Properties of ferroelectric xBiInO3-(1-x)PbTiO3(xBI-(1-x)PT) thin films deposited on(101) SrRuO3/(200)Pt/(200) MgO substrates by rf magnetron sputtering method and effects of deposition conditions are inve...Properties of ferroelectric xBiInO3-(1-x)PbTiO3(xBI-(1-x)PT) thin films deposited on(101) SrRuO3/(200)Pt/(200) MgO substrates by rf magnetron sputtering method and effects of deposition conditions are investigated.The structures of the xBI-(1-x)PT films are characterized by x-ray diffraction and scanning electron microscopy.The results indicate that the thin films are grown with mainly(001) orientation. The chemical compositions of the films are analyzed by scanning electron probe and the results indicate that the loss phenomena of Pb and Bi elements depend on the pressure and temperature during the sputtering process.The sputtering parameters including target composition, substrate temperature, and gas pressure are adjusted to obtain optimum sputtering conditions. To decrease leakage currents,2 mol% La2 O3 is doped in the targets. The P-E hysteresis loops show that the optimized xBI-(1-x)PT(x = 0.24) film has high ferroelectricities with remnant polarization2 Pr = 80μC/cm2 and coercive electric field 2 EC = 300 kV/cm. The Curie temperature is about 640℃. The results show that the films have optimum performance and will have wide applications.展开更多
The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystora...The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystorage performance(ESP)have predominantly relied on multicomponent composite strategies,often accomplished under ultrahigh electric fields.However,this approach poses challenges in insulation and system downsizing due to the necessary working voltage under such conditions.Despite extensive study,bulk ceramics of(Bi_(0.5)Na_(0.5))TiO_(3)(BNT),a prominent lead-free dielectric ceramic family,have seldom achieved a recoverable energy-storage(ES)density(Wrec)exceeding 7 J cm^(−3).This study introduces a novel approach to attain ceramic capacitors with high ESP under moderate electric fields by regulating permittivity based on a linear dielectric model,enhancing insulation quality,and engineering domain structures through chemical formula optimization.The incorporation of SrTiO_(3)(ST)into the BNT matrix is revealed to reduce the dielectric constant,while the addition of Bi(Mg_(2/3)Nb_(1/3))O_(3)(BMN)aids in maintaining polarization.Additionally,the study elucidates the methodology to achieve high ESP at moderate electric fields ranging from 300 to 500 kV cm^(−1).In our optimized composition,0.5(Bi_(0.5)Na_(0.4)K_(0.1))TiO_(3)–0.5(2/3ST-1/3BMN)(B-0.5SB)ceramics,we achieved a Wrec of 7.19 J cm^(−3) with an efficiency of 93.8%at 460 kV cm^(−1).Impressively,the B-0.5SB ceramics exhibit remarkable thermal stability between 30 and 140℃ under 365 kV cm^(−1),maintaining a Wrec exceeding 5 J cm^(−3).This study not only establishes the B-0.5SB ceramics as promising candidates for ES materials but also demonstrates the feasibility of optimizing ESP by modifying the dielectric constant under specific electric field conditions.Simultaneously,it provides valuable insights for the future design of ceramic capacitors with high ESP under constraints of limited electric field.展开更多
The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural ...The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural distortion on its transport properties remains unclear.Herein,we performed a systematic study on the crystal structure and electronic band structure evolutions of Ge_(1-x)Sn_(x)Te alloys where the degree of ferroelectric distortion is continuously tuned.It is revealed that the band gap is maximized while multiple valence bands are converged at x=0.6,where the ferroelectric distortion is the least but still works.Once undistorted,the band gap is considerably reduced,and the valence bands are largely separated again.Moreover,near the ferro-to-paraelectric phase transition Curie temperature,the lattice thermal conductivity reaches its minima because of significant lattice softening enabled by ferroelectric instability.We predict a peak ZT value of 2.6 at 673 K inα-GeTe by use of proper dopants which are powerful in suppressing the excess hole concentrations but meanwhile exert little influence on the ferroelectric distortion.展开更多
Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector ...Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property.At 0 V bias,the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO_(3),which allows the performance of photodetectors to be controlled by the ferroelectric effect.Meanwhile,a relatively large responsivity and a fast response speed can be also observed.In particular,when the depolarization field of BaTiO_(3) is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction(up polarized state),the photodetector exhibits a high responsivity of 18 mA/W at 360 nm,and a fast response speed of<40 ms at 0 V.These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents.展开更多
Symmetric Na-ion cells using the NASICON-structured electrodes could simplify the manufacturing process,reduce the cost,facilitate the recycling post-process,and thus attractive in the field of large-scale stationary ...Symmetric Na-ion cells using the NASICON-structured electrodes could simplify the manufacturing process,reduce the cost,facilitate the recycling post-process,and thus attractive in the field of large-scale stationary energy storage.However,the long-term cycling performance of such batteries is usually poor.This investigation reveals the unavoidable side reactions between the NASICON-type Na_(3)V_(2)(PO_(4))_(3)(NVP)anode and the commercial liquid electrolyte,leading to serious capacity fading in the symmetric NVP//NVP cells.To resolve this issue,an all-solid-state composite electrolyte is used to replace the liquid electrolyte so that to overcome the side reaction and achieve high anode/electrolyte interfacial stability.The ferroelectric engineering could further improve the interfacial ion conduction,effectively reducing the electrode/electrolyte interfacial resistances.The NVP//NVP cell using the ferroelectric-engineered composite electrolyte can achieve a capacity retention of 86.4%after 650 cycles.Furthermore,the electrolyte can also be used to match the Prussianblue cathode NaxFeyFe(CN)_(6−z)·nH_(2)O(NFFCN).Outstanding long-term cycling stability has been obtained in the all-solid-state NVP//NFFCN cell over 9000 cycles at a current density of 500 mA g^(-1),with a fading rate as low as 0.005%per cycle.展开更多
Ferroelectrics have great potential in the field of nonvolatile memory due to programmable polarization states by external electric field in nonvolatile manner.However,complementary metal oxide semiconductor compatibi...Ferroelectrics have great potential in the field of nonvolatile memory due to programmable polarization states by external electric field in nonvolatile manner.However,complementary metal oxide semiconductor compatibility and uniformity of ferroelectric performance after size scaling have always been two thorny issues hindering practical application of ferroelectric memory devices.The emerging ferroelectricity of wurtzite structure nitride offers opportunities to circumvent the dilemma.This review covers the mechanism of ferroelectricity and domain dynamics in ferroelectric AlScN films.The performance optimization of AlScN films grown by different techniques is summarized and their applications for memories and emerging in-memory computing are illustrated.Finally,the challenges and perspectives regarding the commercial avenue of ferroelectric AlScN are discussed.展开更多
BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric p...BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric properties.Herein,the sol-gel method was used to deposit a series of BFO-based thin films on fluorine-doped tin oxide substrates,and the effects of the substitution of the elements Co,Cu,Mn(B-site)and Sm,Eu,La(A-site)on the crystal structure,ferroelectricity,and leakage current of the BFO-based thin films were invest-igated.Results confirmed that lattice distortion by X-ray diffraction can be attributed to the substitution of individual elements in the BFO-based films.Sm and Eu substitutions contribute to the lattice distortion in a pseudo-cubic structure,while La is biased toward pseudo-tet-ragonal.Piezoelectric force microscopy confirmed that reversible switching of ferroelectric domains by nearly 180°can be realized through the prepared films.The ferroelectric hysteresis loops showed that the order for the polarization contribution is as follows:Cu>Co>Mn(B-site),Sm>La>Eu(A-site).The current density voltage curves indicated that the order for leakage contribution is as follows:Mn<Cu<Co(B-site),La<Eu<Sm(A-site).Scanning electron microscopy showed that the introduction of Cu elements facilitates the formation of dense grains,and the grain size distribution statistics proved that La element promotes the reduction of grain size,leading to the increase of grain boundaries and the reduction of leakage.Finally,a Bi_(0.985)Sm_(0.045)La_(0.03)Fe_(0.96)Co_(0.02)Cu_(0.02)O_(3)(SmLa-CoCu)thin film with a qualitative leap in the remnant polarization from 25.5(Bi_(0.985)Sm_(0.075)FeO_(3))to 98.8µC/cm^(2)(SmLa-CoCu)was prepared through the syner-gistic action of Sm,La,Co,and Cu elements.The leakage current is also drastically reduced from 160 to 8.4 mA/cm^(2)at a field strength of 150 kV/cm.Thus,based on the increasing entropy strategy of chemical engineering,this study focuses on enhancing ferroelectricity and decreasing leakage current,providing a promising path for the advancement of ferroelectric devices.展开更多
A rich portfolio of emergent phenomena has been discovered in twisted two-dimensional(2D)moirésystems,including strongly correlated insulators,[1]superconductivity,[2]integer and fractional Chern insulators(ChIs)...A rich portfolio of emergent phenomena has been discovered in twisted two-dimensional(2D)moirésystems,including strongly correlated insulators,[1]superconductivity,[2]integer and fractional Chern insulators(ChIs),[3-5]magnetism,[6]and interfacial ferroelectricity.展开更多
The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sa...The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sample,the slowly cooled (SC) sample possesses superior dielectric and ferroelectric properties,and an 11 K higher ferroelectricparaelectric phase transition temperature,which can be attributed to the structural characteristics such as the grain size and the degree of anisotropy.Heat treatment can reversibly modulate the content of the oxygen vacancies,and in turn the ferroelectric hysteresis loops of the samples.Finally,robust and tunable ferroelectric property is achieved in SC samples with good structural integrity.展开更多
The discovery of ferroelectricity in HfO_(2)-based materials with high dielectric constant has inspired tremendous research interest for next-generation electronic devices.Importantly,films structure and strain are ke...The discovery of ferroelectricity in HfO_(2)-based materials with high dielectric constant has inspired tremendous research interest for next-generation electronic devices.Importantly,films structure and strain are key factors in exploration of ferroelectricity in fluorite-type oxide HfO_(2) films.Here we investigate the structures and straininduced ferroelectric transition in different phases of few-layer HfO_(2) films(layer number𝑁=1–5).It is found that HfO_(2) films for all phases are more stable with increasing films thickness.Among them,the Pmn2_(1)(110)-oriented film is most stable,and the films of𝑁=4,5 occur with a𝑃21 ferroelectric transition under tensile strain,resulting in polarization about 11.8μC/cm^(2) along in-plane𝑎-axis.The ferroelectric transition is caused by the strain,which induces the displacement of Hf and O atoms on the surface to non-centrosymmetric positions away from the original paraelectric positions,accompanied by the change of surface Hf–O bond lengths.More importantly,three new stable HfO_(2)2D structures are discovered,together with analyses of computed electronic structures,mechanical,and dielectric properties.This work provides guidance for theoretical and experimental study of the new structures and strain-tuned ferroelectricity in freestanding HfO_(2) films.展开更多
BiVO_(4)(BVO)is a promising material as the photoanode for use in photoelectrochemical applications.However,the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfacto...BiVO_(4)(BVO)is a promising material as the photoanode for use in photoelectrochemical applications.However,the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance.To address this,various modifications have been attempted,including the use of ferroelectric materials.Ferroelectric materials can form a permanent polarization within the layer,enhancing the separation and transport of photo-excited electron-hole pairs.In this study,we propose a novel approach by depositing an epitaxial BiFeO_(3)(BFO)thin film underneath the BVO thin film(BVO/BFO)to harness the ferroelectric property of BFO.The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination.As a result,the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density(0.65 mA cm^(-2))at 1.23 V_(RHE)under the illumination compared to the bare BVO photoanodes(0.18 m A cm^(-2)),which is consistent with the increase of the applied bias photon-to-current conversion efficiencies(ABPE)and the result of electrochemical impedance spectroscopy(EIS)analysis.These results can be attributed to the self-polarization exhibited by the inserted BFO thin film,which promoted the charge separation and transfer efficiency of the BVO photoanodes.展开更多
Electrical control of magnetism in van der Waals semiconductors is a promising step towards development of two-dimensional spintronic devices with ultralow power consumption for processing and storing information.Here...Electrical control of magnetism in van der Waals semiconductors is a promising step towards development of two-dimensional spintronic devices with ultralow power consumption for processing and storing information.Here, we propose a design for two-dimensional van der Waals heterostructures(vdWHs) that can host ferroelectricity and ferromagnetism simultaneously under hole doping. By contacting an In Se monolayer and forming an InSe/In_(2)Se_(3) vd WH, the switchable built-in electric field from the reversible out-of-plane polarization enables robust control of the band alignment. Furthermore, switching between the two ferroelectric states(P_↑ and P_↓)of hole-doped In_(2)Se_(3) with an external electric field can interchange the ON and OFF states of the nonvolatile magnetism. More interestingly, doping concentration and strain can effectively tune the magnetic moment and polarization energy. Therefore, this provides a platform for realizing multiferroics in ferroelectric heterostructures,showing great potential for use in nonvolatile memories and ferroelectric field-effect transistors.展开更多
The achievement of electrical spin control is highly desirable.One promising strategy involves electrically mod-ulating the Rashba spin orbital coupling effect in materials.A semiconductor with high sensitivity in its...The achievement of electrical spin control is highly desirable.One promising strategy involves electrically mod-ulating the Rashba spin orbital coupling effect in materials.A semiconductor with high sensitivity in its Rashba constant to external electric fields holds great potential for short channel lengths in spin field-effect transistors,which is crucial for preserving spin coherence and enhancing integration density.Hence,two-dimensional(2D)Rashba semiconductors with large Rashba constants and significant electric field responses are highly desirable.Herein,by employing first-principles calculations,we design a thermodynamically stable 2D Rashba semiconductor,YSbTe_(3),which possesses an indirect band gap of 1.04 eV,a large Rashba constant of 1.54 eV·Åand a strong electric field response of up to 4.80 e·Å^(2).In particular,the Rashba constant dependence on the electric field shows an unusual nonlinear relationship.At the same time,YSbTe_(3)has been identified as a 2D ferroelectric material with a moderate polarization switching energy barrier(~0.33 eV per formula).By changing the electric polarization direction,the Rashba spin texture of YSbTe_(3)can be reversed.These out-standing properties make the ferroelectric Rashba semiconductor YSbTe_(3)quite promising for spintronic applications.展开更多
At present,the research on ferroelectric photovoltaic materials mainly focuses on photoelectric detection.In the context of the rapid development of the Internet of Things(IoT),it is particularly important to use smal...At present,the research on ferroelectric photovoltaic materials mainly focuses on photoelectric detection.In the context of the rapid development of the Internet of Things(IoT),it is particularly important to use smaller thin-film devices as sensors.In this work,an indium tin oxide/bismuth ferrite(BFO)/lanthanum nickelate device has been fabricated on an F-doped tin oxide glass substrate using the sol–gel method.The sensor can continuously output photoelectric signals with little environmental impact.Compared to other types of sensors,this photoelectric sensor has an ultra-low response time of 1.25 ms and ultra-high sensitivity.Furthermore,a material recognition system based on a BFO sensor is developed.It can effectively identify eight kinds of materials that are difficult for human eyes to distinguish.This provides new ideas and methods for developing the IoT in material identification.展开更多
Rhombohedral phase Hf_(x)Zr_(1.x)O_(2)(HZO,x from 0 to 1)films are promising for achieving robust ferroelectric polarization without the need for an initial wake-up pre-cycling,as is normally the case for the more com...Rhombohedral phase Hf_(x)Zr_(1.x)O_(2)(HZO,x from 0 to 1)films are promising for achieving robust ferroelectric polarization without the need for an initial wake-up pre-cycling,as is normally the case for the more commonly studied orthorhombic phase.However,a large spontaneous polarization observed in rhombohedral films is not fully understood,and there are also large discrepancies between experimental and theoretical predictions.In this work,in rhombohedral ZrO_(2)thin films,we show that oxygen vacancies are not only a key factor for stabilizing the phase,but they are also a source of ferroelectric polarization in the films.This is shown experimentally through the investigation of the structural properties,chemical composition and the ferroelectric properties of the films before and after an annealing at moderate temperature(400℃)in an oxygen environment to reduce the V_(o)concentration compared.The experimental work is supported by density functional theory(DFT)calculations which show that the rhombohedral phase is the most stable one in highly oxygen defective ZrO_(2)films.The DFT calculations also show that V_(o)contribute to the ferroelectric polarization.Our findings reveal the importance of V_(o)for stabilizing rhombohedral ZrO_(2)thin films with superior ferroelectric properties.展开更多
The performance and reliability of ferroelectric thin films at temperatures around a few Kelvin are critical for their application in cryo-electronics.In this work,TiN/Hf_(0.5)Zr_(0.5)O_(2)/TiN capacitors that are fre...The performance and reliability of ferroelectric thin films at temperatures around a few Kelvin are critical for their application in cryo-electronics.In this work,TiN/Hf_(0.5)Zr_(0.5)O_(2)/TiN capacitors that are free from the wake-up effect are investigated systematically from room temperature(300 K)to cryogenic temperature(30 K).We observe a consistent decrease in permittivity(εr)and a progressive increase in coercive electric field(Ec)as temperatures decrease.Our investigation reveals exceptional stability in the double remnant polarization(2P_(r))of our ferroelectric thin films across a wide temperature range.Specifically,at 30 K,a 2P_(r)of 36μC/cm^(2)under an applied electric field of 3.0 MV/cm is achieved.Moreover,we observed a reduced fatigue effect at 30 K in comparison to 300 K.The stable ferroelectric properties and endurance characteristics demonstrate the feasibility of utilizing HfO_(2)based ferroelectric thin films for cryo-electronics applications.展开更多
Ferroelectric HfO_(2)has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor(CMOS)technology.However,...Ferroelectric HfO_(2)has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor(CMOS)technology.However,the crystallization of polar orthorhombic phase(o-phase)HfO_(2)is less competitive,which greatly limits the ferroelectricity of the as-obtained ferroelectric HfO_(2)thin films.Fortunately,the crystallization of o-phase HfO_(2)can be thermodynamically modulated via interfacial stress engineering.In this paper,the growth of improved ferroelectric Al doped HfO_(2)(HfO_(2):Al)thin films on(111)-oriented Si substrate has been reported.Structural analysis has suggested that nonpolar monoclinic HfO_(2):Al grown on(111)-oriented Si substrate suffered from a strong compressive strain,which promoted the crystallization of(111)-oriented o-phase HfO_(2)in the as-grown HfO_(2):Al thin films.In addition,the in-plane lattice of(111)-oriented Si substrate matches well with that of(111)-oriented o-phase HfO_(2),which further thermally stabilizes the o-phase HfO_(2).Accordingly,an improved ferroelectricity with a remnant polarization(2P_(r))of 26.7C/cm^(2) has been obtained.The results shown in this work provide a simple way toward the preparation of improved ferroelectric HfO_(2)thin films.展开更多
Under illumination by 405,520 and 655 nm monochromatic visible light(light intensity of 30 kW/m^(2)),large photostriction(ΔL/L)of 0.19%,0.13%and 0.26%for 67BiFeO_(3)-33BaTiO_(3)(67BF-33BT)lead-free ferroelectric cera...Under illumination by 405,520 and 655 nm monochromatic visible light(light intensity of 30 kW/m^(2)),large photostriction(ΔL/L)of 0.19%,0.13%and 0.26%for 67BiFeO_(3)-33BaTiO_(3)(67BF-33BT)lead-free ferroelectric ceramics are obtained,respectively.By studying the ferroelectric and photoelectric properties in conjunction with in situ Raman spectroscopy,it is found that the photostrictive effect of 67BF-33BT is not caused by the electrical strain induced by abnormal photovoltaic voltage,but related to the optical induced oxygen octahedral distortion.The 67BF-33BT lead-free ferroelectric material with excellent photostrictive response in the visible light region is expected to play an important role in the field of optical drive electromechanical devices.展开更多
Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT...Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT) are deposited on Pt(111)/Ti/SiO_(2)/Si substrates in the present study by the traditional sol–gel method.Their structures and related ferroelectric and fatigue characteristics are studied in-depth.The BCT–PT thin films exhibit good crystallization within the phase-pure perovskite structure,besides,they have a predominant(100) orientation together with a dense and homogeneous microstructure.The remnant polarization(2P_(r)) values at 30 μC/cm^(2) and 16 μC/cm^(2) are observed in 0.1BCT–0.9PT and 0.2BCT–0.8PT thin films,respectively.More intriguingly,although the polarization values are not so high,0.2BCT–0.8PT thin films show outstanding polarization fatigue properties,with a high switchable polarization of 93.6% of the starting values after 10^(8) cycles,indicating promising applications in ferroelectric memories.展开更多
Recent years,the polarization response of ferroelectrics has been entirely studied.However,it is found that the polarization may disappear gradually with the continually applied of electric field.In this paper,taking ...Recent years,the polarization response of ferroelectrics has been entirely studied.However,it is found that the polarization may disappear gradually with the continually applied of electric field.In this paper,taking K0.48Na0.52NbO3(KNN)as an example,it was demonstrated that the residual polarization began to decrease when the electric field frequency increased to a certain extent using a phase-field methods.The results showed that the content of out-of-plane domains increased first and then decreased with the increase of applied electric field frequency,the maximum polarization disappeared at high frequencies,and the hysteresis loop became elliptical.In order to further study the abnormal changes of hysteresis loops of ferroelectrics under high electric field frequency,we analyzed the hysteresis loop and dielectric response of solid solution 0.1SrTiO_(3)-0.9K_(0.48)Na_(0.52)NbO_(3).It was found that the doped hysteresis loop maintained its shape at higher frequency and the dielectric constant increased.This kind of doping has a higher field frequency adaptability,which has a key guiding role in improving the dielectric properties of ferroelectric thin films and expanding the frequency application range of ferroelectric nano memory。展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11304160the Special Fund for Public Interest of China under Grant No 201510068,and the NUPTFC under Grant No NY215111
文摘Properties of ferroelectric xBiInO3-(1-x)PbTiO3(xBI-(1-x)PT) thin films deposited on(101) SrRuO3/(200)Pt/(200) MgO substrates by rf magnetron sputtering method and effects of deposition conditions are investigated.The structures of the xBI-(1-x)PT films are characterized by x-ray diffraction and scanning electron microscopy.The results indicate that the thin films are grown with mainly(001) orientation. The chemical compositions of the films are analyzed by scanning electron probe and the results indicate that the loss phenomena of Pb and Bi elements depend on the pressure and temperature during the sputtering process.The sputtering parameters including target composition, substrate temperature, and gas pressure are adjusted to obtain optimum sputtering conditions. To decrease leakage currents,2 mol% La2 O3 is doped in the targets. The P-E hysteresis loops show that the optimized xBI-(1-x)PT(x = 0.24) film has high ferroelectricities with remnant polarization2 Pr = 80μC/cm2 and coercive electric field 2 EC = 300 kV/cm. The Curie temperature is about 640℃. The results show that the films have optimum performance and will have wide applications.
基金supported by the National Natural Science Foundation of China(Grant No.51761145024)the Key Research and Development Program of Shaanxi(Program No.2022KWZ-22)+3 种基金the Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-YB-441)the Youth Innovation Team of Shaanxi Universitiesthe Fundamental Research Funds of Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices(AFMD-KFJJ-21203)The research was made possible by Russian Science Foundation(Project No.23-42-00116).
文摘The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystorage performance(ESP)have predominantly relied on multicomponent composite strategies,often accomplished under ultrahigh electric fields.However,this approach poses challenges in insulation and system downsizing due to the necessary working voltage under such conditions.Despite extensive study,bulk ceramics of(Bi_(0.5)Na_(0.5))TiO_(3)(BNT),a prominent lead-free dielectric ceramic family,have seldom achieved a recoverable energy-storage(ES)density(Wrec)exceeding 7 J cm^(−3).This study introduces a novel approach to attain ceramic capacitors with high ESP under moderate electric fields by regulating permittivity based on a linear dielectric model,enhancing insulation quality,and engineering domain structures through chemical formula optimization.The incorporation of SrTiO_(3)(ST)into the BNT matrix is revealed to reduce the dielectric constant,while the addition of Bi(Mg_(2/3)Nb_(1/3))O_(3)(BMN)aids in maintaining polarization.Additionally,the study elucidates the methodology to achieve high ESP at moderate electric fields ranging from 300 to 500 kV cm^(−1).In our optimized composition,0.5(Bi_(0.5)Na_(0.4)K_(0.1))TiO_(3)–0.5(2/3ST-1/3BMN)(B-0.5SB)ceramics,we achieved a Wrec of 7.19 J cm^(−3) with an efficiency of 93.8%at 460 kV cm^(−1).Impressively,the B-0.5SB ceramics exhibit remarkable thermal stability between 30 and 140℃ under 365 kV cm^(−1),maintaining a Wrec exceeding 5 J cm^(−3).This study not only establishes the B-0.5SB ceramics as promising candidates for ES materials but also demonstrates the feasibility of optimizing ESP by modifying the dielectric constant under specific electric field conditions.Simultaneously,it provides valuable insights for the future design of ceramic capacitors with high ESP under constraints of limited electric field.
基金the financial support from the National Natural Science Foundation of China(Grant No.52171221)the National Key Research and Development Program of China(Grant No.2019YFA0704900)the support from the Core Facility of Wuhan University for their assistance with EPMA analysis
文摘The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural distortion on its transport properties remains unclear.Herein,we performed a systematic study on the crystal structure and electronic band structure evolutions of Ge_(1-x)Sn_(x)Te alloys where the degree of ferroelectric distortion is continuously tuned.It is revealed that the band gap is maximized while multiple valence bands are converged at x=0.6,where the ferroelectric distortion is the least but still works.Once undistorted,the band gap is considerably reduced,and the valence bands are largely separated again.Moreover,near the ferro-to-paraelectric phase transition Curie temperature,the lattice thermal conductivity reaches its minima because of significant lattice softening enabled by ferroelectric instability.We predict a peak ZT value of 2.6 at 673 K inα-GeTe by use of proper dopants which are powerful in suppressing the excess hole concentrations but meanwhile exert little influence on the ferroelectric distortion.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62074148,61875194,11727902,12204474,12304111,and 12304112)the Youth Innovation Promotion Association,Chinese Academy of Sciences (Grant No.2020225)+1 种基金Jilin Province Science Fund (Grant Nos.20220101053JC and 20210101145JC)Jilin Province Young and Middle-Aged Science and Technology Innovation Leaders and Team Project (Grant No.20220508153RC)。
文摘Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property.At 0 V bias,the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO_(3),which allows the performance of photodetectors to be controlled by the ferroelectric effect.Meanwhile,a relatively large responsivity and a fast response speed can be also observed.In particular,when the depolarization field of BaTiO_(3) is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction(up polarized state),the photodetector exhibits a high responsivity of 18 mA/W at 360 nm,and a fast response speed of<40 ms at 0 V.These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents.
基金supported by the National University of Singapore(Chongqing)Research Institute,National University of Singapore,Chongqing Postdoctoral Research Special Funding(2021XM2002)Overseas Postdoctoral Research Start-up Funding,Natural Science Foundation of Chongqing(cstc2021jcyjmsxmX0086)+1 种基金Chongqing Innovative Project for oversea-experience researchers(cx2023037)the Open Project Program of Fujian Key Laboratory of Special Energy Manufacturing.
文摘Symmetric Na-ion cells using the NASICON-structured electrodes could simplify the manufacturing process,reduce the cost,facilitate the recycling post-process,and thus attractive in the field of large-scale stationary energy storage.However,the long-term cycling performance of such batteries is usually poor.This investigation reveals the unavoidable side reactions between the NASICON-type Na_(3)V_(2)(PO_(4))_(3)(NVP)anode and the commercial liquid electrolyte,leading to serious capacity fading in the symmetric NVP//NVP cells.To resolve this issue,an all-solid-state composite electrolyte is used to replace the liquid electrolyte so that to overcome the side reaction and achieve high anode/electrolyte interfacial stability.The ferroelectric engineering could further improve the interfacial ion conduction,effectively reducing the electrode/electrolyte interfacial resistances.The NVP//NVP cell using the ferroelectric-engineered composite electrolyte can achieve a capacity retention of 86.4%after 650 cycles.Furthermore,the electrolyte can also be used to match the Prussianblue cathode NaxFeyFe(CN)_(6−z)·nH_(2)O(NFFCN).Outstanding long-term cycling stability has been obtained in the all-solid-state NVP//NFFCN cell over 9000 cycles at a current density of 500 mA g^(-1),with a fading rate as low as 0.005%per cycle.
基金fundings of National Natural Science Foundation of China(No.T2222025,62174053 and 61804055)National Key Research and Development program of China(No.2021YFA1200700)+1 种基金Shanghai Science and Technology Innovation Action Plan(No.21JC1402000 and 21520714100)the Fundamental Research Funds for the Central Universities.
文摘Ferroelectrics have great potential in the field of nonvolatile memory due to programmable polarization states by external electric field in nonvolatile manner.However,complementary metal oxide semiconductor compatibility and uniformity of ferroelectric performance after size scaling have always been two thorny issues hindering practical application of ferroelectric memory devices.The emerging ferroelectricity of wurtzite structure nitride offers opportunities to circumvent the dilemma.This review covers the mechanism of ferroelectricity and domain dynamics in ferroelectric AlScN films.The performance optimization of AlScN films grown by different techniques is summarized and their applications for memories and emerging in-memory computing are illustrated.Finally,the challenges and perspectives regarding the commercial avenue of ferroelectric AlScN are discussed.
基金supported by the National Natural Science Foundation of China(No.22371013)the National Key Research and Development Program of China(No.2018YFA0703700)+3 种基金the Fundamental Research Funds for the Central Universities,China(Nos.FRF-IDRY-19-007 and FRF-TP-19-055A2Z)the National Program for Support of Top-notch Young Professionals,Chinathe Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(CAST),China(No.2019-2021 QNRC)the“Xiaomi Young Scholar”Funding Project,China.
文摘BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric properties.Herein,the sol-gel method was used to deposit a series of BFO-based thin films on fluorine-doped tin oxide substrates,and the effects of the substitution of the elements Co,Cu,Mn(B-site)and Sm,Eu,La(A-site)on the crystal structure,ferroelectricity,and leakage current of the BFO-based thin films were invest-igated.Results confirmed that lattice distortion by X-ray diffraction can be attributed to the substitution of individual elements in the BFO-based films.Sm and Eu substitutions contribute to the lattice distortion in a pseudo-cubic structure,while La is biased toward pseudo-tet-ragonal.Piezoelectric force microscopy confirmed that reversible switching of ferroelectric domains by nearly 180°can be realized through the prepared films.The ferroelectric hysteresis loops showed that the order for the polarization contribution is as follows:Cu>Co>Mn(B-site),Sm>La>Eu(A-site).The current density voltage curves indicated that the order for leakage contribution is as follows:Mn<Cu<Co(B-site),La<Eu<Sm(A-site).Scanning electron microscopy showed that the introduction of Cu elements facilitates the formation of dense grains,and the grain size distribution statistics proved that La element promotes the reduction of grain size,leading to the increase of grain boundaries and the reduction of leakage.Finally,a Bi_(0.985)Sm_(0.045)La_(0.03)Fe_(0.96)Co_(0.02)Cu_(0.02)O_(3)(SmLa-CoCu)thin film with a qualitative leap in the remnant polarization from 25.5(Bi_(0.985)Sm_(0.075)FeO_(3))to 98.8µC/cm^(2)(SmLa-CoCu)was prepared through the syner-gistic action of Sm,La,Co,and Cu elements.The leakage current is also drastically reduced from 160 to 8.4 mA/cm^(2)at a field strength of 150 kV/cm.Thus,based on the increasing entropy strategy of chemical engineering,this study focuses on enhancing ferroelectricity and decreasing leakage current,providing a promising path for the advancement of ferroelectric devices.
文摘A rich portfolio of emergent phenomena has been discovered in twisted two-dimensional(2D)moirésystems,including strongly correlated insulators,[1]superconductivity,[2]integer and fractional Chern insulators(ChIs),[3-5]magnetism,[6]and interfacial ferroelectricity.
基金supported by the National Key R&D Program of China (Grant No.2022YFA1402903)the National Natural Science Foundation of China (Grant Nos.52172116 and 62171214)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sample,the slowly cooled (SC) sample possesses superior dielectric and ferroelectric properties,and an 11 K higher ferroelectricparaelectric phase transition temperature,which can be attributed to the structural characteristics such as the grain size and the degree of anisotropy.Heat treatment can reversibly modulate the content of the oxygen vacancies,and in turn the ferroelectric hysteresis loops of the samples.Finally,robust and tunable ferroelectric property is achieved in SC samples with good structural integrity.
基金supported by the National Key R&D Program of China(Grant No.2023YFB4402600)the National Natural Science Foundation of China(Grant Nos.12074241,11929401,52130204,12311530675,and 52271007)+5 种基金Key Research Project of Zhejiang Lab(Grant No.2021PE0AC02)Science and Technology Commission of Shanghai Municipality(Grant Nos.22XD1400900,20501130600,21JC1402700,and 21JC1402600)supports from the open projects of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials(Anhui University of Technology),Ministry of Education(Grant No.GFST2022KF08)State Key Laboratory of Surface Physics(Fudan University)(Grant No.KF202210)State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences(Grant No.SITP-NLIST-YB-2022-08)the support of China Scholarship Council,and thanks Mr.Xiaowen Shi(from HZWTECH)for helpful discussions.
文摘The discovery of ferroelectricity in HfO_(2)-based materials with high dielectric constant has inspired tremendous research interest for next-generation electronic devices.Importantly,films structure and strain are key factors in exploration of ferroelectricity in fluorite-type oxide HfO_(2) films.Here we investigate the structures and straininduced ferroelectric transition in different phases of few-layer HfO_(2) films(layer number𝑁=1–5).It is found that HfO_(2) films for all phases are more stable with increasing films thickness.Among them,the Pmn2_(1)(110)-oriented film is most stable,and the films of𝑁=4,5 occur with a𝑃21 ferroelectric transition under tensile strain,resulting in polarization about 11.8μC/cm^(2) along in-plane𝑎-axis.The ferroelectric transition is caused by the strain,which induces the displacement of Hf and O atoms on the surface to non-centrosymmetric positions away from the original paraelectric positions,accompanied by the change of surface Hf–O bond lengths.More importantly,three new stable HfO_(2)2D structures are discovered,together with analyses of computed electronic structures,mechanical,and dielectric properties.This work provides guidance for theoretical and experimental study of the new structures and strain-tuned ferroelectricity in freestanding HfO_(2) films.
基金supported by the program of Future Hydrogen Original Technology Development(2021M3I3A1084747),through the National Research Foundation of Korea(NRF)funded by the Korean government(Ministry of Science and ICT(MSIT))by the NRF grant funded by the Korea government(MSIT)(No.2020R1A2C1005590)。
文摘BiVO_(4)(BVO)is a promising material as the photoanode for use in photoelectrochemical applications.However,the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance.To address this,various modifications have been attempted,including the use of ferroelectric materials.Ferroelectric materials can form a permanent polarization within the layer,enhancing the separation and transport of photo-excited electron-hole pairs.In this study,we propose a novel approach by depositing an epitaxial BiFeO_(3)(BFO)thin film underneath the BVO thin film(BVO/BFO)to harness the ferroelectric property of BFO.The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination.As a result,the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density(0.65 mA cm^(-2))at 1.23 V_(RHE)under the illumination compared to the bare BVO photoanodes(0.18 m A cm^(-2)),which is consistent with the increase of the applied bias photon-to-current conversion efficiencies(ABPE)and the result of electrochemical impedance spectroscopy(EIS)analysis.These results can be attributed to the self-polarization exhibited by the inserted BFO thin film,which promoted the charge separation and transfer efficiency of the BVO photoanodes.
基金supported by the Natural Science Foundation of Shandong Province (Grant Nos. ZR2020MA068, ZR2022MA083, and ZR2023MA018)the Major Basic Research Project of Shandong Province (Grant No. ZR2020ZD28)。
文摘Electrical control of magnetism in van der Waals semiconductors is a promising step towards development of two-dimensional spintronic devices with ultralow power consumption for processing and storing information.Here, we propose a design for two-dimensional van der Waals heterostructures(vdWHs) that can host ferroelectricity and ferromagnetism simultaneously under hole doping. By contacting an In Se monolayer and forming an InSe/In_(2)Se_(3) vd WH, the switchable built-in electric field from the reversible out-of-plane polarization enables robust control of the band alignment. Furthermore, switching between the two ferroelectric states(P_↑ and P_↓)of hole-doped In_(2)Se_(3) with an external electric field can interchange the ON and OFF states of the nonvolatile magnetism. More interestingly, doping concentration and strain can effectively tune the magnetic moment and polarization energy. Therefore, this provides a platform for realizing multiferroics in ferroelectric heterostructures,showing great potential for use in nonvolatile memories and ferroelectric field-effect transistors.
基金supported by the National Natural Science Foundation of China(22322304,22273092,22373095)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0450101)+2 种基金the Innovation Program for Quantum Science and Technology(2021ZD0303306)the USTC Tang ScholarThe authors wish to acknowledge the Supercomputing Center of the USTC for providing computational resources.
文摘The achievement of electrical spin control is highly desirable.One promising strategy involves electrically mod-ulating the Rashba spin orbital coupling effect in materials.A semiconductor with high sensitivity in its Rashba constant to external electric fields holds great potential for short channel lengths in spin field-effect transistors,which is crucial for preserving spin coherence and enhancing integration density.Hence,two-dimensional(2D)Rashba semiconductors with large Rashba constants and significant electric field responses are highly desirable.Herein,by employing first-principles calculations,we design a thermodynamically stable 2D Rashba semiconductor,YSbTe_(3),which possesses an indirect band gap of 1.04 eV,a large Rashba constant of 1.54 eV·Åand a strong electric field response of up to 4.80 e·Å^(2).In particular,the Rashba constant dependence on the electric field shows an unusual nonlinear relationship.At the same time,YSbTe_(3)has been identified as a 2D ferroelectric material with a moderate polarization switching energy barrier(~0.33 eV per formula).By changing the electric polarization direction,the Rashba spin texture of YSbTe_(3)can be reversed.These out-standing properties make the ferroelectric Rashba semiconductor YSbTe_(3)quite promising for spintronic applications.
基金supported by the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2).
文摘At present,the research on ferroelectric photovoltaic materials mainly focuses on photoelectric detection.In the context of the rapid development of the Internet of Things(IoT),it is particularly important to use smaller thin-film devices as sensors.In this work,an indium tin oxide/bismuth ferrite(BFO)/lanthanum nickelate device has been fabricated on an F-doped tin oxide glass substrate using the sol–gel method.The sensor can continuously output photoelectric signals with little environmental impact.Compared to other types of sensors,this photoelectric sensor has an ultra-low response time of 1.25 ms and ultra-high sensitivity.Furthermore,a material recognition system based on a BFO sensor is developed.It can effectively identify eight kinds of materials that are difficult for human eyes to distinguish.This provides new ideas and methods for developing the IoT in material identification.
基金supported by the Portuguese Foundation for Science and Technology(FCT)in the framework of the Strategic Funding Contract UIDB/04650/2020 and by M-ERA.NET NanOx4EStor Contract no.M-ERA-NET3/0003/2021the Oblivion Supercomputer at university ofévora,funded by the ENGAGE SKA Research Infrastructure(reference POCI-01-0145-FEDER022217-COMPETE 2020 and FCT)+4 种基金by the BigData@UE project(reference ALT20-03-0246-FEDER-000033-FEDER and the Alentejo 2020 Regional Operational Program),for providing HPC resources in the framework of the advanced computing project CPCA/A1/415075/2021 awarded by FCT IPthe financial support through the contract FEDR-POC No.332/390008/29.122020-SMIS 109522the CERIC-ERIC Consortium for access to experimental facilities and financial support under proposals 20202037,20202038 and 20192055supported by the COST Action CA20116-European Network for Innovative and Advanced Epitaxy(OPERA)the Royal Academy of Engineering grant,CIET1819_24,for funding and the ERC grant,EU-H2020-ERC-ADG#882929,EROS
文摘Rhombohedral phase Hf_(x)Zr_(1.x)O_(2)(HZO,x from 0 to 1)films are promising for achieving robust ferroelectric polarization without the need for an initial wake-up pre-cycling,as is normally the case for the more commonly studied orthorhombic phase.However,a large spontaneous polarization observed in rhombohedral films is not fully understood,and there are also large discrepancies between experimental and theoretical predictions.In this work,in rhombohedral ZrO_(2)thin films,we show that oxygen vacancies are not only a key factor for stabilizing the phase,but they are also a source of ferroelectric polarization in the films.This is shown experimentally through the investigation of the structural properties,chemical composition and the ferroelectric properties of the films before and after an annealing at moderate temperature(400℃)in an oxygen environment to reduce the V_(o)concentration compared.The experimental work is supported by density functional theory(DFT)calculations which show that the rhombohedral phase is the most stable one in highly oxygen defective ZrO_(2)films.The DFT calculations also show that V_(o)contribute to the ferroelectric polarization.Our findings reveal the importance of V_(o)for stabilizing rhombohedral ZrO_(2)thin films with superior ferroelectric properties.
基金supported by the National Key R&D Program of China under Grant No.2022YFB3608400National Natural Science Foundation of China under Grant Nos.61825404,61888102,and 62104044the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDB44000000 and the project of MOE innovation platform.
文摘The performance and reliability of ferroelectric thin films at temperatures around a few Kelvin are critical for their application in cryo-electronics.In this work,TiN/Hf_(0.5)Zr_(0.5)O_(2)/TiN capacitors that are free from the wake-up effect are investigated systematically from room temperature(300 K)to cryogenic temperature(30 K).We observe a consistent decrease in permittivity(εr)and a progressive increase in coercive electric field(Ec)as temperatures decrease.Our investigation reveals exceptional stability in the double remnant polarization(2P_(r))of our ferroelectric thin films across a wide temperature range.Specifically,at 30 K,a 2P_(r)of 36μC/cm^(2)under an applied electric field of 3.0 MV/cm is achieved.Moreover,we observed a reduced fatigue effect at 30 K in comparison to 300 K.The stable ferroelectric properties and endurance characteristics demonstrate the feasibility of utilizing HfO_(2)based ferroelectric thin films for cryo-electronics applications.
基金Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Tech-nology,China(Grant No.2020B1212030010)Project of Faculty of Agricultural Equipment of Jiangsu University (Grant No. NZXB20210202) are acknowledged。
文摘Ferroelectric HfO_(2)has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor(CMOS)technology.However,the crystallization of polar orthorhombic phase(o-phase)HfO_(2)is less competitive,which greatly limits the ferroelectricity of the as-obtained ferroelectric HfO_(2)thin films.Fortunately,the crystallization of o-phase HfO_(2)can be thermodynamically modulated via interfacial stress engineering.In this paper,the growth of improved ferroelectric Al doped HfO_(2)(HfO_(2):Al)thin films on(111)-oriented Si substrate has been reported.Structural analysis has suggested that nonpolar monoclinic HfO_(2):Al grown on(111)-oriented Si substrate suffered from a strong compressive strain,which promoted the crystallization of(111)-oriented o-phase HfO_(2)in the as-grown HfO_(2):Al thin films.In addition,the in-plane lattice of(111)-oriented Si substrate matches well with that of(111)-oriented o-phase HfO_(2),which further thermally stabilizes the o-phase HfO_(2).Accordingly,an improved ferroelectricity with a remnant polarization(2P_(r))of 26.7C/cm^(2) has been obtained.The results shown in this work provide a simple way toward the preparation of improved ferroelectric HfO_(2)thin films.
基金Funded by the National Key Research and Development Program of China(No.2023YFB3812200)the National Key Basic Research Program of China(973 Program)(No.2015CB654601)。
文摘Under illumination by 405,520 and 655 nm monochromatic visible light(light intensity of 30 kW/m^(2)),large photostriction(ΔL/L)of 0.19%,0.13%and 0.26%for 67BiFeO_(3)-33BaTiO_(3)(67BF-33BT)lead-free ferroelectric ceramics are obtained,respectively.By studying the ferroelectric and photoelectric properties in conjunction with in situ Raman spectroscopy,it is found that the photostrictive effect of 67BF-33BT is not caused by the electrical strain induced by abnormal photovoltaic voltage,but related to the optical induced oxygen octahedral distortion.The 67BF-33BT lead-free ferroelectric material with excellent photostrictive response in the visible light region is expected to play an important role in the field of optical drive electromechanical devices.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA1400300)the National Natural Science Foundation of China(Grant Nos.22271309,21805215,11934017,12261131499,and 11921004)+1 种基金the Beijing Natural Science Foundation(Grant No.Z200007)the Fund from the Chinese Academy of Sciences(Grant No.XDB33000000)。
文摘Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT) are deposited on Pt(111)/Ti/SiO_(2)/Si substrates in the present study by the traditional sol–gel method.Their structures and related ferroelectric and fatigue characteristics are studied in-depth.The BCT–PT thin films exhibit good crystallization within the phase-pure perovskite structure,besides,they have a predominant(100) orientation together with a dense and homogeneous microstructure.The remnant polarization(2P_(r)) values at 30 μC/cm^(2) and 16 μC/cm^(2) are observed in 0.1BCT–0.9PT and 0.2BCT–0.8PT thin films,respectively.More intriguingly,although the polarization values are not so high,0.2BCT–0.8PT thin films show outstanding polarization fatigue properties,with a high switchable polarization of 93.6% of the starting values after 10^(8) cycles,indicating promising applications in ferroelectric memories.
基金supported by National Defense Basic Scientific Research Program of China(Grant Nos.JCKY2020408B002,WDZC2022-12).
文摘Recent years,the polarization response of ferroelectrics has been entirely studied.However,it is found that the polarization may disappear gradually with the continually applied of electric field.In this paper,taking K0.48Na0.52NbO3(KNN)as an example,it was demonstrated that the residual polarization began to decrease when the electric field frequency increased to a certain extent using a phase-field methods.The results showed that the content of out-of-plane domains increased first and then decreased with the increase of applied electric field frequency,the maximum polarization disappeared at high frequencies,and the hysteresis loop became elliptical.In order to further study the abnormal changes of hysteresis loops of ferroelectrics under high electric field frequency,we analyzed the hysteresis loop and dielectric response of solid solution 0.1SrTiO_(3)-0.9K_(0.48)Na_(0.52)NbO_(3).It was found that the doped hysteresis loop maintained its shape at higher frequency and the dielectric constant increased.This kind of doping has a higher field frequency adaptability,which has a key guiding role in improving the dielectric properties of ferroelectric thin films and expanding the frequency application range of ferroelectric nano memory。