3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental...3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental results and found to be in accordance. Variations in the temperature field and solid-liquid region, which plays important roles in determining solidification structures, were also examined under various cooling conditions. The proposed model was utilized to determine the effects of Gaussian distribution parameters to find that the lower the mean undercooling, the higher the equiaxed crystal zone ratio; also, the larger the maximum nucleation density, the smaller the grain size. The influence of superheat on solidification structure and columnar to equiaxed transition(CET) in the cast ingot was also investigated to find that decrease in superheat from 52 K to 20 K causes the equiaxed crystal zone ratio to increase from 58.13% to 65.6%, the mean gain radius to decrease from 2.102 mm to 1.871 mm, and the CET to occur ahead of schedule. To this effect, low superheat casting is beneficial to obtain finer equiaxed gains and higher equiaxed dendrite zone ratio in Fe–6.5%Si alloy cast ingots.展开更多
Based on Langmuir equation and thermodynamic properties of iron-silicon binary alloy, a mathematical model about the process of electron-beam evaporated binary alloy Fe-6.5%Si was established. Variation of the composi...Based on Langmuir equation and thermodynamic properties of iron-silicon binary alloy, a mathematical model about the process of electron-beam evaporated binary alloy Fe-6.5%Si was established. Variation of the composition of molten pool, vapor and deposit with time, length of transient time and the composition of molten pool, deposit under the steady condition were presented according to the numerical model. The experimental results on the composition of deposit were compared to the data calculated through the model. The results show that the model is applicable, after evaporating for about 50min, the compositions of the deposit are equal to those of the ingot.展开更多
Fe-Si ribbons and thin sheets with 6.5%Si content were prepared by means of the single roller rapid solidification and chemical vapor deposition (CVD), respectively. The initial textures of rapidly solidified Fe-6.5%S...Fe-Si ribbons and thin sheets with 6.5%Si content were prepared by means of the single roller rapid solidification and chemical vapor deposition (CVD), respectively. The initial textures of rapidly solidified Fe-6.5%Si ribbons were characteristic of the {100} fiber-type, which became weakened during primary recrystallization in various atmospheres. At the stage of secondary recrystallization, the {100} texture formed in Ar and the {110} texture in hydrogen, while there occurred a texture transformation from the {100} type to the {110} type in vacuum with the increase of annealing temperature. For Fe-6.5%Si sheets prepared by Si deposition in cold-rolled Fe-3%Si matrix sheets, their textures were dominated by the η-fiber (<001>//RD) with the maximum density at the {120}<001> orientations. After homogenization annealing, the η-fiber could evolve into the {130}<001> type or become more concentrated on the {120}<001> orientations, depending on the cold rolling modes of Fe-3%Si matrix sheets.展开更多
During spray atomization process, the heat transfer and solidification of droplets play very important roles for the deposition quality. Due to the difficulties of experimental approach, a numerical model is developed...During spray atomization process, the heat transfer and solidification of droplets play very important roles for the deposition quality. Due to the difficulties of experimental approach, a numerical model is developed, which integrates liquid undercooling, nucleation recalescence and post-re- calescence growth to present the full solidification process of Fe-6.5%Si (mass fraction) droplet. The droplet velocity, temperature, cooling rate as well as solid fraction profiles are simulated for droplets with different sizes to demonstrate the critical role of the size effect during the solidification process of droplets. The relationship between the simulated cooling rate and the experimentally obtained secondary dendrite arm spacing is in excellent agreement with the well-established formula. The pre-constant and exponent values lie in the range of various rapid solidified Fe-based alloys reported, which indicates the validity of the numerical model.展开更多
Warm deformation behavior of the Fe-6.5wt.%Si alloy was studied by isothermal compression in the temperature range of 300-700℃.The results show that the influence of the ordered phases on the flow stress gradually we...Warm deformation behavior of the Fe-6.5wt.%Si alloy was studied by isothermal compression in the temperature range of 300-700℃.The results show that the influence of the ordered phases on the flow stress gradually weakens with increasing deformation temperature.The flow stress of the furnace-cooled sample with the high degree of order at 300℃is higher than that of the quenched sample with the low degree of order,and the flow stresses of both samples are nearly the same at 500-700℃.The hardness difference between two samples deformed at 500℃gradually decreases with increasing strain,accompanying with a reduction in hardness of the furnace-cooled sample,which indicates a work-softening behavior.The analyses of dislocation configurations and ordered structure suggest that the dynamic recovery and deformation-induced disorder result in the work-softening behavior.An appropriate deformation temperature window for improving the formability of the Fe-6.5wt.%Si alloy is about 500-600℃.展开更多
Large-scale Fe-6.5 wt.%Si ingot with excellent formability is required for a pilot line producing sheets through hot/cold rolling.The variation of the as-cast microstructure,ordered structures and the formability of t...Large-scale Fe-6.5 wt.%Si ingot with excellent formability is required for a pilot line producing sheets through hot/cold rolling.The variation of the as-cast microstructure,ordered structures and the formability of the Fe-6.5 wt.%Si alloy ingots with the cooling rate during casting was investigated.Under air-cooling condition,inhomogeneous microstructures with a low proportion of equiaxed grains were formed,but the formation of ordered structures was partially inhibited,especially DO3.Homogeneous microstructures with a high proportion of equiaxed grains were observed under the condition of furnace cooling,but the ordered structures were fully generated,and the degree of order is high.It is generally believed that high degree of order is the main factor of brittleness,but the homogeneous microstructure(including grain morphology and size)of the furnace-cooled sample helps to improve the formability.The influence of these two aspects on formability is contradictory.Therefore,the formability is tested through the flow stress during the compression and the microstructure after the compression.The results show that the furnace-cooled sample has better formability.For large-scale ingots,the control of as-cast microstructure becomes more significant than the control of degree of order.Slow cooling during casting is important for the large-scale ingots to have good formability meeting the requirements of direct hot rolling.展开更多
Tensile behavior of an equiaxed-grained Fe-6.5 wt.%Si alloy,which was deformed intoφ6 mm bar by hot rotary swaging,was investigated at various temperatures(300–400℃)and stretching rates(0.42–1 mm/min).The results ...Tensile behavior of an equiaxed-grained Fe-6.5 wt.%Si alloy,which was deformed intoφ6 mm bar by hot rotary swaging,was investigated at various temperatures(300–400℃)and stretching rates(0.42–1 mm/min).The results revealed an enhancement in the intermediate-temperature tensile ductility after heat treatments.Deformation twinning was found in the equiaxed-grained Fe-6.5 wt.%Si bars during the tensile test,and heat treatments can enhance the deformation twinning.More twins can be observed in the necking areas than other regions.The high Schmid factor values above 0.4 after heat treatments demonstrated that deformation twinning can easily occur in the equiaxed-grained Fe-6.5 wt.%Si alloy.Higher deformation temperatures,higher strain rates,and larger degree of order suppressed the formation of deformation twinning,while the grain sizes had little effect on the deformation twinning.The twinning stress of the Fe-6.5 wt.%Si alloy increased with the increasing grain size,which did not agree with the Hall–Petch type relationship.The deformation twinning resulted in the improved ductility of the Fe-6.5 wt.%Si alloy.展开更多
基金Project(2012AA03A505)supported by the High-Tech Research and Development Program of ChinaProject(51474023)supported by the National Natural Science Foundation of China
文摘3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental results and found to be in accordance. Variations in the temperature field and solid-liquid region, which plays important roles in determining solidification structures, were also examined under various cooling conditions. The proposed model was utilized to determine the effects of Gaussian distribution parameters to find that the lower the mean undercooling, the higher the equiaxed crystal zone ratio; also, the larger the maximum nucleation density, the smaller the grain size. The influence of superheat on solidification structure and columnar to equiaxed transition(CET) in the cast ingot was also investigated to find that decrease in superheat from 52 K to 20 K causes the equiaxed crystal zone ratio to increase from 58.13% to 65.6%, the mean gain radius to decrease from 2.102 mm to 1.871 mm, and the CET to occur ahead of schedule. To this effect, low superheat casting is beneficial to obtain finer equiaxed gains and higher equiaxed dendrite zone ratio in Fe–6.5%Si alloy cast ingots.
文摘Based on Langmuir equation and thermodynamic properties of iron-silicon binary alloy, a mathematical model about the process of electron-beam evaporated binary alloy Fe-6.5%Si was established. Variation of the composition of molten pool, vapor and deposit with time, length of transient time and the composition of molten pool, deposit under the steady condition were presented according to the numerical model. The experimental results on the composition of deposit were compared to the data calculated through the model. The results show that the model is applicable, after evaporating for about 50min, the compositions of the deposit are equal to those of the ingot.
基金This work was supported by the National Natural Science Foundation of China under Grant No.50130010, Pok Ying-Tung Education Foundation under Grant No. 71045 and the AFCRST under PRA MX 97-04.
文摘Fe-Si ribbons and thin sheets with 6.5%Si content were prepared by means of the single roller rapid solidification and chemical vapor deposition (CVD), respectively. The initial textures of rapidly solidified Fe-6.5%Si ribbons were characteristic of the {100} fiber-type, which became weakened during primary recrystallization in various atmospheres. At the stage of secondary recrystallization, the {100} texture formed in Ar and the {110} texture in hydrogen, while there occurred a texture transformation from the {100} type to the {110} type in vacuum with the increase of annealing temperature. For Fe-6.5%Si sheets prepared by Si deposition in cold-rolled Fe-3%Si matrix sheets, their textures were dominated by the η-fiber (<001>//RD) with the maximum density at the {120}<001> orientations. After homogenization annealing, the η-fiber could evolve into the {130}<001> type or become more concentrated on the {120}<001> orientations, depending on the cold rolling modes of Fe-3%Si matrix sheets.
文摘During spray atomization process, the heat transfer and solidification of droplets play very important roles for the deposition quality. Due to the difficulties of experimental approach, a numerical model is developed, which integrates liquid undercooling, nucleation recalescence and post-re- calescence growth to present the full solidification process of Fe-6.5%Si (mass fraction) droplet. The droplet velocity, temperature, cooling rate as well as solid fraction profiles are simulated for droplets with different sizes to demonstrate the critical role of the size effect during the solidification process of droplets. The relationship between the simulated cooling rate and the experimentally obtained secondary dendrite arm spacing is in excellent agreement with the well-established formula. The pre-constant and exponent values lie in the range of various rapid solidified Fe-based alloys reported, which indicates the validity of the numerical model.
基金This work is financially supported by the National Natural Science Foundation of China(51471031,U 1660115)the State Key Laboratory for Advanced Metals and Materials(2016Z-17).
文摘Warm deformation behavior of the Fe-6.5wt.%Si alloy was studied by isothermal compression in the temperature range of 300-700℃.The results show that the influence of the ordered phases on the flow stress gradually weakens with increasing deformation temperature.The flow stress of the furnace-cooled sample with the high degree of order at 300℃is higher than that of the quenched sample with the low degree of order,and the flow stresses of both samples are nearly the same at 500-700℃.The hardness difference between two samples deformed at 500℃gradually decreases with increasing strain,accompanying with a reduction in hardness of the furnace-cooled sample,which indicates a work-softening behavior.The analyses of dislocation configurations and ordered structure suggest that the dynamic recovery and deformation-induced disorder result in the work-softening behavior.An appropriate deformation temperature window for improving the formability of the Fe-6.5wt.%Si alloy is about 500-600℃.
基金National Natural Science Foundation of China(51471031,U1660115)the State Key Laboratory for Advanced Metals and Materials(2016Z-17)are gratefully acknowledged.
文摘Large-scale Fe-6.5 wt.%Si ingot with excellent formability is required for a pilot line producing sheets through hot/cold rolling.The variation of the as-cast microstructure,ordered structures and the formability of the Fe-6.5 wt.%Si alloy ingots with the cooling rate during casting was investigated.Under air-cooling condition,inhomogeneous microstructures with a low proportion of equiaxed grains were formed,but the formation of ordered structures was partially inhibited,especially DO3.Homogeneous microstructures with a high proportion of equiaxed grains were observed under the condition of furnace cooling,but the ordered structures were fully generated,and the degree of order is high.It is generally believed that high degree of order is the main factor of brittleness,but the homogeneous microstructure(including grain morphology and size)of the furnace-cooled sample helps to improve the formability.The influence of these two aspects on formability is contradictory.Therefore,the formability is tested through the flow stress during the compression and the microstructure after the compression.The results show that the furnace-cooled sample has better formability.For large-scale ingots,the control of as-cast microstructure becomes more significant than the control of degree of order.Slow cooling during casting is important for the large-scale ingots to have good formability meeting the requirements of direct hot rolling.
基金financially supported by the National Natural Science Foundation of China(Nos.51471031 and U1660115)the State Key Laboratory for Advanced Metals and Materials(No.2016Z-17)。
文摘Tensile behavior of an equiaxed-grained Fe-6.5 wt.%Si alloy,which was deformed intoφ6 mm bar by hot rotary swaging,was investigated at various temperatures(300–400℃)and stretching rates(0.42–1 mm/min).The results revealed an enhancement in the intermediate-temperature tensile ductility after heat treatments.Deformation twinning was found in the equiaxed-grained Fe-6.5 wt.%Si bars during the tensile test,and heat treatments can enhance the deformation twinning.More twins can be observed in the necking areas than other regions.The high Schmid factor values above 0.4 after heat treatments demonstrated that deformation twinning can easily occur in the equiaxed-grained Fe-6.5 wt.%Si alloy.Higher deformation temperatures,higher strain rates,and larger degree of order suppressed the formation of deformation twinning,while the grain sizes had little effect on the deformation twinning.The twinning stress of the Fe-6.5 wt.%Si alloy increased with the increasing grain size,which did not agree with the Hall–Petch type relationship.The deformation twinning resulted in the improved ductility of the Fe-6.5 wt.%Si alloy.