期刊文献+
共找到998篇文章
< 1 2 50 >
每页显示 20 50 100
Fe-N-C catalysts for PEMFC: Progress towards the commercial application under DOE reference 被引量:6
1
作者 Lina Wang Xin Wan +2 位作者 Shuangyu Liu Li Xu Jianglan Shui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期77-87,共11页
Proton exchange membrane fuel cells(PEMFC)have attracted much attention because of their high energy conversion efficiency,high power density and zero emission of pollutants.However,the high cost of the cathode platin... Proton exchange membrane fuel cells(PEMFC)have attracted much attention because of their high energy conversion efficiency,high power density and zero emission of pollutants.However,the high cost of the cathode platinum group metal(PGM)catalysts creates a barrier for the large-scale application of PEMFC.Tremendous efforts have been devoted to the development of low-cost PGM-free catalysts,especially the Fe-N-C catalysts,to replace the expensive PGM catalysts.However,the characterization methods and evaluation standards of the catalysts varies,which is not conducive to the comparison of PGM-free catalysts.U.S.Department of energy(DOE)is the only authority that specifies the testing standards and activity targets for PGM-free catalysts.In this review,the major breakthroughs of Fe-N-C catalysts are outlined with the reference of DOE standards and targets.The preparation and characteristics of these highly active Fe-N-C catalysts are briefly introduced.Moreover,the efforts on improving the mass transfer and the durability issue of Fe-N-C fuel cell are discussed.Finally,the prospective directions concerning the comprehensive evaluation of the Fe-N-C catalysts are proposed. 展开更多
关键词 PEMFc fe-n-c catalysts U.S.DOE Test standards Activity targets
下载PDF
MOF衍生的Fe-N-C电催化剂,用于高效氧还原反应
2
作者 张景涛 王奎 +3 位作者 刘乐 任杰 杨浩伟 闫晓丽 《功能材料》 CAS CSCD 北大核心 2024年第8期8103-8110,8127,共9页
由于传统能源的大量消耗与环境污染等问题,探索高效清洁的新型能源显的越来越重要。锌空电池作为一种绿色清洁能源受到了广泛的关注,然而其阴极氧还原(ORR)反应较为缓慢限制了其大规模应用。因此开发一种高效、绿色经济的非贵金属催化... 由于传统能源的大量消耗与环境污染等问题,探索高效清洁的新型能源显的越来越重要。锌空电池作为一种绿色清洁能源受到了广泛的关注,然而其阴极氧还原(ORR)反应较为缓慢限制了其大规模应用。因此开发一种高效、绿色经济的非贵金属催化剂对氧还原反应至关重要。以金属-有机骨架(MOF)作为前驱体,通过高温热解合成了铁基氮掺杂碳电催化剂(Fe-N-C)。Fe-N-C催化剂由于其较强的金属-氮配位结构可以避免金属原子的聚集和溶解,使金属原子均匀分散在氮掺杂的碳载体上,实现较高的ORR性能。制备的Fe-N-C-2催化剂具有丰富的孔隙结构和大量的Fe-N X活性位点。其在碱性电解质中半波电位为0.91 V,在酸性电解质中半波电位为0.75 V。同时将其应用于锌空电池具有高达1.47 V的开路电压和163.1 mW/cm^(2)的功率密度。该策略为设计二维结构以构建高性能电催化剂提供了一种有前途的方法。 展开更多
关键词 非贵金属催化剂 金属-有机框架 fe-n-c 氧还原反应 锌空气电池
下载PDF
Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts 被引量:5
3
作者 Xiaoyu Yue Yuguang Pu +2 位作者 Wen Zhang Ting Zhang Wei Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期275-282,共8页
Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination o... Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination of hollow structure,TiO2 shell and carbon layer results in excellent electron conductivity,electrocatalytic activity,and chemical stability.These uniformed DSCT hollow spheres are used as catalyst support to synthesize Pt/DSCT hollow spheres electrocatalyst.The resulting Pt/DSCT hollow spheres exhibited high catalytic performance with a current density of 462 mA mg^-1 for methanol oxidation reaction,which is 2.52 times higher than that of the commercial Pt/C.Furthermore,the increased tolerance to carbonaceous poisoning with a higher If/Ibratio and a better long-term stability in acid media suggests that the DSCT hollow sphere is a promising C/TiO2-based catalyst support for direct methanol fuel cells applications. 展开更多
关键词 catalyst support c/TiO2 hollow sphere Metal-support interactions Methanol oxidation reaction
下载PDF
Construction of bifunctional single-atom catalysts on the optimized β-Mo_(2)C surface for highly selective hydrogenation of CO_(2) into ethanol 被引量:3
4
作者 Xue Ye Junguo Ma +5 位作者 Wenguang Yu Xiaoli Pan Chongya Yang Chang Wang Qinggang Liu Yanqiang Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期184-192,共9页
Green and economical CO_(2)utilization is significant for CO_(2)emission reduction and energy development.Here,the 1D Mo_(2)C nanowires with dominant(101)crystal surfaces were modified by the deposition of atomic func... Green and economical CO_(2)utilization is significant for CO_(2)emission reduction and energy development.Here,the 1D Mo_(2)C nanowires with dominant(101)crystal surfaces were modified by the deposition of atomic functional components Rh and K.While unmodifiedβMo_(2)C could only convert CO_(2)to methanol,the designed catalyst of K_(0.2)Rh_(0.2)/β-Mo_(2)C exhibited up to 72.1%of ethanol selectivity at 150℃.It was observed that the atomically dispersed Rh could form the bifunctional active centres with the active carrierβMo_(2)C with the synergistic effects to achieve highly specific controlled C–C coupling.By promoting the CO_(2)adsorption and activation,the introduction of an alkali metal(K)mainly regulated the balanced performance of the two active centres,which in turn improved the hydrogenation selectivity.Overall,the controlled modification ofβMo_(2)C provides a new design strategy for the highly efficient,lowtemperature hydrogenation of CO_(2)to ethanol with single-atom catalysts,which provides an excellent example for the rational design of the complex catalysts. 展开更多
关键词 cO_(2)hydrogenation cc coupling Single-atom catalyst Ethanol synthesis
下载PDF
Systematic variation of the sodium/sulfur promoter content on carbon-supported iron catalysts for the Fischer–Tropsch to olefins reaction 被引量:3
5
作者 Martin Oschatz Nynke Krans +1 位作者 Jingxiu Xie Krijn P.de Jong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期985-993,共9页
The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The ca... The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The catalytic activity can be improved and undesired formation of alkanes can be suppressed by the addition of sodium and sulfur as promoters but the influence of their content and ratio remains poorly understood and the promoted catalysts often suffer from rapid deactivation due to particle growth. A series of carbon black-supported iron catalysts with similar iron content and nominal sodium/sulfur loadings of 1–30/0.5–5 wt% with respect to iron are prepared and characterized under FTO conditions at 1and 10 bar syngas pressure to illuminate the influence of the promoter level on the catalytic properties.Iron particles and promoters undergo significant reorganization during FTO operation under industrially relevant conditions. Low sodium content(1–3 wt%) leads to a delay in iron carbide formation. Sodium contents of 15–30 wt% lead to rapid loss of catalytic activity due to the covering of the iron surface with promoters during particle growth under FTO operation. Higher activity and slower loss of activity are observed at low promoter contents(1–3 wt% sodium and 0.5–1 wt% sulfur) but a minimum amount of alkali is required to effectively suppress methane and C–Cparaffin formation. A reference catalyst support(carbide-derived carbon aerogel) shows that the optimum promoter level depends on iron particle size and support pore structure. 展开更多
关键词 Fischer–Tropsch to olefins synthesis c2–c4 olefins Iron catalysts Promoters carbon supports
下载PDF
Screening of MgO- and CeO_2-Based Catalysts for Carbon Dioxide Oxidative Coupling of Methane to C_(2+) Hydrocarbons 被引量:5
6
作者 Istadi Nor Aishah Saidina Amin 《Journal of Natural Gas Chemistry》 CAS CSCD 2004年第1期23-35,共13页
The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based so... The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based solids with oxides from alkali (Li2O), alkaline earth (CaO), and transition metal groups (WO3 or MnO). The presence of the peroxide (O2-2) active sites on the Li2O2, revealed by Raman spectroscopy, may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts. The high reducibility of the CeO2 catalyst, an important factor in the CO2-OCM catalyst activity, may be enhanced by the presence of manganese oxide species. The manganese oxide species increases oxygen mobility and oxygen vacancies in the CeO2 catalyst. Raman and Fourier Transform Infra Red (FT-IR) spectroscopies revealed the presence of lattice vibrations of metal-oxygen bondings and active sites in which the peaks corresponding to the bulk crystalline structures of Li2O, CaO, WO3 and MnO are detected. The performance of 5%MnO/15%CaO/CeO2 catalyst is the most potential among the CeO2-based catalysts, although lower than the 2%Li2O/MgO catalyst. The 2%Li2O/MgO catalyst showed the most promising C2+ hydrocarbons selectivity and yield at 98.0% and 5.7%, respectively. 展开更多
关键词 catalyst screening carbon dioxide oxidative coupling METHANE ternary metal oxide binary metal oxide MGO cEO2 c2+ hydrocarbons
下载PDF
Pt-Ru Catalysts Prepared by a Modified Polyol Process for Direct Methanol Fuel Cells 被引量:1
7
作者 ZHANG Junmin ZHU Fangfang +2 位作者 ZHANG Kunhua LIU Weiping GUAN Weiming 《贵金属》 CAS CSCD 北大核心 2012年第A01期222-226,共5页
Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were ... Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were carried out to characterize the morphology, composition and the electrochemical properties of the PtRu/C catalyst. The results revealed that the PtRu nanoparticles with small average particle size (≈2.5 nm), and highly dispersed on the carbon support. The PtRu/C catalyst exhibited high catalytic activity and anti poisoned performance than that of the JM PtRu/C. It is imply that the modified polyol method is efficient for PtRu/C catalyst preparation. 展开更多
关键词 PtRu/c catalysts modified polyol method direct methanol fuel cells(DMFcs) electrochemical performance
下载PDF
Comparison on Commercial Application of Two Types of C_8 Aromatics Isomerization Catalysts 被引量:2
8
作者 Liu Zhongxun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2010年第4期13-17,共5页
The results of commercial application of two types of C_8 aromatics isomerization catalysts under different feed conditions were compared to gain an insight in the techno-economical basis for selecting proper technolo... The results of commercial application of two types of C_8 aromatics isomerization catalysts under different feed conditions were compared to gain an insight in the techno-economical basis for selecting proper technological route at the plant.The comparison reveals differences in every aspect of feed consumption,unit capacity,product output,product distribution,and unit process parameters depending upon which catalyst type is adopted by the integrated PX complex.The type of aromatics isomerization catalyst has its influence on the plant scale,the construction cost,the process unit capacity and the product cost,with the magnitude of its impact varying with changing feed conditions. 展开更多
关键词 c8 aromatics ISOMERIZATION catalyst feed oil
下载PDF
Rapid synthesis of highly active Pt/C catalysts with various metal loadings from single batch platinum colloid 被引量:2
9
作者 Yuxin Li Xiang Zhu +3 位作者 Yawen Chen Shiqiao Zhang Jia Li Jianguo Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期138-145,I0005,共9页
A series of Pt/C catalysts for proton exchange membrane fuel cells(PEMFCs) with various metal loadings is synthesized by a microwave-assisted polyol process via mixing an extremely stable platinum colloid(> 3 month... A series of Pt/C catalysts for proton exchange membrane fuel cells(PEMFCs) with various metal loadings is synthesized by a microwave-assisted polyol process via mixing an extremely stable platinum colloid(> 3 months’ shelf life) from single batch preparation with activated carbon ethylene glycol suspension.21 wt%, 42 wt% and 61 wt% Pt loadings are employed to showcase the advantages of the improved polyol process. The ultraviolet(UV)–visible spectra and ζ-potential measurements are conducted to monitor the wet chemistry process during catalyst preparation. The powder X-ray diffraction(XRD), transmission electron microscopy(TEM) and thermogravimetric analysis(TGA) characterizations are carried out on catalysts. The catalyst activities are investigated using electrochemical and single cell tests. The stability of Pt nanoparticle colloid is explored by ORR, cyclic voltammetry(CV) and ζ-potential measurements. The TEM results show the Pt particle sizes of the colloid, and the sizes of the 21 wt%, 42 wt% and 61 wt%Pt/C samples are 2.1–3.9 nm. Because of the high Pt dispersion, the Pt/C catalysts exhibit superior electroactivity toward ORR. In addition, four 61 wt% Pt/C catalysts made from the Pt colloid with 0–3 months’ shelf life show almost the same performance, which exhibits superior stability of the Pt colloid system without surfactant protection. 展开更多
关键词 PEMFc Pt/c catalyst Microwave irradiation Modified polyol process Platinum nanocolloid Oxygen reduction reaction
下载PDF
Efficient catalytic conversion of jatropha oil to high grade biofuel on Ni-Mo_(2)C/MCM-41 catalysts with tuned surface properties 被引量:2
10
作者 Xiangze Du Keyao Zhou +4 位作者 Linyuan Zhou Xiaomei Lei Huiru Yang Dan Li Changwei Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期425-435,I0012,共12页
The activity of Mo_(2) C-based catalyst on vegetable oil conversion into biofuel could be greatedly promoted by tuning the carbon content,while its modification mechanism on the surface properties remained elusive.Her... The activity of Mo_(2) C-based catalyst on vegetable oil conversion into biofuel could be greatedly promoted by tuning the carbon content,while its modification mechanism on the surface properties remained elusive.Herein,the exposed active sites,the particle size and Lewis acid amount of Ni-Mo_(2) C/MCM-41 catalysts were regulated by varying CH_(4) content in carbonization gas.The activity of Ni-Mo_(2) C/MCM-41 catalysts in jatropha oil(JO)conversion showed a volcano-like trend over the catalysts with increasing CH_(4) content from 15%to 50%in the preparation process.The one prepared by 25%CH_(4) content(NiMo_(2) C(25)/MCM-41)exhibited the outstanding catalytic performance with 83.9 wt%biofuel yield and95.2%C_(15)-C_(18) selectivity.Such a variation of activity was ascribed to the most exposed active sites,the smallest particle size,and the lowest Lewis acid amount from Ni^(0) on the Ni-Mo_(2) C(25)/MCM-41 catalyst surface.Moreover,the Ni-Mo_(2) C(25)/MCM-41 catalyst could also effectively catalyze the conversion of crude waste cooking oil(WCO)into green diesel.This study offers an effective strategy to improve catalytic performance of molybdenum carbide catalyst on vegetable oil conversion. 展开更多
关键词 Ni-Mo_(2)c/McM-41 catalyst cARBONIZATION Jatropha oil crude waste cooking oil Green diesel
下载PDF
Tuned selectivity and enhanced activity of CO_(2) methanation over Ru catalysts by modified metal-carbonate interfaces 被引量:1
11
作者 Qiaojuan Wang Yating Gao +4 位作者 Chantsalmaa Tumurbaatar Tungalagtamir Bold Fei Wei Yihu Dai Yanhui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期38-46,I0002,共10页
Carbonate-modified metal-support interfaces allow Ru/MnCO_(3) catalyst to exhibit over 99% selectivity,great specific activity and long-term anti-CO poisoning stability in atmospheric CO_(2) methanation.As a contrast,... Carbonate-modified metal-support interfaces allow Ru/MnCO_(3) catalyst to exhibit over 99% selectivity,great specific activity and long-term anti-CO poisoning stability in atmospheric CO_(2) methanation.As a contrast,Ru/MnO catalyst with metal-oxide interfaces prefers reverse water-gas shift rather than methanation route,along with a remarkably lower activity and a less than 15% CH_(4) selectivity.The carbonatemodified interfaces are found to stabilize the Ru species and activate CO_(2) and H_(2) molecules.Ru-CO^(4) species are identified as the reaction intermediates steadily formed from CO_(2) dissociation,which show moderate adsorption strength and high reactivity in further hydrogenation to CH_(4),Furthermore,carbonates of Ru/MnCO_(3) are found to be consumed by hydrogenation to form CH_(4) and replenished by exchange with CO_(2),which are in a dynamic equilibrium during the reaction.Modification with surface carbonates is proved as an efficient strategy to endow metal-support interfaces of Ru-based catalysts with unique catalytic functions for selective CO_(2) hydrogenation. 展开更多
关键词 c0_(2)methanation Ru catalyst MNO cARBONATE Metal-support interface
下载PDF
On the role of cobalt carbidization in higher alcohol synthesis over hydrotalcite-based Co-Cu catalysts 被引量:1
12
作者 Janine Nebel Stefan Schmidt +3 位作者 Qiushi Pan Katrin Lotz Stefan Kaluza Martin Muhler 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第11期1731-1740,共10页
Co-Cu-based catalysts are widely applied in higher alcohol synthesis (HAS) from synthesis gas. Although the nature of the active sites is still not fully understood, the formation of Co2C under HAS conditions seems to... Co-Cu-based catalysts are widely applied in higher alcohol synthesis (HAS) from synthesis gas. Although the nature of the active sites is still not fully understood, the formation of Co2C under HAS conditions seems to play a major role. A CO pretreatment procedure was developed allowing a systematic investigation of the influence of cobalt carbidization on the structural properties and catalytic performance of the catalysts. By exposing the catalyst to a CO-containing atmosphere prior to HAS, Co enrichment of the catalyst surface occurred followed by carbide formation. This surface modification decreased the formation of hydrocarbons and enhanced the formation of C2+OH. The catalyst pretreated with CO at 20 bar achieved the highest selectivity to ethanol and the lowest hydrocarbon selectivity. 展开更多
关键词 Higher alcohol synthesis co-cu catalyst co_(2)c cO pretreatment
下载PDF
Silica-Grafted Ionic Liquids as Recyclable Catalysts for the Synthesis of 3,4-Dihydropyrano[c]chromenes and Pyra-no[2,3-c]pyrazoles 被引量:1
13
作者 Khodabakhsh Niknam Abolhassan Piran 《Green and Sustainable Chemistry》 2013年第2期1-8,共8页
Silica-grafted N-propyl-imidazolium hydrogen sulfate ([Sipim]HSO4) is employed as a recyclable heterogeneous ionic liquid catalyst for the synthesis of 3,4-dihydropyrano[c]-chromenes by the reaction of aromatic aldehy... Silica-grafted N-propyl-imidazolium hydrogen sulfate ([Sipim]HSO4) is employed as a recyclable heterogeneous ionic liquid catalyst for the synthesis of 3,4-dihydropyrano[c]-chromenes by the reaction of aromatic aldehydes, malononitrile and 4-hydroxycoumarin at 100°C under solvent-free conditions. Also, heterogeneous ionic liquid catalyst was used for the synthesis of pyrano[2,3-c]-pyrazoles by the reaction of aromatic aldehydes, malononitrile and 3-methyl-l-phenyl-5-pyrazolone at 110°C under solvent-free conditions. The heterogeneous ionic liquid showed much the same efficiency when used in consecutive reaction runs. 展开更多
关键词 Silica-Grafted N-Propyl-Imidazolium Hydrogen Sulfate Aldehydes Pyrano[2 3-c]-Pyrazoles 3 4-Dihydropyrano[c]-chromenes Solvent-Free Heterogeneous Ionic Liquid catalysts
下载PDF
Probing into Surface Sites of Fresh Mo_2N/Al_2O_3,Mo_2C/Al_2O_3 and MoP/Al_2O_3 Catalysts by CO Adsorption and In Situ FT-IR Spectroscopy 被引量:1
14
作者 Zhang Jing Wu Weicheng +1 位作者 Yan Song Zhang Dan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2010年第4期43-45,共3页
The surface nature of fresh Mo2N/Al2O3, Mo2C/Al2O3 and/MoP/Al2O3 catalysts, which were synthesized directly in the IR cell to avoid passivation, were characterized by in situ IR spectroscopy with CO as a probe molecul... The surface nature of fresh Mo2N/Al2O3, Mo2C/Al2O3 and/MoP/Al2O3 catalysts, which were synthesized directly in the IR cell to avoid passivation, were characterized by in situ IR spectroscopy with CO as a probe molecule. CO adsorbed on fresh catalysts showed characteristic IR bands at 2045 cm-1 for Mo2N/Al2O3 catalyst, 2054 cm-1 for MozC/Al2O3 catalyst and 2037 cm-1 for MoP/Al2O3 catalyst, respectively. A strong band at 2200 cm-1 for Mo2N/Al2O3 catalyst, which could be ascribed to NCO species formed when CO reacted upon surface active nitrogen atoms, and a weak band at 2196 cm-1 for Mo2C/Al2O3 catalyst, which could be attributed to CCO species, were also detected. CO adsorbed on fresh Mo2N/Al2O3 catalyst, Mo2C/Al2O3 catalyst and MoP/Al2O3 catalyst, showed strong molecular adsorption, just like noble metals. Our experimental results are bolstered by direct IR evidence demonstrating the similarity in surface electronic property between the fresh Mo2N/Al2O3, Mo2C/Al2O3 and MoP/Al2O3 catalysts and noble metals. 展开更多
关键词 Mo2c/Al2O3 catalyst Mo2N/Al2O3 catalyst Mo2P/Al2O3 catalyst FT-IR cO
下载PDF
Influence of different Fe doping strategies on modulating active sites and oxygen reduction reaction performance of Fe, N-doped carbonaceous catalysts 被引量:1
15
作者 Yang Liu Suqiong He +2 位作者 Bing Huang Ziyan Kong Lunhui Guan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期511-520,I0013,共11页
Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity i... Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity in fuel cells and/or metal-air batteries.However,post-treatments (acid washing,second pyrolysis,and so on) are unavoidable to improve ORR catalytic activity and stability.The method for introducing Fe^(3+) sources (anhydrous Fe Cl_(3)) into the MOF structure,in particular,is a critical step that can avoid time-consuming post-treatments and result in more exposed Fe-N_(x) active sites.Herein,three different Fe doping strategies were systematically investigated to explore their influence on the types of active sites formed and ORR performance.Fe-NC(Zn^(2+)),synthesized by one-step pyrolysis of Fe doped ZIF-8 (Zn^(2+)) precursor which was obtained by adding the anhydrous Fe Cl_(3)source into the Zn(NO_(3))_(2)·6H_(2)O/methanol solution before mixing,possessed the highest Fe-N_(x)active sites due to the high-efficiency substitution of Zn^(2+)ions with Fe^(3+) ions during ZIF-8 growth,the strong interaction between Fe^(3+) ions and N atoms of 2-Methylimidazole (2-MIm),and ZIF-8’s micropore confinement effect.As a result,Fe-NC(Zn^(2+)) presented high ORR activity in the entire p H range (p H=1,7,and 13).At p H=13,Fe-NC(Zn^(2+)) exhibited a half-wave potential (E1/2) of 0.95 V (vs.reversible hydrogen electrode),which was 70 m V higher than that of commercial Pt/C.More importantly,Fe-NC(Zn^(2+)) showed superior ORR stability in neutral media without performance loss after 5,000 cycles.A record-high open-circuit voltage(1.9 V) was obtained when Fe-NC(Zn^(2+)) was used as a cathodic catalyst in assembled Mg-air batteries in neutral media.The assembled liquid and all-solid Mg-air batteries with high performance indicated that Fe-NC(Zn^(2+)) has enormous potential for use in flexible and wearable Mg-air batteries. 展开更多
关键词 Mg-air battery Oxygen reduction reaction Single-atom Fe/N/c catalysts Fe doping strategies Zeolitic imidazole frameworks
下载PDF
Micro–meso-macroporous FeCo-N-C derived from hierarchical bimetallic FeCo-ZIFs as cathode catalysts for enhanced Li-O2 batteries performance 被引量:2
16
作者 Fufang Chao Baoxing Wang +6 位作者 Jiaojiao Ren Yingwei Lu Wenrui Zhang Xizhang Wang Lin Cheng Yongbing Lou Jinxi Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期212-219,I0008,共9页
Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X... Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X represents Fe/Co molar ratio in bimetallic zeolite imidazole frameworks FeCo-ZIFs) catalysts derived from hierarchical M-FeCo-ZIFs-X was prepared. The micropores in M-FeCo-N-C-X have strong capability in O2 capture as well as dictate the nucleation and early-stage deposition of Li2O2,the mesopores provided a channel for the electrolyte wetting, and the macroporous structure promoted more available active sites when used as cathode for Li-O2 batteries. More importantly, M-Fe CoN-C-0.2 based cathode showed a high initial capacity(18,750 mAh g-1@0.1 A g-1), good rate capability(7900 m Ah g-1@0.5 A g-1), and cycle stability up to 192 cycles. Interestingly, the FeCo-N-C-0.2 without macropores suffered relatively poorer stability with only 75 cycles, although its discharge capacity was still as high as 17,200 mA h g-1(@0.1 A g-1). The excellent performance attributed to the synergistic contribution of homogeneous Fe, Co nanoparticles and N co-doping carbon frameworks with special micro–meso-macroporous structure. The results showed that hierarchical FeCo-N-C architectures are promising cathode catalysts for Li-O2 batteries. 展开更多
关键词 Micro–meso-macroporous Feco-N-c Li-O2 battery cathode catalyst Oxygen evolution/reduction reaction
下载PDF
Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe-N-C catalyst 被引量:4
17
作者 Liqin Gao Meiling Xiao +3 位作者 Zhao Jin Changpeng Liu Junjie Ge Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期17-23,I0002,共8页
Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the ac... Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts. 展开更多
关键词 HIERARcHIcAL meso/micro-pore structure HYDROGEN ETcHING Single site fe-n-c catalysts carbon-nitrogen-coordinated iron(FeN4) Oxygen reduction reaction
下载PDF
氢燃料电池氧还原催化剂Fe-N_(4)/C合成中的问题及建议
18
作者 张翼飞 《当代石油石化》 CAS 2024年第5期42-48,共7页
通过分析现有文献和技术方案发现,氢燃料电池氧还原催化剂Fe–N_(4)/C合成过程中存在2个关键问题,即过量的氮源会热解产生大量HCN、NO_(x)等剧毒物、污染物,以及氮源不能在碳基质上有效地形成与铁4配位的Fe–N_(4)/C。针对这2个问题,建... 通过分析现有文献和技术方案发现,氢燃料电池氧还原催化剂Fe–N_(4)/C合成过程中存在2个关键问题,即过量的氮源会热解产生大量HCN、NO_(x)等剧毒物、污染物,以及氮源不能在碳基质上有效地形成与铁4配位的Fe–N_(4)/C。针对这2个问题,建议加强热解条件下铁离子和氮原子的转化及其在碳基质中的迁移过程研究,重点研究热解过程中氮配位体前身物形态的演变、氮原子在碳基质中的定向重排、碳基质上氮配位体的形成及其锚定铁离子的机理。氮原子定向重排于碳基质上,一方面,氮原子获得高效利用,减少合成过程中过量氮源热解生成的大量HCN和NO_(x)等污染物,过程环保;另一方面,重排于碳基质上的氮原子与铁离子络合,形成具有高氧还原反应(ORR)活性、高稳定性的4配位Fe–N_(4)/C结构,进一步推动以非贵金属催化剂取代贵金属催化剂Pt/C在氢燃料电池中的应用。 展开更多
关键词 氢燃料电池 氧还原反应 Fe–N_(4)/c催化剂 热解 HcN NO_(x) 排放 建议
下载PDF
SYNTHESIS OF MPt/C (M=La, Nd) CATALYSTS BY MICROWAVE RADIATION
19
作者 ZHANGYanfeng LIZhong +1 位作者 YANGShuting CAOZhaoxia 《Chinese Journal of Reactive Polymers》 2004年第1期35-42,共8页
In this paper, MPt/C (M= La, Nd) catalysts of PEMFC were synthesized by microwave radiation process. The crystallinity and structure of catalysts were respectively analyzed by XRD and nitrogen adsorption tests. The ac... In this paper, MPt/C (M= La, Nd) catalysts of PEMFC were synthesized by microwave radiation process. The crystallinity and structure of catalysts were respectively analyzed by XRD and nitrogen adsorption tests. The activity of catalysts was investigated by electrochemistry experiment. The results showed that: 1) compared with Pt/C catalyst prepared by typical impregnation-reduction process, the size of MPt/C catalyst particle decreased and the available crystal for O2 reduction increased; 2) the MPt/C catalysts had relatively high BET surface areas; and 3)these crystal transformations of the MPt/C catalyst brought high the electrocatalytic activity, and as a result, improved the power of PEMFC. 展开更多
关键词 PEMFc Pt/c catalyst DOPE Microwave radiation.
下载PDF
Henry Reaction between Benzaldehyde and Nitromethane over Solid Base Catalysts: A Green Protocol
20
作者 Magda H. Abdellattif Hany Mahmoud Mohamed 《Green and Sustainable Chemistry》 2018年第2期139-155,共17页
The development of environmentally benign solid base catalysts instead of the soluble bases for C-C bond formation in organic reactions especially Henry reactions with nitroalkanes compounds is of intense research act... The development of environmentally benign solid base catalysts instead of the soluble bases for C-C bond formation in organic reactions especially Henry reactions with nitroalkanes compounds is of intense research activity in the bulk and fine chemical chemistry in order to achieve the selectivity of the desired product and the reduction of the salts formed due to soluble bases neutralization. While using of LDHs catalysts in the synthesis of nitro alcohols is of great interest because LDHs (double layered hydroxides) is of unique properties and an excellent catalytic property. The nitroalcohols are obtained in a very good yield while using catalyst either by conventional at 90&#176;C in liquid phase, microwave or sonoenergy without solvent methods, and the results yields are compared. A series of different nitro alcohols from (a - o) were prepared, the catalytic test reaction were carried out using benzaldehyde and their derivatives with nitromethane and their derivatives. A series of LDHs catalysts were prepared also and studying of the catalytic effect on the reactions was carried out. Properties of the compounds prepared were characterized by IR, MNR, and GC-MS. 展开更多
关键词 c-c BOND Formation Henry REAcTION Base catalyst
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部