Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes and excels in fabricating intricate 3D micro/nanostructures with exceptional resolution.The concept of 4D entails the fabrication of structures utilizing smart materials capable of undergoing shape,property,or functional changes in response to external stimuli over time.The integration of TPP and 4D printing introduces the possibility of producing responsive structures with micro/nanoscale accuracy,thereby enhancing the capabilities and potential applications of both technologies.This paper comprehensively reviews TPP-based 4D printing technology and its diverse applications.First,the working principles of TPP and its recent advancements are introduced.Second,the optional4D printing materials suitable for fabrication with TPP are discussed.Finally,this review paper highlights several noteworthy applications of TPP-based 4D printing,including domains such as biomedical microrobots,bioinspired microactuators,autonomous mobile microrobots,transformable devices and robots,as well as anti-counterfeiting microdevices.In conclusion,this paper provides valuable insights into the current status and future prospects of TPP-based4D printing technology,thereby serving as a guide for researchers and practitioners.展开更多
基金Supported by the Basic Research Program of Nanjing University of Posts and Telecommunications under Grant No NY212002the Innovative Research Team in University under Grant No IRT1148the 2014 Shuangchuang Program of Jiangsu Province
文摘We fabricate flexible conductive and transparent graphene films on position-emission-tomography substrates and prepare large area graphene films by graphite oxide sheets with the new technical process. The multi-layer graphene oxide sheets can be chemically reduced by HNO3 and HI to form a highly conductive graphene film on a substrate at lower temperature. The reduced graphene oxide sheets show a high conductivity sheet with resistance of 476Ω/sq and transmittance of 76% at 550nm (6 layers). The technique used to produce the transparent conductive graphene thin film is facile, inexpensive, and can be tunable for a large area production applied for electronics or touch screens.
基金the National Key Research&Development Program of China(2018YFE0203500)the National Natural Science Foundation of China(21921006,21878148)the Key Industrial Research and Development International Cooperation Project(BZ2018004)。
文摘The coronavirus disease 2019(COVID-19)pandemic has led to a great demand on the personal protection products such as reusable masks.As a key raw material for masks,meltblown fabrics play an important role in rejection of aerosols.However,the electrostatic dominated aerosol rejection mechanism of meltblown fabrics prevents the mask from maintaining the desired protective effect after the static charge degradation.Herein,novel reusable masks with high aerosols rejection efficiency were fabricated by the introduction of spider-web bionic nanofiber membrane(nano cobweb-biomimetic membrane).The reuse stability of meltblown and nanofiber membrane mask was separately evaluated by infiltrating water,75%alcohol solution,and exposing under ultraviolet(UV)light.After the water immersion test,the filtration efficiency of meltblown mask was decreased to about 79%,while the nanofiber membrane was maintained at 99%.The same phenomenon could be observed after the 75%alcohol treatment,a high filtration efficiency of 99%was maintained in nanofiber membrane,but obvious negative effect was observed in meltblown mask,which decreased to about 50%.In addition,after long-term expose under UV light,no filtration efficiency decrease was observed in nanofiber membrane,which provide a suitable way to disinfect the potential carried virus.This work successfully achieved the daily disinfection and reuse of masks,which effectively alleviate the shortage of masks during this special period.
基金supported by the National Natural Science Foundation of China(NSFC)under grant no.62274150University of Science and Technology of China.
文摘There was a long history of releasing various monocrystalline semiconductor structures from their hosting substrates to form“freestanding”structures,in order to change the substrates and for other special purposes.The release was achieved by breaking the bonds between the film and the substrate,through methods such as forming interfacial gas bubbles(“smart-cut”technology for fabricating semiconductor-on-insulator wafers)or chemical etching(selectively etching epitaxial AlAs underlayer for fabricating GaAs-on-silicon photonic devices).The exfoliation of layered van der Waals materials in recent decades also produced another class of freestanding monocrystalline materials—twodimensional(2D)materials.In addition to changeable substrates,being freestanding also allowed unique methods to manipulate the 2D materials;for example,transferring them on flexible substrates and directly stretching them controls the strain in their lattice,as well as their strain-dependent physical properties.
基金supported by the Qing Lan Projectthe Third-Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金the Science and Technology Guidance Project of China National Textile and Apparel Council(Grant No.2020102)the Primary Research&Development Plan of Jiangsu Province(Grant No.BE2019045)。
文摘Various yarn-shaped flexible strain sensors have recently been developed.However,research is lacking on additive manufacturing for smart clothing for integrating yarn sensors with commercial garments.Herein,a strain-sensing yarn is sewn into a piece of fabric through a novel stitching technique,and the influence of the stitching method and needle pitch on the sensing performance is investigated using finite element analysis(FEA).The sensing performance could be improved when the sensing yarn is self-locked in the fabric at the needle eyes,and the needle pitch was reduced to 0.5 cm,which is attributed to the enhanced stress and strain concentration.Meanwhile,the composite sensing fabric featured outstanding performance,including a low detection limit(0.1%),rapid response(280 ms),excellent durability(10000 cycles),and high stability(negligible drift and frequency independence).In addition,the remarkable wear resistance,washability,and anti-interference to ambient humidity and perspiration were obtained.Therein,the optimal stitch trace lengths of sensing yarn for detecting elbow motion,breathing,and heartbeats are discussed.Finally,a smart clothing system composed of smart clothing,data acquisition unit,and mobile APP was developed to simultaneously detect human movement and physiological signals.This work provides a reference to produce intelligent garments based on yarn sensors for health monitoring.
基金supported by the National Natural Science Foundation of China under Grant No.11375175
文摘To reduce the cost and achieve high diffraction efficiency, a modified moir@ technique for fabricating a large- aperture multi-level Fresnel membrane optic by a novel design of alignment marks is proposed. The modified moire fringes vary more sensitively with the actual misalignment. Hence, the alignment accuracy is significantly improved. Using the proposed method, a 20 μm thick, four-level Fresnel diffractive polyimide membrane optic with a 200 mm diameter is made, which exhibits over 62% diffraction efficiency into the +1 order, and an efficiency root mean square of 0.051.
基金support of this work by National Key Research and Development Program of China(2019YFC19059003)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJB430024)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB680)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)are gratefully acknowledged.
文摘The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.
基金the Natural Science Foundation of Hubei Province(No.2017CFB685)Hubei University of Technology"Advanced Manufacturing Technology and Equipment"Collaborative Innovation Center Open Research Fund(Nos.038/1201501 and 038/1201803)the College-level Project of Hubei University of Technology(Nos.4201/01758,4201/01802,4201/01889,and 4128/21025)。
文摘In this paper,a lifted Haar transform(LHT)image compression optical chip has been researched to achieve rapid image compression.The chip comprises 32 same image compression optical circuits,and each circuit contains a 2×2 multimode interference(MMI)coupler and aπ/2 delay line phase shifter as the key components.The chip uses highly borosilicate glass as the substrate,Su8 negative photoresist as the core layer,and air as the cladding layer.Its horizontal and longitudinal dimensions are 8011μm×10000μm.Simulation results present that the designed optical circuit has a coupling ratio(CR)of 0:100 and an insertion loss(IL)of 0.001548 d B.Then the chip is fabricated by femtosecond laser and testing results illustrate that the chip has a CR of 6:94 and an IL of 0.518 d B.So,the prepared chip possesses good image compression performance.
基金This work was supported by the Innovation and Technology Commission(ITC)(ITS/178/20FP)Centre for Perceptual and Interactive Intelligence(CPII)Ltd under the Innovation and Technology Fund.
文摘Three-dimensional(3D)printing,also known as additive manufacturing(AM),has undergone a phase of rapid development in the fabrication of customizable and high-precision parts.Thanks to the advancements in 3D printing technologies,it is now a reality to print cells,growth factors,and various biocompatible materials altogether into arbitrarily complex 3D scaffolds with high degree of structural and functional similarities to the native tissue environment.Additionally,with overpowering advantages in molding efficiency,resolution,and a wide selection of applicable materials,optical 3D printing methods have undoubtedly become the most suitable approach for scaffold fabrication in tissue engineering(TE).In this paper,we first provide a comprehensive and up-to-date review of current optical 3D printing methods for scaffold fabrication,including traditional extrusion-based processes,selective laser sintering,stereolithography,and two-photon polymerization etc.Specifically,we review the optical design,materials,and representative applications,followed by fabrication performance comparison.Important metrics include fabrication precision,rate,materials,and application scenarios.Finally,we summarize and compare the advantages and disadvantages of each technique to guide readers in the optics and TE communities to select the most fitting printing approach under different application scenarios.
基金The authors thank Department of Physics, Hong Kong University of Science and Technology for support.
文摘A method for fabricating three-dimensional (3D) photonic crystals (PhCs) easily and simply, by using a visible light (- 532 nm) to pass one triangular pyramid to form non-coplanar multi-beam interference, named laser interference etching technique, is reported. In the experiment, we exposed a 9-μm-thick photo- resist on the silicon substrate with exposure intensities of 150, 180, and 220 mJ/cm^2, and produced the periodical nanostructures. Through varying a common angle in the triangular pyramid, other interference patterns can be obtained to fabricate various PhCs.
基金support by the National Key Research and Development Program of China(No.2017YFB1104300)the National Natural Science Foundation of China(Nos.51575309 and 51210009)the Tsinghua University Initiative Scientifc Research Program(No.2018Z05JZY009).
文摘Controllable fabrication of surface micro/nano structures is the key to realizing surface functionalization for various applications.As a versatile approach,ultrafast laser ablation has been widely studied for surface micro/nano structuring.Increasing research eforts in this feld have been devoted to gaining more control over the fabrication processes to meet the increasing need for creation of complex structures.In this paper,we focus on the in-situ deposition process following the plasma formation under ultrafast laser ablation.From an overview perspective,we frstly summarize the diferent roles that plasma plumes,from pulsed laser ablation of solids,play in diferent laser processing approaches.Then,the distinctive in-situ deposition process within surface micro/nano structuring is highlighted.Our experimental work demonstrated that the in-situ deposition during ultrafast laser surface structuring can be controlled as a localized micro-additive process to pile up secondary ordered structures,through which a unique kind of hierarchical structure with fort-like bodies sitting on top of micro cone arrays were fabricated as a showcase.The revealed laser-matter interaction mechanism can be inspiring for the development of new ultrafast laser fabrication approaches,adding a new dimension and more fexibility in controlling the fabrication of functional surface micro/nano structures.
文摘随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向块内冲突的方案缺乏高效的冲突检测和避免方法,同时现有研究往往忽略区块间冲突对吞吐量的不利影响.提出了一种Fabric的优化方案Fabric-HT(fabric with high throughput),从区块内和区块间2方面入手,有效降低事务间并发冲突和提高系统吞吐量.针对区块内事务冲突,提出了一种事务调度机制,根据块内冲突事务集定义了一种高效数据结构——依赖关系链,识别具有“危险结构”的事务并提前中止,合理调度事务和消除冲突;针对区块间事务冲突,将冲突事务检测提前至排序节点完成,建立以“推送-匹配”为核心的冲突事务早期避免机制.在多场景下开展大量实验,结果表明Fabric-HT在吞吐量、事务中止率、事务平均执行时间、无效事务空间占用率等方面均优于对比方案.Fabric-HT吞吐量最高可达Fabric的9.51倍,是最新优化方案FabricSharp的1.18倍;空间利用率上相比FabricSharp提升了14%.此外,Fabric-HT也表现出较好的鲁棒性和抗攻击能力.
文摘We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves.
基金supported by National Natural Science Foundation of China(52172205,52172070 and 51962013)Jiangxi Provincial Science and Technology Projects(20232ACB204009,20223AAE02010,20201BBE51011,jxsq2019201036 and GJJ201319)+3 种基金Innovation Enterprise Program of Shandong Provincial(2023TSGC0469)Guangdong Basic and Applied Basic Research Foundation(2020B1515120002)General Projects of Shenzhen Stable Development(SZWD2021003)University Engineering Research Center of Crystal Growth and Applications of Guangdong Province(2020GCZX005)。
文摘The traditional von Neumann computing architecture has relatively-low information processing speed and high power consumption,making it difficult to meet the computing needs of artificial intelligence(AI).Neuromorphic computing systems,with massively parallel computing capability and low power consumption,have been considered as an ideal option for data storage and AI computing in the future.Memristor,as the fourth basic electronic component besides resistance,capacitance and inductance,is one of the most competitive candidates for neuromorphic computing systems benefiting from the simple structure,continuously adjustable conductivity state,ultra-low power consumption,high switching speed and compatibility with existing CMOS technology.The memristors with applying MXene-based hybrids have attracted significant attention in recent years.Here,we introduce the latest progress in the synthesis of MXene-based hybrids and summarize their potential applications in memristor devices and neuromorphological intelligence.We explore the development trend of memristors constructed by combining MXenes with other functional materials and emphatically discuss the potential mechanism of MXenes-based memristor devices.Finally,the future prospects and directions of MXene-based memristors are briefly described.
基金the National Natural Science Foundation of China(No.12072142)the Key Talent Recruitment Program of Guangdong Province(No.2019QN01Z438)+2 种基金the Science Technology and Innovation Commission of Shenzhen Municipality(ZDSYS20210623092005017)the China Postdoctoral Science Foundation(No.2022M721471)the Natural Science Foundation of Guangdong Province under the Grant(No.2022A1515010047)。
文摘Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes and excels in fabricating intricate 3D micro/nanostructures with exceptional resolution.The concept of 4D entails the fabrication of structures utilizing smart materials capable of undergoing shape,property,or functional changes in response to external stimuli over time.The integration of TPP and 4D printing introduces the possibility of producing responsive structures with micro/nanoscale accuracy,thereby enhancing the capabilities and potential applications of both technologies.This paper comprehensively reviews TPP-based 4D printing technology and its diverse applications.First,the working principles of TPP and its recent advancements are introduced.Second,the optional4D printing materials suitable for fabrication with TPP are discussed.Finally,this review paper highlights several noteworthy applications of TPP-based 4D printing,including domains such as biomedical microrobots,bioinspired microactuators,autonomous mobile microrobots,transformable devices and robots,as well as anti-counterfeiting microdevices.In conclusion,this paper provides valuable insights into the current status and future prospects of TPP-based4D printing technology,thereby serving as a guide for researchers and practitioners.