The pretreatment of refractory polyvinyl-alcohol (PVA) wastewater with low value of CODcr by Fenton's reagent was investigated to enhance the biodegradabilily. The effects of operating conditions such as pH of the ...The pretreatment of refractory polyvinyl-alcohol (PVA) wastewater with low value of CODcr by Fenton's reagent was investigated to enhance the biodegradabilily. The effects of operating conditions such as pH of the solution, Fe2+ dosage, H2O2 dosage, reaction time and initial PVA concentration on the removal efficiency of CODCr were discussed. It is demonstrated that the optimum value of pH for removal of CODcr is 5 and the most suitable dosages of H2O2 (2%) and FeSO4 (10 mg/L) are 5% and 8.0%, respectively. When the initial CODcr value of the PVA water is 760 mg/L, the favorable reaction time is 110 min. Under these optimum conditions, the removal ratio of CODcr is 58.6% 61.4%, and the value of biodegradability (CODB/CODcr) increases markedly from 8.9% 9.7% to 62.6% 68.3%.展开更多
High strength refractory organic stream is produced during the production of 2-phenylamino-3-methyl-6-di-n-butylaminofluoran (One Dye Black 2, abbr. ODB 2), a novel heat-sensitive material with a promising market. I...High strength refractory organic stream is produced during the production of 2-phenylamino-3-methyl-6-di-n-butylaminofluoran (One Dye Black 2, abbr. ODB 2), a novel heat-sensitive material with a promising market. In this study, a combination of acidificationprecipitation, primary biological treatment, Fenton's oxidation and another biological treatment was successfully used for the removal of COD from 18000-25000 mg/L to below 200 mg/L from the ODB 2 production wastewater in a pilot experiment. A COD removal of 70%-80% was achieved by acidification-precipitation under a pH of 2.5-3.0. The first step biodegradafion permitted an average COD removal of 70% under an hydraulic residence time (HRT) of 30 h. By batch tests, the optimum conditions of Fenton's oxidation were acquired as: Fe^2+ dose 6.0 mmol/L; H2O2 dose 3000 mg/L; and reaction time 6 h. The second step biological treatment could ensure an effluent COD below 200 mg/L under an HRT of 10 h following the Fenton's treatment.展开更多
The advanced treatment using integrated Fenton's reaction and coagulation process was investigated in this study. Before the advancement, the pharmaceutical wastewater containing lincomycin hydrochloride was pretreat...The advanced treatment using integrated Fenton's reaction and coagulation process was investigated in this study. Before the advancement, the pharmaceutical wastewater containing lincomycin hydrochloride was pretreated by UASB (upflow anaerobic sludge bed) and a SBR (sequencing batch reactor) process. The residual recalcitrant compounds, measured by gas chromatographymass spectrometry (GC-MS), mainly consisted of alcohols, phenols, and nitrogenous and sulfur compounds. The experimental results indicated that when the Fenton's reaction was conducted at pH=3.0, H2O2CODOcr=0.27, H2O2/Fe^2+=3:1 and 30 min of reaction time, and the coagulation process operated at a sulfate aluminum concentration of 800 mg/L and pH value of 5.0, the color and COD in the wastewater decreased by 94% and 73%, respectively; with a finale COD concentration of 267 mg/L and color level of 40 units, meeting the secondary standard of GB8978-1996 for industrial wastewater.展开更多
Gaskets are applied in PEMFCs(proton exchange membrane fuel cells) to keep reactant gases and liquid within their respective regions, which are of great significance for the both sealing and electrochemical performa...Gaskets are applied in PEMFCs(proton exchange membrane fuel cells) to keep reactant gases and liquid within their respective regions, which are of great significance for the both sealing and electrochemical performance of fuel cells during the long-term operation. In this study, the degradation of silicone rubbers, often selected as seals in PEMFCs, in Fenton's reagents with different H_2O_2 concentrations was investigated. The changes in chemical properties, mechanical behavior and surface morphology of the samples were studied before and after exposure to the test environment over time. It is found that increasing H_2O_2 concentration will degrade the rubbers more severely. The experimental results elucidate the degradation mechanism of silicone rubbers in Fenton's reagents and the influence of H_2O_2 in the degradation process.展开更多
A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results...A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe^2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe^2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.展开更多
基金Project(08JCYBJC02600) supported by the Natural Science Foundation of Tianjin,ChinaProject(2008ZX07314-005-011) supported by the National Major Technological Program of China
文摘The pretreatment of refractory polyvinyl-alcohol (PVA) wastewater with low value of CODcr by Fenton's reagent was investigated to enhance the biodegradabilily. The effects of operating conditions such as pH of the solution, Fe2+ dosage, H2O2 dosage, reaction time and initial PVA concentration on the removal efficiency of CODCr were discussed. It is demonstrated that the optimum value of pH for removal of CODcr is 5 and the most suitable dosages of H2O2 (2%) and FeSO4 (10 mg/L) are 5% and 8.0%, respectively. When the initial CODcr value of the PVA water is 760 mg/L, the favorable reaction time is 110 min. Under these optimum conditions, the removal ratio of CODcr is 58.6% 61.4%, and the value of biodegradability (CODB/CODcr) increases markedly from 8.9% 9.7% to 62.6% 68.3%.
基金Project supported by the National Natural Science Foundation of China (No.50525824)Natural Science Fund of Xinjiang Province of China (No.200432109).
文摘High strength refractory organic stream is produced during the production of 2-phenylamino-3-methyl-6-di-n-butylaminofluoran (One Dye Black 2, abbr. ODB 2), a novel heat-sensitive material with a promising market. In this study, a combination of acidificationprecipitation, primary biological treatment, Fenton's oxidation and another biological treatment was successfully used for the removal of COD from 18000-25000 mg/L to below 200 mg/L from the ODB 2 production wastewater in a pilot experiment. A COD removal of 70%-80% was achieved by acidification-precipitation under a pH of 2.5-3.0. The first step biodegradafion permitted an average COD removal of 70% under an hydraulic residence time (HRT) of 30 h. By batch tests, the optimum conditions of Fenton's oxidation were acquired as: Fe^2+ dose 6.0 mmol/L; H2O2 dose 3000 mg/L; and reaction time 6 h. The second step biological treatment could ensure an effluent COD below 200 mg/L under an HRT of 10 h following the Fenton's treatment.
文摘The advanced treatment using integrated Fenton's reaction and coagulation process was investigated in this study. Before the advancement, the pharmaceutical wastewater containing lincomycin hydrochloride was pretreated by UASB (upflow anaerobic sludge bed) and a SBR (sequencing batch reactor) process. The residual recalcitrant compounds, measured by gas chromatographymass spectrometry (GC-MS), mainly consisted of alcohols, phenols, and nitrogenous and sulfur compounds. The experimental results indicated that when the Fenton's reaction was conducted at pH=3.0, H2O2CODOcr=0.27, H2O2/Fe^2+=3:1 and 30 min of reaction time, and the coagulation process operated at a sulfate aluminum concentration of 800 mg/L and pH value of 5.0, the color and COD in the wastewater decreased by 94% and 73%, respectively; with a finale COD concentration of 267 mg/L and color level of 40 units, meeting the secondary standard of GB8978-1996 for industrial wastewater.
基金the Natural Science Foundation of China(No.21476178)the Fundamental Research Funds for the Central Universities(WUT:2015IVA059)
文摘Gaskets are applied in PEMFCs(proton exchange membrane fuel cells) to keep reactant gases and liquid within their respective regions, which are of great significance for the both sealing and electrochemical performance of fuel cells during the long-term operation. In this study, the degradation of silicone rubbers, often selected as seals in PEMFCs, in Fenton's reagents with different H_2O_2 concentrations was investigated. The changes in chemical properties, mechanical behavior and surface morphology of the samples were studied before and after exposure to the test environment over time. It is found that increasing H_2O_2 concentration will degrade the rubbers more severely. The experimental results elucidate the degradation mechanism of silicone rubbers in Fenton's reagents and the influence of H_2O_2 in the degradation process.
基金Project supported by the Technology Innovation Project of University (No. 705013)
文摘A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe^2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe^2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.