Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently opera...Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.展开更多
China began to develop its meteorological satellite program since 1969.With 50-years’growing,there are 17 Fengyun(FY)meteorological satellites launched successfully.At present,seven of them are in orbit to provide th...China began to develop its meteorological satellite program since 1969.With 50-years’growing,there are 17 Fengyun(FY)meteorological satellites launched successfully.At present,seven of them are in orbit to provide the operational service,including three polar orbiting meteorological satellites and four geostationary meteorological satellites.Since last COSPAR report,no new Fengyun satellite has been launched.The information of the on-orbit FY-2 series,FY-3 series,and FY-4 series has been updated.FY-3D and FY-2H satellites accomplished the commission test and transitioned into operation in 2018.FY-2E satellite completed its service to decommission in 2019.The web-based users and Direct Broadcasting(DB)users keep growing worldwide to require the Fengyun satellite data and products.A new Mobile Application Service has been launched to Fengyun users based on the cloud technology in 2018.In this report,the international and regional co-operations to facilitate the Fengyun user community have been addressed especially.To strengthen the data service in the Belt and Road countries,the Emergency Support Mechanism of Fengyun satellite(FY_ESM)has been established since 2018.Meanwhile,a Recalibrating 30-years’archived Fengyun satellite data project has been founded since 2018.This project targets to generate the Fundamental Climate Data Record(FCDR)as a space agency response to the Global Climate Observation System(GCOS).At last,the future Fengyun program up to 2025 has been introduced as well.展开更多
Following the progress of satellite data assimilation in the 1990s, the combination of meteorological satellites and numerical models has changed the way scientists understand the earth. With the evolution of numerica...Following the progress of satellite data assimilation in the 1990s, the combination of meteorological satellites and numerical models has changed the way scientists understand the earth. With the evolution of numerical weather prediction models and earth system models, meteorological satellites will play a more important role in earth sciences in the future. As part of the space-based infrastructure, the Fengyun (FY) meteorological satellites have contributed to earth science sustainability studies through an open data policy and stable data quality since the first launch of the FY-1A satellite in 1988. The capability of earth system monitoring was greatly enhanced after the second-generation polar orbiting FY-3 satellites and geostationary orbiting FY-4 satellites were developed. Meanwhile, the quality of the products generated from the FY-3 and FY-4 satellites is comparable to the well-known MODIS products. FY satellite data has been utilized broadly in weather forecasting, climate and climate change investigations, environmental disaster monitoring, etc. This article reviews the instruments mounted on the FY satellites. Sensor-dependent level 1 products (radiance data) and inversion algorithm-dependent level 2 products (geophysical parameters) are introduced. As an example, some typical geophysical parameters, such as wildfires, lightning, vegetation indices, aerosol products, soil moisture, and precipitation estimation have been demonstrated and validated by in-situ observations and other well-known satellite products. To help users access the FY products, a set of data sharing systems has been developed and operated. The newly developed data sharing system based on cloud technology has been illustrated to improve the efficiency of data delivery.展开更多
China’s efforts to develop Fengyun meteorological satellites have made major strides over the past 50 years,with the polar and geostationary meteorological satellite series achieving continuously stable operation to ...China’s efforts to develop Fengyun meteorological satellites have made major strides over the past 50 years,with the polar and geostationary meteorological satellite series achieving continuously stable operation to persistently provide data and product services globally.By the end of 2021,19 Chinese self-developed Fengyun meteorological satellites have been launched successfully.Seven of them are in operation at present,the data and products are widely applied to weather analysis,numerical weather forecasting and climate prediction,as well as environment and disaster monitoring.Since the last COSPAR report,FY-4B,the first new-generation operational geostationary satellite,and FY-3E,the first early-morning orbit satellite in China’s polar-orbiting meteorological satellite family have been launched in 2021.The characteristics of the two latest satellites and the instruments onboard are addressed in this report.The status of current Fengyun Satellites,product and data service and international cooperation and supporting activities has been introduced as well.展开更多
Satellite-based precipitation observations with high spatiotemporal resolution are essential for studying rainfall-induced natural hazards,especially in alpine and canyon areas of the southeastern Tibetan Plateau,whic...Satellite-based precipitation observations with high spatiotemporal resolution are essential for studying rainfall-induced natural hazards,especially in alpine and canyon areas of the southeastern Tibetan Plateau,which are prone to such hazards yet sparsely gauged.Here,we evaluated precipitation estimated from the Chinese Fengyun-4A meteorological satellite(FY-4A AGRI)versus the Integrated Multi-satellitE Retrievals for GPM(IMERG),by using rain gauge data collected in the Parlung Zangbo Basin from May through September in both 2018 and 2019.Our results showed that(1)FY-4A AGRI generated smaller values of RMSE(root mean square error)on hourly to daily scales,and larger correlation coefficients(R-values)and smaller RMSE values for both moderate and heavy rain,indicating its greater accuracy at rainfall estimation,which is most likely due to the denser rain gauge network at a finer temporal scale used when calibrating FY-4A AGRI;(2)Both satellite products underestimated the volume of moderate and heavy rain,with the larger degree of underestimation by FY-4A AGRI,which could lower their performance in flood monitoring and forecasting;(3)Worse performance and greater inconsistency between the two products were observed in high-elevation areas,perhaps because of orographic cloud effects in these mountainous areas;and(4)Both products revealed that the Gangrigabu Range blocked incoming water vapor from the southwest monsoon,with a better representation of the spatial pattern and spatial variability produced by IMERG.To improve precipitation estimation,the effects of complex terrain should be explicitly incorporated into the retrieval algorithms,with more gauged observations in a denser network and at a finer temporal scale needed to robustly calibrate the satellite-based estimates.展开更多
This paper analyzes the sea surface backward thermal radiation data in the China Sea observed by the mmwave channel of FY3 MWRI, explains the reason for which the analysis method combined with multiple mmwave channels...This paper analyzes the sea surface backward thermal radiation data in the China Sea observed by the mmwave channel of FY3 MWRI, explains the reason for which the analysis method combined with multiple mmwave channels is conducive to wind inversion, uses the complex model of the two-scale randomly rough surface with foam scattering layer to calculate the backward heat emission, analyzes the different response characteristics of the thermal radiation characteristics of each channel with the change of the sea surface wind speed, and establishes the wind speed inversion model applying to the microwave radiometer, achieving better results than in previous studies. The sea surface medium-low wind speed precision standard deviation of new model reaches 1.2 m/s (0 - 15 m/s);the inversion strong wind data are consistent with the island fixed buoys data, and the global sea surface wind speed image schematic diagram is given.展开更多
After nearly 50 years of development, Fengyun(FY) satellite ushered in its best moment. China has become one of the three countries or units in the world(China, USA, and EU) that maintain both polar orbit and geostati...After nearly 50 years of development, Fengyun(FY) satellite ushered in its best moment. China has become one of the three countries or units in the world(China, USA, and EU) that maintain both polar orbit and geostationary orbit satellites operationally. Up to now, there are 17 Fengyun(FY) satellites that have been launched successfully since 1988. There are two FY polar orbital satellites and four FY geostationary orbit satellites operate in the space to provide a huge amount of the earth observation data to the user communities. The FY satellite data has been applied not only in the meteorological but also in agriculture,hydraulic engineering, environmental, education, scientific research and other fields. More recently, three meteorological satellites have been launched within the past two years. They are FY-4 A on 11 December2016, FY-3 D on 15 November 2017 and FY-2 H on 5 June 2018. This paper introduces the current status of FY meteorological satellites and data service. The updates of the latest three satellites have been addressed.The characteristics of their payloads on-boarding have been specified in details and the benefit fields have been anticipated separately.展开更多
Many techniques were developed for creating true color images from satellite solar reflective bands, and the so-derived images have been widely used for environmental monitoring. For the newly launched Fengyun-3 D(FY-...Many techniques were developed for creating true color images from satellite solar reflective bands, and the so-derived images have been widely used for environmental monitoring. For the newly launched Fengyun-3 D(FY-3 D)satellite, the same capability is required for its Medium Resolution Spectrum Imager-II(MERSI-II). In processing the MERSI-II true color image, a more comprehensive processing technique is developed, including the atmospheric correction, nonlinear enhancement, and image splicing. The effect of atmospheric molecular scattering on the total reflectance is corrected by using a parameterized radiative transfer model. A nonlinear stretching of the solar band reflectance is applied for increasing the image contrast. The discontinuity in composing images from multiple orbits and different granules is eliminated through the distance weighted pixel blending(DWPB) method. Through these processing steps, the MERSI-II true color imagery can vividly detect many natural events such as sand and dust storms, snow, algal bloom, fire, and typhoon. Through a comprehensive analysis of the true color imagery, the specific natural disaster events and their magnitudes can be quantified much easily, compared to using the individual channel data.展开更多
From the viewpoint of earth system science,this paper discusses the observation capability of the second-generation of Chinese polar-orbiting,sun-synchronous operational meteorological satellite observation systems,Fe...From the viewpoint of earth system science,this paper discusses the observation capability of the second-generation of Chinese polar-orbiting,sun-synchronous operational meteorological satellite observation systems,Fengyun-3(FY-3),based on the function and performance test results from the FY-3 D satellite observation system in orbit.The FY-3 series of satellites have numerous remote sensing instruments and a wide range of imaging and sounding electromagnetic spectrometers onboard.These instruments can obtain reflectivity data for land surface,soil,vegetation,water body,snow cover,ocean color,and sea ice on earth’s surface over a wide spectral range,as well as information on the absorption and scattering radiative transfer of molecules and particles(clouds and aerosols)in earth’s atmosphere.All of these data can be used to retrieve physical and chemical information about the land,ocean,and atmosphere of the earth system.Comprehensive observation of the earth system by the FY-3 meteorological satellites is preliminarily realized.展开更多
The newly launched Fengyun-3D(FY-3D)satellite carries microwave temperature sounder(MWTS)and microwave humidity sounder(MWHS),providing the global atmospheric temperature and humidity measurements.It is important to a...The newly launched Fengyun-3D(FY-3D)satellite carries microwave temperature sounder(MWTS)and microwave humidity sounder(MWHS),providing the global atmospheric temperature and humidity measurements.It is important to assess the in orbit performance of MWTS and MWHS and understand their calibration accuracy before using them in numerical weather prediction and many other applications such as hurricane monitoring.This study aims at quantifying the biases of MWTS and MWHS observations relative to the simulations from the collocated Global Positioning System(GPS)radio occultation(RO)data.Using the collocated FY-3C Global Navigation Satellite System Occultation Sounder(GNOS)RO data under clear-sky conditions as inputs to Community Radiative Transfer Model(CRTM),brightness temperatures and viewing angles are simulated for the upper level sounding channels of MWTS and MWHS.In order to obtain O–B statistics under clear sky conditions,a cloud detection algorithm is developed by using the two MWTS channels with frequencies at 50.3 and 51.76 GHz and the two MWHS channels with frequencies centered at 89 and 150 GHz.The analysis shows that for the upper air sounding channels,the mean biases of the MWTS observations relative to the GPS RO simulations are negative for channels 5–9,with absolute values<1 K,and positive for channels 4 and 10,with values<0.5 K.For the MWHS observations,the mean biases in brightness temperature are negative for channels 2–6,with absolute values<2.6 K and relatively small standard deviations.The mean biases are also negative for channels 11–13,with absolute values<1.3 K,but with relatively large standard deviations.The biases of both MWTS and MWHS show scan-angle dependence and are asymmetrical across the scan line.The biases for the upper air MWTS and MWHS sounding channels are larger than those previously derived for the Advanced Technology Microwave Sounder.展开更多
The Microwave Radiation Imager (MWRI) on board Chinese Fengyun-3 (FY-3) satellites provides measurements at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with both horizontal and vertical polarization channels. Brightness...The Microwave Radiation Imager (MWRI) on board Chinese Fengyun-3 (FY-3) satellites provides measurements at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with both horizontal and vertical polarization channels. Brightness temperature measurements of those channels with their central frequencies higher than 19 GHz from satellite-based microwave imager radiometers had traditionally been used to retrieve cloud liquid water path (LWP) over ocean. The results show that the lowest frequency channels are the most appropriate for retrieving LWP when its values are large. Therefore, a modified LWP retrieval algorithm is developed for retrieving LWP of different magnitudes involving not only the high frequency channels but also the lowest frequency channels of FY-3 MWRI. The theoretical estimates of the LWP retrieval errors are between 0.11 and 0.06 mm for 10.65- and 18.7-GHz channels and between 0.02 and 0.04 mm for 36.5- and 89.0-GHz channels. It is also shown that the brightness temperature observations at 10.65 GHz can be utilized to better retrieve the LWP greater than 3 mm in the eyewall region of Super Typhoon Neoguri (2014). The spiral structure of clouds within and around Typhoon Neoguri can be well captured by combining the LWP retrievals from different frequency channels.展开更多
The surface vegetation condition has been operationally monitored from space for many years by the Advanced Very High Resolution Radiometer(AVHRR) and the Moderate Resolution Imaging Spectroradiometer(MODIS) instrumen...The surface vegetation condition has been operationally monitored from space for many years by the Advanced Very High Resolution Radiometer(AVHRR) and the Moderate Resolution Imaging Spectroradiometer(MODIS) instruments. As these instruments are close to the end of their design life, the surface vegetation products are required by many users from the new satellite missions. The MEdium Resolution Spectral Imager-Ⅱ(MERSI-Ⅱ) onboard the Fengyun(FY) satellite(FY-3 series;FY-3 D) is used to retrieve surface vegetation parameters. First, MERSI-Ⅱ solar channel measurements at the red and near-infrared(NIR) bands at the top of atmosphere(TOA) are corrected to the surface reflectances at the top of canopy(TOC) by removing the contributions of scattering and absorption of molecules and aerosols. The normalized difference vegetation index(NDVI) at both the TOA and TOC is then produced by using the same algorithms as the MODIS and AVHRR. The MERSI-Ⅱ enhanced VI(EVI) at the TOC is also developed. The MODIS technique of compositing the NDVI at various timescales is applied to MERSI-Ⅱ to generate the gridded products at different resolutions. The MERSI-Ⅱ VI products are consistent with the MODIS data without systematic biases. Compared to the current MERSI-Ⅱ EVI generated from the ground operational system, the MERSI-Ⅱ EVI from this study has a much better agreement with MODIS after atmospheric correction.展开更多
Fengyun-3B (FY-3B) is the second polar- orbiting satellite in the new Fengyun-three series. This paper describes the assimilation of the FY-3B Microwave Temperature Sounder (MWTS) radiances in the Chinese Numerica...Fengyun-3B (FY-3B) is the second polar- orbiting satellite in the new Fengyun-three series. This paper describes the assimilation of the FY-3B Microwave Temperature Sounder (MWTS) radiances in the Chinese Numerical Weather prediction system - the Global and Regional Assimilation and PrEdiction System (GRAPES). A quality control procedure for the assimilation of the FY- 3B MWTS radiance was proposed. Extensive monitoring before assimilation shows that the observations of channel 4 are notably contaminated. Channels 2 and 3 are used in this research. A cloud detection algorithm with an improved cloud-detection threshold is determined and incorporated into the impact experiments. The clear field- of-view (FOV) percentage increased from 42% to 57% with the new threshold. In addition, the newly added FOVs are located in the clear region, as demonstrated by the cloud liquid water path data from NOAA-18. The impact of the MWTS radiances on the prediction of GRAPES was researched. The observation biases ofFY-3B MWTS O-B (differences between satellite observations and model simulations) significantly decreased after an empirical bias correction procedure. After assimilation, the residual biases are small. The assimilation of the FY-3B MWTS radiances shows a positive impact in the Northern Hemisphere and a neutral impact in the Southern Hemisphere.展开更多
Forward radiative transfer models(RTM)are an indispensable tool for quantitative applications of satellite radiometers,e.g.,for data calibration,instrument development,retrieval,and so on.In this study,we develop an a...Forward radiative transfer models(RTM)are an indispensable tool for quantitative applications of satellite radiometers,e.g.,for data calibration,instrument development,retrieval,and so on.In this study,we develop an accurate and efficient RTM for radiometers onboard Fengyun satellites,namely FYRTM(RTM for Fengyun Radiometers).Correlated k-distribution models are developed to improve the computational efficiency for gas absorption,and the effects of cloud and aerosol multiple scattering and emission are accelerated with pre-computed look-up tables.FYRTM is evaluated with a rigorous simulation based on discrete ordinate radiative transfer model(DISORT)as well as a popular fast forward model,i.e.,the Community Radiative Transfer Model(CRTM).Results indicate that FYRTM-based simulations are two to three orders of magnitudes faster than the DISORT-based simulations.Compared to the rigorous model,FYRTM relative errors are within 2%at solar channels,and brightness temperatures(BT)differences are within 1 K at infrared channels.Compared with CRTM,FYRTM is computationally similar at solar channels,but three times faster at infrared channels.Furthermore,simulated reflectances/BTs using FYRTM are in a good agreement with the satellite observations.Overall,FYRTM is capable to simulate satellite observations under different atmospheric conditions,and can be extended to other radiometers onboard the Fengyun satellites(both geostationary and polarorbiting satellites).It is expected to play important roles in future applications with Fengyun observations.展开更多
In recent years,the remote sensing based on meteorological satellite observations has become an important tool for assessing global ecological conditions.Since the early 2000,Fengyun(FY)satellite data have been widely...In recent years,the remote sensing based on meteorological satellite observations has become an important tool for assessing global ecological conditions.Since the early 2000,Fengyun(FY)satellite data have been widely used to derive the key parameters of ecological environment in China.An integrated earth-observation system has been developed in China through using FY satellite data,including retrievals the key ecological parameters as well as to constructions of long-term data records of vegetation index,land surface temperature,net primary production,vegetation health index,and so on.Considerable progress has thus been made in the application and service for prevention of air pollution,management and control of ecological redline,ecological monitoring for the Belt and Road Initiative,and assessment of ecological environment for human settlement.In order to monitor the ecological parameters in real time and with a full dynamic coverage,it is necessary to improve the technology in application of ecological remote sensing from meteorological satellites,and further enhance the ecological meteorological service.展开更多
随着风云三号系列卫星的成功发射,越来越多的卫星微波直接观测资料应用于数值天气预报的资料同化系统。并且由于卫星微波全天候同化技术可以充分利用晴天及云雨区微波观测资料,在增加同化使用的观测数据的基础上,有效提高数值天气预报...随着风云三号系列卫星的成功发射,越来越多的卫星微波直接观测资料应用于数值天气预报的资料同化系统。并且由于卫星微波全天候同化技术可以充分利用晴天及云雨区微波观测资料,在增加同化使用的观测数据的基础上,有效提高数值天气预报准确率,该技术在卫星资料同化领域也颇受瞩目。本研究选取2018年7月的台风玛莉亚,利用WRF(Weather Research and Forecasting)模式及其同化系统WRFDA(WRF Data Assimilation)中三维变分方法,探讨风云三号C星微波湿度计观测资料的全天候同化技术在区域模式中的适用性,以及其在不同模式驱动场中的预报表现。通过对比仅同化晴空区域卫星资料的试验和全天候同化的试验结果发现,全天候条件下更多的云雨区域观测资料被有效利用,能够更好地模拟出台风玛莉亚核心区域的暖心和对称风速结构,有效改善湿度场的预报,对台风路径的预报误差平均降低了大约34%~62%,且这种正面影响均能在不同模式驱动场中得到体现。展开更多
基金Supported by National Natural Science Foundation of China(42274217)。
文摘Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.
基金Supported by the National Key Research and Development Program of China(2018YFB0504900,2018YFB0504905)。
文摘China began to develop its meteorological satellite program since 1969.With 50-years’growing,there are 17 Fengyun(FY)meteorological satellites launched successfully.At present,seven of them are in orbit to provide the operational service,including three polar orbiting meteorological satellites and four geostationary meteorological satellites.Since last COSPAR report,no new Fengyun satellite has been launched.The information of the on-orbit FY-2 series,FY-3 series,and FY-4 series has been updated.FY-3D and FY-2H satellites accomplished the commission test and transitioned into operation in 2018.FY-2E satellite completed its service to decommission in 2019.The web-based users and Direct Broadcasting(DB)users keep growing worldwide to require the Fengyun satellite data and products.A new Mobile Application Service has been launched to Fengyun users based on the cloud technology in 2018.In this report,the international and regional co-operations to facilitate the Fengyun user community have been addressed especially.To strengthen the data service in the Belt and Road countries,the Emergency Support Mechanism of Fengyun satellite(FY_ESM)has been established since 2018.Meanwhile,a Recalibrating 30-years’archived Fengyun satellite data project has been founded since 2018.This project targets to generate the Fundamental Climate Data Record(FCDR)as a space agency response to the Global Climate Observation System(GCOS).At last,the future Fengyun program up to 2025 has been introduced as well.
基金This work was supported by the National Key Research and Development Program of China(2018YFB0504900,2018YFB0504905).
文摘Following the progress of satellite data assimilation in the 1990s, the combination of meteorological satellites and numerical models has changed the way scientists understand the earth. With the evolution of numerical weather prediction models and earth system models, meteorological satellites will play a more important role in earth sciences in the future. As part of the space-based infrastructure, the Fengyun (FY) meteorological satellites have contributed to earth science sustainability studies through an open data policy and stable data quality since the first launch of the FY-1A satellite in 1988. The capability of earth system monitoring was greatly enhanced after the second-generation polar orbiting FY-3 satellites and geostationary orbiting FY-4 satellites were developed. Meanwhile, the quality of the products generated from the FY-3 and FY-4 satellites is comparable to the well-known MODIS products. FY satellite data has been utilized broadly in weather forecasting, climate and climate change investigations, environmental disaster monitoring, etc. This article reviews the instruments mounted on the FY satellites. Sensor-dependent level 1 products (radiance data) and inversion algorithm-dependent level 2 products (geophysical parameters) are introduced. As an example, some typical geophysical parameters, such as wildfires, lightning, vegetation indices, aerosol products, soil moisture, and precipitation estimation have been demonstrated and validated by in-situ observations and other well-known satellite products. To help users access the FY products, a set of data sharing systems has been developed and operated. The newly developed data sharing system based on cloud technology has been illustrated to improve the efficiency of data delivery.
基金Supported by the National Key Research and Development Program of China(2018YFB0504900,2018YFB0504905)the National Project on Fengyun Meteorological Satellite Development。
文摘China’s efforts to develop Fengyun meteorological satellites have made major strides over the past 50 years,with the polar and geostationary meteorological satellite series achieving continuously stable operation to persistently provide data and product services globally.By the end of 2021,19 Chinese self-developed Fengyun meteorological satellites have been launched successfully.Seven of them are in operation at present,the data and products are widely applied to weather analysis,numerical weather forecasting and climate prediction,as well as environment and disaster monitoring.Since the last COSPAR report,FY-4B,the first new-generation operational geostationary satellite,and FY-3E,the first early-morning orbit satellite in China’s polar-orbiting meteorological satellite family have been launched in 2021.The characteristics of the two latest satellites and the instruments onboard are addressed in this report.The status of current Fengyun Satellites,product and data service and international cooperation and supporting activities has been introduced as well.
基金funded by the Science&Technology Department of Sichuan Province,China(Grant No.2020YFS0356)the Natural Science Foundation of China(Grants No.42201520)the National Cryosphere Desert Data Center(Grants No.E01Z790201)。
文摘Satellite-based precipitation observations with high spatiotemporal resolution are essential for studying rainfall-induced natural hazards,especially in alpine and canyon areas of the southeastern Tibetan Plateau,which are prone to such hazards yet sparsely gauged.Here,we evaluated precipitation estimated from the Chinese Fengyun-4A meteorological satellite(FY-4A AGRI)versus the Integrated Multi-satellitE Retrievals for GPM(IMERG),by using rain gauge data collected in the Parlung Zangbo Basin from May through September in both 2018 and 2019.Our results showed that(1)FY-4A AGRI generated smaller values of RMSE(root mean square error)on hourly to daily scales,and larger correlation coefficients(R-values)and smaller RMSE values for both moderate and heavy rain,indicating its greater accuracy at rainfall estimation,which is most likely due to the denser rain gauge network at a finer temporal scale used when calibrating FY-4A AGRI;(2)Both satellite products underestimated the volume of moderate and heavy rain,with the larger degree of underestimation by FY-4A AGRI,which could lower their performance in flood monitoring and forecasting;(3)Worse performance and greater inconsistency between the two products were observed in high-elevation areas,perhaps because of orographic cloud effects in these mountainous areas;and(4)Both products revealed that the Gangrigabu Range blocked incoming water vapor from the southwest monsoon,with a better representation of the spatial pattern and spatial variability produced by IMERG.To improve precipitation estimation,the effects of complex terrain should be explicitly incorporated into the retrieval algorithms,with more gauged observations in a denser network and at a finer temporal scale needed to robustly calibrate the satellite-based estimates.
文摘This paper analyzes the sea surface backward thermal radiation data in the China Sea observed by the mmwave channel of FY3 MWRI, explains the reason for which the analysis method combined with multiple mmwave channels is conducive to wind inversion, uses the complex model of the two-scale randomly rough surface with foam scattering layer to calculate the backward heat emission, analyzes the different response characteristics of the thermal radiation characteristics of each channel with the change of the sea surface wind speed, and establishes the wind speed inversion model applying to the microwave radiometer, achieving better results than in previous studies. The sea surface medium-low wind speed precision standard deviation of new model reaches 1.2 m/s (0 - 15 m/s);the inversion strong wind data are consistent with the island fixed buoys data, and the global sea surface wind speed image schematic diagram is given.
基金Supported by the National Key Research&Development Program of China(2018YFB0504900,2018YFB0504901,2018YFB0504905)
文摘After nearly 50 years of development, Fengyun(FY) satellite ushered in its best moment. China has become one of the three countries or units in the world(China, USA, and EU) that maintain both polar orbit and geostationary orbit satellites operationally. Up to now, there are 17 Fengyun(FY) satellites that have been launched successfully since 1988. There are two FY polar orbital satellites and four FY geostationary orbit satellites operate in the space to provide a huge amount of the earth observation data to the user communities. The FY satellite data has been applied not only in the meteorological but also in agriculture,hydraulic engineering, environmental, education, scientific research and other fields. More recently, three meteorological satellites have been launched within the past two years. They are FY-4 A on 11 December2016, FY-3 D on 15 November 2017 and FY-2 H on 5 June 2018. This paper introduces the current status of FY meteorological satellites and data service. The updates of the latest three satellites have been addressed.The characteristics of their payloads on-boarding have been specified in details and the benefit fields have been anticipated separately.
基金Supported by the National Key Research and Development Program of China(2018YFC1506500)
文摘Many techniques were developed for creating true color images from satellite solar reflective bands, and the so-derived images have been widely used for environmental monitoring. For the newly launched Fengyun-3 D(FY-3 D)satellite, the same capability is required for its Medium Resolution Spectrum Imager-II(MERSI-II). In processing the MERSI-II true color image, a more comprehensive processing technique is developed, including the atmospheric correction, nonlinear enhancement, and image splicing. The effect of atmospheric molecular scattering on the total reflectance is corrected by using a parameterized radiative transfer model. A nonlinear stretching of the solar band reflectance is applied for increasing the image contrast. The discontinuity in composing images from multiple orbits and different granules is eliminated through the distance weighted pixel blending(DWPB) method. Through these processing steps, the MERSI-II true color imagery can vividly detect many natural events such as sand and dust storms, snow, algal bloom, fire, and typhoon. Through a comprehensive analysis of the true color imagery, the specific natural disaster events and their magnitudes can be quantified much easily, compared to using the individual channel data.
基金Supported by the National Development and Reform Commission and Ministry of Finance of China.
文摘From the viewpoint of earth system science,this paper discusses the observation capability of the second-generation of Chinese polar-orbiting,sun-synchronous operational meteorological satellite observation systems,Fengyun-3(FY-3),based on the function and performance test results from the FY-3 D satellite observation system in orbit.The FY-3 series of satellites have numerous remote sensing instruments and a wide range of imaging and sounding electromagnetic spectrometers onboard.These instruments can obtain reflectivity data for land surface,soil,vegetation,water body,snow cover,ocean color,and sea ice on earth’s surface over a wide spectral range,as well as information on the absorption and scattering radiative transfer of molecules and particles(clouds and aerosols)in earth’s atmosphere.All of these data can be used to retrieve physical and chemical information about the land,ocean,and atmosphere of the earth system.Comprehensive observation of the earth system by the FY-3 meteorological satellites is preliminarily realized.
基金Supported by the Chinese Academy of Meteorological Sciences Basic Research and Operation Fund(2018Y010)National Key Research and Development Program of China(2018YFC1506500)Fengyun Satellite Meteorological Application System Project(FY3(02P)-MAS-1803)
文摘The newly launched Fengyun-3D(FY-3D)satellite carries microwave temperature sounder(MWTS)and microwave humidity sounder(MWHS),providing the global atmospheric temperature and humidity measurements.It is important to assess the in orbit performance of MWTS and MWHS and understand their calibration accuracy before using them in numerical weather prediction and many other applications such as hurricane monitoring.This study aims at quantifying the biases of MWTS and MWHS observations relative to the simulations from the collocated Global Positioning System(GPS)radio occultation(RO)data.Using the collocated FY-3C Global Navigation Satellite System Occultation Sounder(GNOS)RO data under clear-sky conditions as inputs to Community Radiative Transfer Model(CRTM),brightness temperatures and viewing angles are simulated for the upper level sounding channels of MWTS and MWHS.In order to obtain O–B statistics under clear sky conditions,a cloud detection algorithm is developed by using the two MWTS channels with frequencies at 50.3 and 51.76 GHz and the two MWHS channels with frequencies centered at 89 and 150 GHz.The analysis shows that for the upper air sounding channels,the mean biases of the MWTS observations relative to the GPS RO simulations are negative for channels 5–9,with absolute values<1 K,and positive for channels 4 and 10,with values<0.5 K.For the MWHS observations,the mean biases in brightness temperature are negative for channels 2–6,with absolute values<2.6 K and relatively small standard deviations.The mean biases are also negative for channels 11–13,with absolute values<1.3 K,but with relatively large standard deviations.The biases of both MWTS and MWHS show scan-angle dependence and are asymmetrical across the scan line.The biases for the upper air MWTS and MWHS sounding channels are larger than those previously derived for the Advanced Technology Microwave Sounder.
基金Supported by the National Natural Science Foundation of China(91337218 and 41475103)China Meteorological Administration Special Public Welfare Research Fund(GYHY201406008)
文摘The Microwave Radiation Imager (MWRI) on board Chinese Fengyun-3 (FY-3) satellites provides measurements at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with both horizontal and vertical polarization channels. Brightness temperature measurements of those channels with their central frequencies higher than 19 GHz from satellite-based microwave imager radiometers had traditionally been used to retrieve cloud liquid water path (LWP) over ocean. The results show that the lowest frequency channels are the most appropriate for retrieving LWP when its values are large. Therefore, a modified LWP retrieval algorithm is developed for retrieving LWP of different magnitudes involving not only the high frequency channels but also the lowest frequency channels of FY-3 MWRI. The theoretical estimates of the LWP retrieval errors are between 0.11 and 0.06 mm for 10.65- and 18.7-GHz channels and between 0.02 and 0.04 mm for 36.5- and 89.0-GHz channels. It is also shown that the brightness temperature observations at 10.65 GHz can be utilized to better retrieve the LWP greater than 3 mm in the eyewall region of Super Typhoon Neoguri (2014). The spiral structure of clouds within and around Typhoon Neoguri can be well captured by combining the LWP retrievals from different frequency channels.
基金Supported by the National Key Research and Development Program of China(2018YFC1506500)。
文摘The surface vegetation condition has been operationally monitored from space for many years by the Advanced Very High Resolution Radiometer(AVHRR) and the Moderate Resolution Imaging Spectroradiometer(MODIS) instruments. As these instruments are close to the end of their design life, the surface vegetation products are required by many users from the new satellite missions. The MEdium Resolution Spectral Imager-Ⅱ(MERSI-Ⅱ) onboard the Fengyun(FY) satellite(FY-3 series;FY-3 D) is used to retrieve surface vegetation parameters. First, MERSI-Ⅱ solar channel measurements at the red and near-infrared(NIR) bands at the top of atmosphere(TOA) are corrected to the surface reflectances at the top of canopy(TOC) by removing the contributions of scattering and absorption of molecules and aerosols. The normalized difference vegetation index(NDVI) at both the TOA and TOC is then produced by using the same algorithms as the MODIS and AVHRR. The MERSI-Ⅱ enhanced VI(EVI) at the TOC is also developed. The MODIS technique of compositing the NDVI at various timescales is applied to MERSI-Ⅱ to generate the gridded products at different resolutions. The MERSI-Ⅱ VI products are consistent with the MODIS data without systematic biases. Compared to the current MERSI-Ⅱ EVI generated from the ground operational system, the MERSI-Ⅱ EVI from this study has a much better agreement with MODIS after atmospheric correction.
基金This work was jointly supported by the China Special Fund for Meteorological Research in the Public Interest (No.GYHY201106008 and No. GYHY201406008), project supported by the National Natural Science Foundation of China (Grant Nos. 91337218, 41475103, and 41375013). The authors would like to acknowledge Prof. Qifeng Lu and Prof. Gang Ma for providing the new regression coefficients for the transmittance parameterization in the fast RTM and the FY-3B MWTS radiance data.
文摘Fengyun-3B (FY-3B) is the second polar- orbiting satellite in the new Fengyun-three series. This paper describes the assimilation of the FY-3B Microwave Temperature Sounder (MWTS) radiances in the Chinese Numerical Weather prediction system - the Global and Regional Assimilation and PrEdiction System (GRAPES). A quality control procedure for the assimilation of the FY- 3B MWTS radiance was proposed. Extensive monitoring before assimilation shows that the observations of channel 4 are notably contaminated. Channels 2 and 3 are used in this research. A cloud detection algorithm with an improved cloud-detection threshold is determined and incorporated into the impact experiments. The clear field- of-view (FOV) percentage increased from 42% to 57% with the new threshold. In addition, the newly added FOVs are located in the clear region, as demonstrated by the cloud liquid water path data from NOAA-18. The impact of the MWTS radiances on the prediction of GRAPES was researched. The observation biases ofFY-3B MWTS O-B (differences between satellite observations and model simulations) significantly decreased after an empirical bias correction procedure. After assimilation, the residual biases are small. The assimilation of the FY-3B MWTS radiances shows a positive impact in the Northern Hemisphere and a neutral impact in the Southern Hemisphere.
基金supported by the National Natural Science Foundation of China(Grant No.41975025)the Natural Science Foundation of Jiangsu Province(Grant No.BK20190093)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(Grant No.2017QNRC001)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_1004)。
文摘Forward radiative transfer models(RTM)are an indispensable tool for quantitative applications of satellite radiometers,e.g.,for data calibration,instrument development,retrieval,and so on.In this study,we develop an accurate and efficient RTM for radiometers onboard Fengyun satellites,namely FYRTM(RTM for Fengyun Radiometers).Correlated k-distribution models are developed to improve the computational efficiency for gas absorption,and the effects of cloud and aerosol multiple scattering and emission are accelerated with pre-computed look-up tables.FYRTM is evaluated with a rigorous simulation based on discrete ordinate radiative transfer model(DISORT)as well as a popular fast forward model,i.e.,the Community Radiative Transfer Model(CRTM).Results indicate that FYRTM-based simulations are two to three orders of magnitudes faster than the DISORT-based simulations.Compared to the rigorous model,FYRTM relative errors are within 2%at solar channels,and brightness temperatures(BT)differences are within 1 K at infrared channels.Compared with CRTM,FYRTM is computationally similar at solar channels,but three times faster at infrared channels.Furthermore,simulated reflectances/BTs using FYRTM are in a good agreement with the satellite observations.Overall,FYRTM is capable to simulate satellite observations under different atmospheric conditions,and can be extended to other radiometers onboard the Fengyun satellites(both geostationary and polarorbiting satellites).It is expected to play important roles in future applications with Fengyun observations.
基金Supported by the National Key Research and Development Program of China(2018YFC1506500)。
文摘In recent years,the remote sensing based on meteorological satellite observations has become an important tool for assessing global ecological conditions.Since the early 2000,Fengyun(FY)satellite data have been widely used to derive the key parameters of ecological environment in China.An integrated earth-observation system has been developed in China through using FY satellite data,including retrievals the key ecological parameters as well as to constructions of long-term data records of vegetation index,land surface temperature,net primary production,vegetation health index,and so on.Considerable progress has thus been made in the application and service for prevention of air pollution,management and control of ecological redline,ecological monitoring for the Belt and Road Initiative,and assessment of ecological environment for human settlement.In order to monitor the ecological parameters in real time and with a full dynamic coverage,it is necessary to improve the technology in application of ecological remote sensing from meteorological satellites,and further enhance the ecological meteorological service.
文摘随着风云三号系列卫星的成功发射,越来越多的卫星微波直接观测资料应用于数值天气预报的资料同化系统。并且由于卫星微波全天候同化技术可以充分利用晴天及云雨区微波观测资料,在增加同化使用的观测数据的基础上,有效提高数值天气预报准确率,该技术在卫星资料同化领域也颇受瞩目。本研究选取2018年7月的台风玛莉亚,利用WRF(Weather Research and Forecasting)模式及其同化系统WRFDA(WRF Data Assimilation)中三维变分方法,探讨风云三号C星微波湿度计观测资料的全天候同化技术在区域模式中的适用性,以及其在不同模式驱动场中的预报表现。通过对比仅同化晴空区域卫星资料的试验和全天候同化的试验结果发现,全天候条件下更多的云雨区域观测资料被有效利用,能够更好地模拟出台风玛莉亚核心区域的暖心和对称风速结构,有效改善湿度场的预报,对台风路径的预报误差平均降低了大约34%~62%,且这种正面影响均能在不同模式驱动场中得到体现。