A theoretical model of the fiber Bragg grating Fabry–Perot(FBG-FP) transmission spectrum considering loss of FBG and intra-cavity fiber is presented. Several types of FBG-FPs are inscribed experimentally, and their...A theoretical model of the fiber Bragg grating Fabry–Perot(FBG-FP) transmission spectrum considering loss of FBG and intra-cavity fiber is presented. Several types of FBG-FPs are inscribed experimentally, and their spectra are measured.The results confirm that weak intra-cavity loss is enhanced at the resonance transmission peak, that is, loss of transmission peaks is observably larger than other wavelengths. For FBG-FPs with multi resonance peaks, when the resonance peak wavelength is closer to the Bragg wavelength, the more significant loss effect of resonance transmission peak is exhibited.The measured spectra are fitted with the presented theoretical model. The fitted coefficient of determinations are near 1,which proves the validity of the theoretical model. This study can be applied to measure FBG loss more accurately, without a reference light. It can play an important role in FBG and FBG-FP writing process optimization and application parameter optimization.展开更多
The long-wave infrared band(8–14μm)is essential for several applications,such as infrared detection,radiative cooling,and near-field heat transfer.However,according to Kirchhoff’s law,the intrinsic balance between ...The long-wave infrared band(8–14μm)is essential for several applications,such as infrared detection,radiative cooling,and near-field heat transfer.However,according to Kirchhoff’s law,the intrinsic balance between thermal absorption and emission limits the further improvement of photon energy conversion and thermal management.Thus,breaking Kirchhoff’s balance and achieving nonreciprocal thermal radiation in the long-wave infrared band are necessary.Most existing designs for nonreciprocal thermal emitters rely on grating or photonic crystal structures to achieve nonreciprocal thermal radiation at narrow peaks,which are relatively complex and typically realize bands larger than 14μm.Here,a sandwich structure consisting of an epsilon-nearzero(ENZ)magneto-optical layer(MOL),a dielectric layer(DL),and a metal layer is proposed to achieve a strong nonreciprocal effect in the long-wave infrared band,which is mainly attributed to the strengthening of the asymmetric Berreman mode by the Fabry–Perot cavity.In addition,the impact of the incident angle,DL thickness,and DL refractive index on the nonreciprocal thermal radiation has been investigated.Moreover,by replacing the ENZ MOL with the gradient ENZ MOL,the existence of the DL can further improve the nonreciprocity of the broadband nonreciprocal thermal radiation.The proposed work promotes the development and application of nonreciprocal energy devices.展开更多
In this paper,optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain(FDTD) simulat...In this paper,optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain(FDTD) simulation method.By simulating reflectance spectra,electric field distribution,and charge distribution,we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light,in which the four reflectance dips are attributed to Fabry–Perot cavity resonances in the coaxial cavity.A coaxial waveguide mode TE11 will exist in these annular cavities,and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities.These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss.The formation of an absorption peak can be explained from the aspect of phase matching conditions.We observed that the proposed structure can be tuned over the broad spectral range of 600–4000 nm by changing the outer and inner radii of the annular gaps,gap surface topography.Meanwhile,different lengths of the cavity may cause the shift of resonance dips.Also,we study the field enhancement at different vertical locations of the slit.In addition,dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths,which make the annular cavities good candidates for refractive index sensors.The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity.Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates,refractive index sensors,nano-lasers,and optical trappers.展开更多
A simple and robust multiple wavelength frequency stabilization system is demonstrated using a single transfer cavity and a1062-nm ultra-stable laser for all the lasers used in a mercury optical lattice clock.Offset s...A simple and robust multiple wavelength frequency stabilization system is demonstrated using a single transfer cavity and a1062-nm ultra-stable laser for all the lasers used in a mercury optical lattice clock.Offset sideband locking is employed to tune the laser frequency while dichroic mirrors and differentiated modulation frequencies are utilized for the Pound–Drever–Hall locking of four-color lasers.For the most demanding lasers at 1015 nm and 725 nm,the line width of the beat note is reduced to 27 kHz and 17 kHz,respectively.The frequency fluctuation for the transfer-locked 1015-nm laser is less than 10 kHz,which is much better than the lasers locked to an atomic spectrum.Using its high stability of 5×10^(-12)over100 s,the transfer-locked 1015-nm laser is employed for low-noise frequency modulated saturated absorption spectroscopy.This approach could also be used in various situations for the research of optical clocks,Rydberg atoms,laser cooling of molecules,and quantum computation with neutral atoms.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61405212,61377062,61405218,and 61775225)Scientific Innovation Fund of Chinese Academy of Sciences(Grant No.CXJJ-17S010)
文摘A theoretical model of the fiber Bragg grating Fabry–Perot(FBG-FP) transmission spectrum considering loss of FBG and intra-cavity fiber is presented. Several types of FBG-FPs are inscribed experimentally, and their spectra are measured.The results confirm that weak intra-cavity loss is enhanced at the resonance transmission peak, that is, loss of transmission peaks is observably larger than other wavelengths. For FBG-FPs with multi resonance peaks, when the resonance peak wavelength is closer to the Bragg wavelength, the more significant loss effect of resonance transmission peak is exhibited.The measured spectra are fitted with the presented theoretical model. The fitted coefficient of determinations are near 1,which proves the validity of the theoretical model. This study can be applied to measure FBG loss more accurately, without a reference light. It can play an important role in FBG and FBG-FP writing process optimization and application parameter optimization.
基金supported by the National Natural Science Foundation of China(Grant Nos.52211540005 and 52076087)the Natural Science Foundation of Hubei Province(Grant No.2023AFA072)+1 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(Grant No.2021WNLOKF004)Wuhan Knowledge Innovation Shuguang Program,and the Fundamental Research Funds for the Central Universities(Grant No.YCJJ20242102).
文摘The long-wave infrared band(8–14μm)is essential for several applications,such as infrared detection,radiative cooling,and near-field heat transfer.However,according to Kirchhoff’s law,the intrinsic balance between thermal absorption and emission limits the further improvement of photon energy conversion and thermal management.Thus,breaking Kirchhoff’s balance and achieving nonreciprocal thermal radiation in the long-wave infrared band are necessary.Most existing designs for nonreciprocal thermal emitters rely on grating or photonic crystal structures to achieve nonreciprocal thermal radiation at narrow peaks,which are relatively complex and typically realize bands larger than 14μm.Here,a sandwich structure consisting of an epsilon-nearzero(ENZ)magneto-optical layer(MOL),a dielectric layer(DL),and a metal layer is proposed to achieve a strong nonreciprocal effect in the long-wave infrared band,which is mainly attributed to the strengthening of the asymmetric Berreman mode by the Fabry–Perot cavity.In addition,the impact of the incident angle,DL thickness,and DL refractive index on the nonreciprocal thermal radiation has been investigated.Moreover,by replacing the ENZ MOL with the gradient ENZ MOL,the existence of the DL can further improve the nonreciprocity of the broadband nonreciprocal thermal radiation.The proposed work promotes the development and application of nonreciprocal energy devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.61178044)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160969)the University Postgraduate Research and Innovation Project of Jiangsu Province,China(Grant No.KYLX 0723)
文摘In this paper,optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain(FDTD) simulation method.By simulating reflectance spectra,electric field distribution,and charge distribution,we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light,in which the four reflectance dips are attributed to Fabry–Perot cavity resonances in the coaxial cavity.A coaxial waveguide mode TE11 will exist in these annular cavities,and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities.These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss.The formation of an absorption peak can be explained from the aspect of phase matching conditions.We observed that the proposed structure can be tuned over the broad spectral range of 600–4000 nm by changing the outer and inner radii of the annular gaps,gap surface topography.Meanwhile,different lengths of the cavity may cause the shift of resonance dips.Also,we study the field enhancement at different vertical locations of the slit.In addition,dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths,which make the annular cavities good candidates for refractive index sensors.The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity.Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates,refractive index sensors,nano-lasers,and optical trappers.
基金supported by the National Natural Science Foundation of China(Nos.11874371,91436105,and 12104474)the Shanghai Science and Technology Program,China(No.22ZR1471000)the Strategic Pilot Science and Technology Project of the Chinese Academy of Sciences,China(No.XDB21030200)。
文摘A simple and robust multiple wavelength frequency stabilization system is demonstrated using a single transfer cavity and a1062-nm ultra-stable laser for all the lasers used in a mercury optical lattice clock.Offset sideband locking is employed to tune the laser frequency while dichroic mirrors and differentiated modulation frequencies are utilized for the Pound–Drever–Hall locking of four-color lasers.For the most demanding lasers at 1015 nm and 725 nm,the line width of the beat note is reduced to 27 kHz and 17 kHz,respectively.The frequency fluctuation for the transfer-locked 1015-nm laser is less than 10 kHz,which is much better than the lasers locked to an atomic spectrum.Using its high stability of 5×10^(-12)over100 s,the transfer-locked 1015-nm laser is employed for low-noise frequency modulated saturated absorption spectroscopy.This approach could also be used in various situations for the research of optical clocks,Rydberg atoms,laser cooling of molecules,and quantum computation with neutral atoms.